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Abstract

The aim of this paper is to develop a supervised dimension reduction framework, called Spatially 

Weighted Principal Component Analysis (SWPCA), for high dimensional imaging classification. 

Two main challenges in imaging classification are the high dimensionality of the feature space and 

the complex spatial structure of imaging data. In SWPCA, we introduce two sets of novel weights 

including global and local spatial weights, which enable a selective treatment of individual 

features and incorporation of the spatial structure of imaging data and class label information. We 

develop an e cient two-stage iterative SWPCA algorithm and its penalized version along with the 

associated weight determination. We use both simulation studies and real data analysis to evaluate 

the finite-sample performance of our SWPCA. The results show that SWPCA outperforms several 

competing principal component analysis (PCA) methods, such as supervised PCA (SPCA), and 

other competing methods, such as sparse discriminant analysis (SDA).
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1 Introduction

In various neuroimaging studies, imaging classification is to predict a set of response 

variables (class labels) Y by using a set of imaging data  measured on 

each of N subjects, where  is a 3-dimensional (3D) volume (or 2D surface) and d is a voxel 

(or pixel) of . For instance, Y may include cognitive outcome, disease status, and the early 

onset of disease, among others, whereas x may include magnetic resonance imaging (MRI) 

and positron emission tomography (PET), among many others. Moreover, imaging data 

usually can be represented as data on a graph such that D is a graph with {d1,..., dp} as the 

set of vertexes and an edge set, denoted by .
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Two major challenges associated with imaging classification include (i) ultra-high 

dimension, but low sample size and (ii) correlated features with complex spatial structure 

including spatial smoothness and spatial correlation. For instance, the size of a typical T1 

MRI is 256×256×256, and thus MRI contains 2563 = 16,777,216 voxels. In contrast, the 

number of observations in most neuroimaging studies varies from several dozens to several 

hundreds. Thus, it is imperative to perform dimension reduction before classification. 

Moreover, imaging data has an inherent and strong spatial dimension due to the inherent 

biological structure of objects (Friston, 2007; Lazar, 2008; Ye et al., 2009; Wang et al., 

2007; Meyer and Chinrungrueng, 2005). The aim of this paper is to develop a Spatially 

Weighted Principal Component Analysis (SWPCA) to address the two challenges for high 

dimensional imaging classification.

Despite of its e cacy and popularity in image applications, principal component analysis 

(PCA; Jolliffe, 2002) as a general non-supervised dimension reduction technique is known 

to su er from major limitations. Firstly, each principal component (PC) is a linear 

combination of the original p features with nonzero loadings, which not only incorporates 

unnecessary noises but also makes it very di cult to interpret the derived PCs, especially 

when p >> N. Secondly, PCA treats all the features equally, and thus it may be not well-

suited for some problems, in which some regions of interest are more important than others. 

Thirdly, PCA ignores the inherent spatial smoothness and spatial correlation of imaging 

data.

Many PCA variants have been proposed to address some of these limitations discussed 

above (Jolliffe, 2002; Zou et al., 2006; Bair et al., 2006; Skočaj et al., 2007; Shen and 

Huang, 2008; Leng and Wang, 2009; Pinto da Costa et al., 2011; Allen et al., 2011, etc.). 

For instance, Bair et al. (2006) proposed a Supervised PCA (SPCA) by conducting standard 

PCA on marginally selected features. However, SPCA su ers from ignoring the inherent 

spatial structure of imaging data. Skočaj et al. (2007) proposed a weighted PCA (WPCA) by 

introducing temporal and spatial weights in order to downweight individual images and 

individual components of x. However, they only focused on the temporal weights but failed 

to discuss how to choose the spatial weights which is more interesting in image analysis. 

Thomaz et al. (2010) introduced a supervised spatially weighted version of PCA (SSWPCA) 

by using a linear discriminant analysis (LDA) to determine spatial discriminant weights for x 

in a two-class classification setting and then applying PCA to the sample correlation matrix 

weighted by those spatial weights. SSWPCA is limited to binary responses and su ers from 

the “p >> N” problem, which requires further regularization. Recently, Pinto da Costa et al. 

(2011) proposed another weighted version of PCA based on a weighted rank correlation coe 

cient using rankings of original data, which is not appropriate for imaging data. Allen et al. 

(2011) proposed a generalized least squares matrix decomposition framework for two-way 

regularization PCA, while explicitly accounting for their structural relationship.

The aim of this paper is to develop a supervised dimension reduction method, called 

Spatially Weighted Principal Component Analysis (SWPCA), for imaging classification. In 

SWPCA, we introduce two sets of weights including global and local spatial weights, which 

enables the selection of individual features and the incorporation of both the spatial pattern 

of imaging data and class label information. We develop an e cient two-stage iterative 
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SWPCA algorithm and its penalized version along with the associated weight determination. 

We evaluate the finite-sample performance of SWPCA by using two simulation studies and 

real data analysis, whose results strongly indicate that SWPCA outperforms several 

competing PCA variants and other competing methods, such as sparse discriminant analysis 

(SDA; Clemmensen et al., 2011).

The rest of this paper is outlined as follows. In Section 2, we develop the general SWPCA 

framework and its two-stage algorithm. Section 3 discusses several strategies of determining 

global and local weights. In Section 4, two simulation studies and real data analysis are 

conducted to demonstrate the improvement of our SWPCA over other commonly used PCA 

methods. Concluding remarks and discussions are given in Section 5.

2 Spatially Weighted Principal Component Analysis

2.1 Principal Component Analysis

Principal Component Analysis (PCA) as a basic dimension reduction tool is to project high-

dimensional data to a lower dimensional space with a few uncorrelated features, called 

principal components (PC). Let X = (x1,..., xN)T denote an N × p data matrix of rank q ≤ 

min(N, p), where N is the number of observations, p is the number of features, and xi = (xij) 

is a p × 1 vector of features from the i-th object. Denote X̃ = X – 1NμT as the centered data 

matrix, where 1N is an N × 1 vector of ones and μ = (μ1, · · · ,μp)T is a p × 1 mean vector. 

Let Iq be a q × q identity matrix. PCA finds a lower-dimensional representation that 

maximizes the variance of projections. Numerically, PCA can be easily derived by Singular 

Value Decomposition (SVD) method as follows:

(1)

where the columns of A = UD = X̃V are PCs, the columns of V = (v ,..., vp)T are principal 

component directions (principal axes), D is a q × q diagonal matrix with singular values, and 

the columns of U and V are orthonormal such that UTU = VTV = Iq. In image analysis, the 

data matrix X consists of N images as rows, and each row (i.e., xi) represents a vectorized 

image of dimension p, where p is the number of pixels/voxels of the image and generally p 

>> N. When applying PCA to image data, the mean vector μ is the mean image and the 

columns of V are called eigenimages.

Alternatively, PCA can be interpreted as approximating the original data in the high-

dimensional space by using a low-rank factor model. Specifically, the rank-q factor model 

can be written as

(2)

The PCA is then taken to minimize the reconstruction error (RE) defined as the squared 

distance between the original data and its rank-q approximation as follows:

(3)
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where  is the L2 norm of a vector and x̃ij = xij –μj. As seen from (3),  can be 

represented as a summation of individual squared distance for each image at each location 

(feature), where all the features are treated equally and “independently”. In this sense, 

standard PCA ignores the underlying spatial pattern of image data, since  remains the 

same no matter where each feature is located. Although the standard PCA loses the spatial 

information, this is not the case for SWPCA developed below, since we can explicitly 

incorporate such spatial information by introducing locally spatial weights, which depend on 

both the edge set  and the spatial smoothness of imaging data.

2.2 Spatially Weighted PCA (SWPCA)

In this subsection, we develop a SWPCA to find a lower dimensional representation of 

imaging data by explicitly accounting for their spatial feature. Since each image xi consists 

of p correlated features with clustered spatial structure, PCA may not be well suitable for 

correlated imaging data. However, SWPCA explicitly incorporates spatial information by 

introducing two sets of spatial weights to the reconstruction error. Such spatial weights 

include (i) global weights for the selective treatment of individual features and (ii) local 

spatial weights for the incorporation of the spatial smoothness and correlation of imaging 

data.

Let wj be the global spatial weight for the j-th feature of xi with . Let B(j; h) be a 

neighborhood of the j-th feature at scale h and ω(j, d; h) be the local spatial weight for each 

neighboring feature d within B(j; h) of feature j such that . The 

SWPCA is taken to minimize a weighted reconstruction error (WRE) given by

(4)

where A = (a1 ,..., aN)T and V = (v1,..., vp) are the N × q and p × q matrices, respectively. 

Moreover,  is the d-th feature of the centered data 

, in which  and 

 are the weighted and simple mean images, respectively. The 

lower-dimensional representation of SWPCA is obtained by minimizing  as 

follows:

(5)

Without making any confusion, we omit the script h in most notations.

The global and local weights play a critical role in SWPCA. Specifically, the global weights 

WG = {wj} play a feature selection role and enable a selective treatment of di erent features 
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by upweighting more important features and downweighting noninformative features. 

Moreover, since imaging data are spatially correlated and contain spatially contiguous 

regions with sharp edges, the local spatial weights WL = {ω(j, d; h)} allow us to capture the 

spatial smoothness of imaging data and accommodate the spatial dependence among 

imaging features. The scale parameter h can vary in a multiscale manner, while the shape of 

the neighborhood sets can vary across h and di erent applications. Furthermore, SWPCA 

provides a supervised dimension reduction solution by incorporating outcome information 

via the introduced global and spatial weights. In image classification, the global weights can 

be assigned according to the discriminative ability of each pixel/voxel, i.e., the association 

between each pixel/voxel in X and the class information in Y ; the local spatial weights can 

be determined based on the discriminative similarity of neighboring pixel/voxel. More 

discussions about how class information can be incorporated in SWPCA are given in 

Section 3.

SWPCA can be regarded as a generalization of PCA, SPCA, and WPCA. For instance, when 

ω(j, d; h) = 1(j = d), where 1(·) is the indicator function of an event, SWPCA reduces to 

WPCA with spatial weights. If ω(j, d; h) = 1(j = d) and wj = 1 for all j and d, (4) reduces to 

(3) which is the standard PCA problem. If we set ω(j, d; h) = 1(j = d) for all j, d and wj = 1 

only for selected “top” features and 0 for other features, SWPCA reduces to SPCA. More 

discussions on various choices of these weights and neighborhood scale h are given in 

Section 3.

We reformat  as follows. Let 

denote an N × p locally weighted data matrix and , where Wp 

=diag(w1, ...,wp) and . Without loss of generality, we assume 

that all global spatial weights are non-zero for the sake of notation. Even for WG with zero 

weights, all results below are valid since only features with non-zero wj are actually included 

for computation. We obtain the following lemma, whose proof can be found in the 

Appendix.

Lemma 1 Minimizing (4) is equivalent to

(6)

where  is the Frobenius norm.

Equation (6) is invariant to arbitrary rotations of A and V such that AVT =ÃṼT . Such 

invariant issue is usually solved by imposing orthonormal constraint, i.e., VTV = Iq. 

However, such constraint is no longer appropriate for SWPCA, when the global spatial 

weights are incorporated for individual treatment and selection of features that regulate V . 

Instead of restricting V , we impose ATA = Iq, which greatly facilitates the computation of 

SWPCA.
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For ultra-high dimensional data, that is p >> N, PCA su ers from several major limitations. 

For instance, it is well-known that sample eigenvalues and eigenvectors can be inconsistent 

as p goes to infinity. Moreover, naive approaches to PC score prediction can be substantially 

biased towards 0 in the analysis of high-dimensional data. To avoid such limitations, various 

penalized PCA methods have been developed (Journée et al., 2010; Shen and Huang, 2008; 

Huang et al., 2008a; Zou et al., 2006; Johnstone and Lu, 2009; Huang et al., 2008b; Witten 

et al., 2009). Specifically, we consider a regularized SWPCA by including an additional 

penalty term on V to (6). The minimization problem becomes

(7)

where vck is the k-th column vector of V = (vc1,..., vcq) and  is the L1-

norm of the p × 1 vector vck.

2.3 Two-stage Iterative Algorithms

We develop e cient two-stage iterative SWPCA algorithms to solve the minimization 

problems (6) and (7). We obtain the following two lemmas pertinent to the algorithm for 

solving (6).

Lemma 2 Given V , A that minimizes (4) subject to AT A = Iq is A = PUT, where P and U 
are orthogonal matrices obtained from the SVD of XhWpV = PDUT.

Lemma 3 Given A, V that minimizes (4) is .

The above lemmas lead to our two-stage iterative SWPCA Algorithm 1 as follows.

Algorithm 1 SWPCA Algorithm

a. Use V derived by standard PCA as an initial value;

b. Given V , conduct SVD on XhWpV = PDUT and then update A = PUT ;

c. Given A obtained from (b), update ;

d. Repeat the steps (b) and (c) until convergence;

e. Standardize the final V to obtain Ṽ and Ã.

Our SWPCA algorithm provides a simple and efficient way for the minimization problem 

(4) with the constraint on A. As a special case of SWPCA, the WPCA with spatial weights 

can be realized by our SWPCA Algorithm 1, which overcomes the rotational ambiguity 

problem of the Algorithm in Skočaj et al. (2007). According to our experience, our 

Algorithm 1 converges much faster compared with that for WPCA. Moreover, keeping V 
free of scale constraint allows direct extension of our SWPCA algorithm to a sparse version 

for ultra-high dimensional data. We obtain the following lemma for the sparse case.

Lemma 4 Given fixed A and ATA = Iq, we have the following results:
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i. the minimization problem (7) is equivalent to that of the weighted Lasso given by

(8)

where vck is the k-th column vector of V and ack is the k-th column of A;

ii. the soft thresholding solution of (8) is  with

(9)

where sign(·) is the sign function, (·)j denotes the j-th element of the argument, and 

{·}+ is the truncation function that returns the argument if it is nonnegative or 0 

otherwise.

Lemma 4 has several important implications. Lemma 4 (i) reformats (7) as a weighted lasso 

problem of Zou et al. (2006). This result yields an explicit solution  in Lemma 4 (ii). 

Moreover, for the features with small spatial weights, the regularized SWPCA automatically 

increases their penalties and thus their associated 's have a higher chance to be shrunk to 

zero. Thus, SWPCA is very useful for eliminating many uninformative features in imaging 

data. Based on Lemma 4, Algorithm 1 can be extended to the penalized SWPCA algorithm 

as follows.

Algorithm 2 Penalized SWPCA Algorithm

a. Use V derived by the standard PCA as an initial value;

b. Given V , apply SVD on XhWpV = PDUT and then set A = PUT ;

c. ’ Given A obtained from (b), update V = {vjk}p×q, where vjk is calculated according 

to (9);

d. ’ Repeat the steps (b) and (c’) until convergence;

e. Standardize the final V to obtain Ṽ and Ã

The penalized SWPCA algorithm proposed above provides an efficient way to obtain a low-

dimensional representation of X even for ultra-high dimensional data. Besides, our penalized 

SWPCA algorithm can be used to realize the sparse PCA method proposed by Shen and 

Huang (2008) since SWPCA is considered as a generalization of standard PCA. The sparse 

PCA algorithm in Shen and Huang (2008) computes PCs in a sequential way, whereas our 

Algorithm 2 computes all PCs simultaneously at once. Thus, Algorithm 2 may be more 

appealing and efficient.

One important application of SWPCA is to do prediction. We consider the data matrix with 

new observations and its locally weighted data matrix, which are denoted by X* and , 

respectively. LetÃ* be the low-dimensional projection of X* onto the principal axes Ṽ 
derived from SWPCA. We obtain the following lemma.
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Lemma 5 Given V , the A that minimizes (4) is A = (XhWpV)(VTWpV)–1.

Based on Lemma 5,Ã* can be estimated by using . WithÃ , class 

prediction can be efficiently performed using this low-dimensional representation.

3 Spatial Weights for Imaging Classification

In this section, we discuss how to choose various spatial weights and how the class 

information can be incorporated for imaging classification.

3.1 Global Spatial Weights

The global weights WG = {wj} play a feature selection role in SWPCA. For instance, for 

classification problem, we may use each feature's discriminative importance to assign each 

component of WG. Specifically, let θj denote a measure of the association between the j-th 

feature and the class information, i.e., θj is a function of the j-th pixel/voxel of image data X 
and class information Y . Each wj can be defined as a function of θj as

(10)

Examples of θj include the Pearson correlation and test statistics, among many others. A 

simple example is to use the Pearson correlation between each feature and class label 

information. More informative features for classification (or high correlation) are assigned 

more weights, whereas noninformative features (e.g., correlation less than a given threshold) 

can be discarded by setting wj = 0. In this case, θj is the Pearson correlation and 

. Additionally, the importance scores used in SPCA can also be considered 

for WG. Another example is to fit a voxel-wise regression model with imaging data at each 

location as responses and the class label as covariates. Specifically, we consider an L-class 

classification problem and define yil = 1 if i is in class l for i = 1,..., N and l = 1,..., L and 0 

otherwise. Consider a voxel-wise linear regression model by fitting xij = yT
iθj + εij for i = 

1,..., N and j = 1,..., p, where yi = (1, yi1,..., yi,L–1T and θj contains the discriminative 

information of features at location j. Then, f(θj) can be a test statistic and/or its associated p-

value for testing H0 : θj = 0 at location j.

3.2 Local Spatial Weights

The local spatial weights WL = {ω(j, d; h)} play a critical role in incorporating spatial 

smoothness and correlation of imaging data in SWPCA. This is extremely important for 

imaging data, since imaging data are spatially dependent and contain contiguous regions 

with sharp edges in nature. Let B(j, h) be a set of neighboring locations of the j-th feature at 

scale h. The local weight ω(j, d; h) usually characterizes the “similarity” between feature j 

and features d ∈ B(j, h) and/or the “similarity” between locations d and j. Specifically, we 

define ω(j, d; h) at scale h as
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(11)

where D1(d, j) denotes the spatial distance between locations d and j, D2( θd, θj) represents 

the discriminative similarity between θd and θj, K1(·) and K2(·) are two decreasing kernel 

functions, and h and CN are bandwidth parameters that may depend on N. The decreasing 

kernel function K1(·) gives less weight to the voxel d ∈ B(j, h), whose location is far from 

the voxel j. The kernel K2(·) downweights the voxels d with large D2(θd, θj), which indicates 

a large di erence between θd and θj. By following Polzehl and Spokoiny (2006) and Li et al. 

(2011), we set K1(x) = (1 – x)+ and K2(x) = exp(–x), which demonstrated excellent 

performance in many imaging applications. Moreover, the shape and size of B(j, h) can vary 

across applications and with h.

3.3 Scale Size h

The scale size h plays a critical role in the amount of features incorporated from neighboring 

voxels in B(j, h) for each j. A simple approach is to fix h according to some prior or 

empirical information. However, a small h may miss important spatial information, whereas 

a large h may smooth out some local details and dramatically increase the computational 

burden. Alternatively, we may consider a sequence of nested neighborhoods corresponding 

to multiple scales at each location. Specifically, let h = {h0 < h1 < ... < hS} be a sequence of 

scales with h0 = 0 and hS being the maximum scale. The scales can be chosen based on 

previous studies or empirical experiences. For example, scales can be defined as the radius 

of spherical neighborhood in a form of {hs = cs} with constant c > 1. In our numerical 

examples, we used c = 1.2 which balanced the computation intensity without losing 

important spatial information. One may choose an optimal h based on a specific criterion, 

such as WRE, and then use the PCs extracted based on the optimal h for imaging 

classification. Alternatively, one may integrate the PCs extracted from all scales h for 

imaging classification.

For imaging classification, we propose a multi-scale procedure to determine WG and WL 

across multiple scales. Without loss of generality, we consider the cross-sectional studies so 

that (xi, yi) are independent across subjects. Specifically, at a given scale h, we consider a 

weighted likelihood function given by

(12)

where X and Y , respectively, denote the imaging and class information and p(xid|yi, θj) is 

the likelihood function of xid given yi. Moreover, as discussed in the voxel-wise linear 

regression model in Section 3.1, θj may contain the discriminative information of features at 

j. Based on the weighted likelihood function (12), Li et al. (2011) developed a multiscale 

adaptive regression model (MARM) to spatially and adaptively calculate the estimate of θj, 

denoted by , as the scale size h ranges from h0 to hS. Instead, we borrow the spatial 
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information learned in (12) and the estimated  to spatially and adaptively construct WG 

and WL across h. We introduce a multi-scale algorithm as follows.

Algorithm 3 Multi-scale Algorithm—Given a series of scales h0 = 0 < h1 < ... < hS, for 

each feature j,

a. Begin with h0 = 0 with ω(j, d; h0) = 1 when d = j and 0 otherwise, calculate the 

initial association estimate at scale h0 denoted as  and set s = 1.

b. At scale hs, update the association estimate  by maximizing (12) based on 

ω(j, d; hs–1).

c. Calculate ω(j, d; hs) in (11) using updated  and  and update 

wj according to (10) by using . If s < S, let s=s+1.

d. Repeat steps (b) and (c) until the stopping criterion is met or s = S.

The stopping criterion in Algorithm 3 can be either global or local criteria. For instance, for 

the global criteria, we may stop the algorithm if WRE cannot be further decreased. For the 

local criteria at each location j, we may check the improvement of θj.

4 Numerical Examples

In this section, we conducted two simulation studies and real data analysis to examine the 

performance of SWPCA in L-class classification problems, where L is a positive integer. In 

each simulation study, we compared our SWPCA with PCA, SPCA, and WPCA. For SPCA, 

we used the importance scores used in Bair et al. (2006) to select “top” important features. 

For WPCA, we considered two WPCAs by using two different spatial weights which are 

based on the importance scores of SPCA and WG of SWPCA, respectively. For PCA, SPCA, 

and WPCA, imaging data were smoothed using an isotropic Gaussian kernel with different 

degrees of smoothness including no smoothing, moderate smoothing, and over-smoothing. 

For the sake of space, we only reported the best results under the moderate degree of 

smoothness. For SWPCA, we used Algorithm 3 with spherical neighborhoods and {hs = 

1.2s : s = 1,..., S = 5} to determine optimal scales locally and its associated WG and WL. 

Specifically, we used -log10 of the FDR (False Discovery Rate) corrected p-values for 

testing the null hypothesis of no group di erences as our global spatial weights WG. For the 

local spatial weights, we chose the Euclidean norm for D1(·), the Mahalanobis norm for 

D2(·), and CN = log(N)χ2
L–1(0.95), where χ2

L–1(b) is the upper 1 – b percentile of the χ2 

distribution with L – 1 degrees of freedom. For the penalized SWPCA, denoted as 

PSWPCA, we used the same spatial weights as those of SWPCA and varied λk across 0.5, 

1.0, 2.0, 5.0, and 10.0. Extracted PCs were then used for class prediction. Since the proposed 

method is more efficient requiring less components, we chose number of PCs retained based 

on the amount of total sample variance explained by the standard PCA to assure that at least 

a certain amount of total variance can be accounted for. Since comparison of different 

classification methods is not the interest of this paper, we just used three standard 

classification methods including (i) linear regression (REG), (ii) k-nearest neighbor (k-NN) 
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classification, and (iii) support vector machine (SVM) to evaluate the performance of 

different PCA methods.

4.1 Simulation Studies

For each simulation study, a total of 100 3D-images were simulated and randomly split into 

a training set with N = 60 images and a test set of 40 images. We repeated each simulation 

100 times, and evaluated the classification performance of different methods by using the 

average misclassification rate. For simulation studies, the results with K = 2 PCs retained 

were presented for graphical illustration purpose to display the low-dimensional 

representation of the simulated data constructed by the PCs extracted by different dimension 

reduction methods. With 2 PCs, the standard PCA can already account for on average 

around 60% of the total variance in Simulation I and around 50% in Simulation II.

4.1.1 Simulation Study I—In this study, we simulated 20×20×10 3D-images from a 

linear regression model: xij = θj0+ θj1yi+ εij, where εij ~ N(0, 4) for i = 1,..., 100 and j = 

1,...,4000. The feature dimension p = 4000 is much larger relative to the training sample size 

N=60. This is a two-class classification problem with L = 2. The class label yi is coded as 0 

and 1. Thus, μ0 = {θj0 : j = 1,...,4000} is the true mean image of Class 0, whereas μ1 = {θj0 + 

θj1 : j = 1,...,4000} is the true mean image of Class 1. See Figure 1 for a graphical 

illustration. For μ0, we divided the 3D image into two different regions of interest (ROIs) 

with different shapes and then varied θj0 as 0 and 1, respectively, across these two ROIs. For 

μ1, we divided the 3D image into three different ROIs with different shapes and then varied 

θj0 + θj1 as 0, 1, and 2, respectively, across these three ROIs. Figure 1 reveals that the di 

erence between the two classes only lies in the yellow triangular prism region.

We presented the classification results in Table 1 based on the results obtained from the 100 

simulated datasets. We only presented the average misclassification rates and the standard 

deviations (SD) of misclassification errors. Table 1 reveals that the classification results 

from the three classification methods show similar pattern across different PCA methods. 

For SPCA, we varied the number of “top” voxels as 50, 100, 200, 400, and 1000, and the 

algorithm based on the top 50 voxels outperforms the rest. Overall, SPCAs greatly improve 

the class prediction over PCA by screening out many uninformative voxels. We denote two 

WPCAs using the importance scores of SPCA and using WG of SWPCA as their spatial 

weights by WPCA-1 and WPCA-2, respectively. The WPCA-1 performs better than PCA, 

as good as SPCA with relatively large number of top selected voxels, but worse than SPCA 

with less selected voxels. The WPCA-2 improves the class prediction over WPCA-1 and 

performs as good as SPCA based on top 50 voxels. Furthermore, SWPCA using Algorithm 

1 significantly reduces the misclassification rate to only 2.6% for REG, 3.0% for 5-NN, and 

3.3% for SVM with much smaller standard deviations. Finally, PSWPCA based on 

Algorithm 2 further reduces the misclassification rate.

The two different sets of spatial weights used in WPCA-1 and WPCA-2 are illustrated in 

Figure 2. Figure 2 shows that WG of SWPCA clearly identifies those “true” voxels which 

are located in the triangular prism. In contrast, the importance scores of SPCA can only 

roughly locate the region but not the shape, along with many false positive voxels. Let nt 
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denote the number of true informative voxels. In Simulation I, nt = 75 voxels forms the 

triangular prism. To further evaluate the “feature selection” ability of the weights, we 

calculate the true positive rate (TP) as the ratio of the true informative voxels to the top 

ranked nt voxels. We have TPSPCA=.63, and TPSW PCA=.90. These two numbers also 

explain why WPCA-2 works better than WPCA-1. Moreover, the performance of SPCA is 

sensitive to the threshold used to determine significant features in SPCA, whereas WPCAs 

and SWPCAs can include all the voxels by weighing differently without concerning the 

thresholding issue. To visualize the performance of dimension reduction, we plotted the first 

two extracted PCs obtained from different PCA methods for one simulated dataset in Figure 

3. We observed that the two PCs of SWPCA and PSWPCA can easily separate the two 

classes, whereas those of other PCA methods cannot.

For additional comparisons, we also applied two non-PCA-type of supervised dimension 

reduction methods including sparse partial least squares (SPLS; Chung and Keles, 2010) and 

sparse discriminant analysis (SDA; Clemmensen et al., 2011) to the simulated datasets. See 

Table 2 for detailed results. For SPLS, since different classifiers can be used, we also 

applied REG (SPLS-REG), k-NN (SPLS-kNN), and SVM (SPLS-SVM) besides the default 

one in order to have additional comparisons with various PCA-type of methods presented in 

Table 1. Table 2 shows that SPLS and SDA yield similar classification performance as 

SPCA, but they significantly underperform our proposed SWPCA and PSWPCA.

4.1.2 Simulation Study II—In this simulation study, we simulated 20 × 20 × 20 3D-

images from L = 3 classes (coded as 0, 1, 2) according to a linear regression model: xij = θj0 

+ θj1yi1 + θj2yi2 + εij, where εij ~ N(0, 9) for i = 1,...,100 and j = 1,...,8000 and yi1 and yi2 are 

dummy variables for Class 1 and Class 2, respectively. Thus, μ0 = {θj0} is the true mean 

image of Class 0, μ1 = {θj0 + θj1} is the true mean image of Class 1, and μ2 = {θj0 + θj2} is 

the true mean image of Class 2. Figure 4 shows the true mean images for each class in 3D. 

For μ0, we divided the 3D image into two different ROIs with different shapes and then 

varied θj0 as 0 and 1, respectively, across these two ROIs. For μ1, we divided the 3D image 

into two different ROIs with different shapes and then varied θj0 + θj1 as 0 and 1, 

respectively, across these two ROIs. For μ2, we divided the 3D image into three different 

ROIs with different shapes and then varied θj0 + θj2 as 0, 1, and 2, respectively, across these 

three ROIs. Figure 4 reveals that the di erences between the three classes lie in the yellow 

and red regions.

We presented the classification results in Table 3 based on the results obtained from the 100 

simulated datasets. In Table 3, three classification methods, REG, k-NN, and SVM, show 

similar classification results across different PCA methods. For SPCA, the algorithm based 

on the 400 or 1,000 top voxels outperforms the rest. Overall, SPCA moderately improves the 

class prediction over the standard PCA. The WPCA-1 algorithm outperforms PCA and is 

comparable to SPCAs in cases of 200 or more top voxels. The WPCA-2 algorithm shows 

better performance than SPCA and WPCA-1. Furthermore, SWPCA and PSWPCA 

outperform other competing methods and greatly reduce the misclassification rate. The 

results for the non-PCA methods are given in Table 4. Similarly as Simulation I, SPLS and 

SDA yield similar but significantly poorer classification performance comparing with the 

best SWPCA results.
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Figure 5 illustrates two different sets of spatial weights used in WPCA-1 and WPCA-2. It 

shows that WG of SWPCA identifies the “true” voxels located in the triangular and cubic 

shapes. However, the importance scores of SPCA roughly identifies the location of true 

voxels, but not the shapes. In this simulation study, there are 409 truly informative voxels, 

and we have TPSPCA=.59 and TPSWP CA=.81. In Figure 6, we draw the plots of the first 

two extracted PCs obtained from all PCA methods for one simulated dataset. From Figure 6, 

we observe that SWPCA and PSWPCA perform well in separating three classes, but other 

PCA method do not.

4.2 Real Data Analysis

We applied SWPCA to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data. 

Alzheimer's Disease (AD) is the most common form of dementia, which progressively 

causes problems in memory, thinking, behavior, and eventually leads to death. The ADNI 

study is a large scale multi-site study collecting clinical, imaging, and laboratory data at 

multiple time points from cognitively normal controls (CN), individuals with amnestic mild 

cognitive impairment (MCI), and subjects with AD. One of the goals of ADNI is to develop 

improved methods to track the longitudinal course of AD based on imaging and biomarker 

data. More information about data acquisition can be found at the ADNI website 

(www.loni.ucla.edu/ADNI).

“Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year 

publicprivate partnership. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their e ectiveness, as 

well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative 

is Michael W. Weiner, MD, VA Medical Center and University of California, San 

Francisco. ADNI is the result of e orts of many coinvestigators from a broad range of 

academic institutions and private corporations, and subjects have been recruited from over 

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but 

ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols have 

recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of 

cognitively normal older individuals, people with early or late MCI, and people with early 

AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 

and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to 

be followed in ADNI-2. For up-to-date information, see www.adni-info.org. ”

A subset of the ADNI data including AD patients and CN controls was used here to 

illustrate the empirical utility of our proposed methods in imaging classification. After 
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removing subjects with missing or low quality imaging data, the data set consists of 390 

subjects (218 CN controls and 172 AD patients). Among them, there are 206 males whose 

mean age is 75.46 years with standard deviation 6.34 years and 184 females whose mean 

age is 75.50 years with standard deviation 6.40 years. T1-weighted images at the baseline 

were used for all subjects. The T1-weighted images were preprocessed by standard steps 

including AC (anterior commissure) and PC (posterior commissure) correction, N2 bias 

field correction, skull-stripping, intensity inhomogeneity correction, cerebellum removal, 

segmentation, and registration. After segmentation, the brain were segmented into four 

different tissues: grey matter (GM), white matter (WM), ventricle (VN), and cerebrospinal 

fluid (CSF). The imaging pipeline was described in detail in Wang et al. (2011).

We quantified the local volumetric group di erences by generating RAVENS-maps 

(Davatzikos et al., 2001) for the whole brain and four different types of segmented tissue 

(GM, WM, VN, and CSF), respectively, using the deformation field obtained during 

registration. RAVENS methodology is based on a volume-preserving spatial transformation, 

which ensures that no volumetric information is lost during processing spatial normalization, 

since this process changes an individual's brain morphology to conform it to the morphology 

of a template. We obtained the 256 × 256 × 256 RAVENS-maps and then down-sampled 

them to 128 × 128 × 128 for analysis. A sample RAVENS-map is displayed in the left panel 

of Figure 7.

Our goal is to study the empirical performance of SWPCA in classifying subjects from 

ADNI to AD or CN group based on the whole RAVENS images. We randomly split the 

imaging data into a training set of 195 images and a test set with the remaining 195 images 

and repeated this 100 times to calculate the average misclassification rate. For this real data 

analysis, five PCs were included for classification, which can account for around 90% of the 

total variance on average in the standard PCA. For PCA, WPCA, and SPCA, the RAVEN 

images were smoothed by using an isotropic Gaussian kernel with different degrees of 

smoothness as in the simulation studies. For ultra-high dimensional data like our example, 

we may pre-filter and assign zero weight to the less “important” voxels instead of assigning 

non-zero weights to all the voxels in order to improve computational e ciency. For example, 

for WPCA-2 and SWPCA based on the p-value map, we thresholded all FDR-corrected – 

log10 p-values at the significance level of 0.01 for WG. For SPCA, we selected the same 

number of voxels as the number of non-zero WG used in SWPCA according to the 

importance scores. Figure 7 shows some selected views of the importance score image of 

SPCA and the FDR-corrected – log10 p-value map used in WPCA-2 and SWPCA. Figure 8 

presents more slice views of the global spatial weights used in SWPCA and illustrates that 

some regions of interest in AD studies, such as hippocampus and amygdala, were highly 

weighted.

In Table 5, we present the classification results that show the similar performance of PCA 

methods as in the simulation studies. SPCA slightly improves the classification rate over the 

standard PCA. Both SPCA and WPCA-1 based on the same importance scores show quite 

similar performance. WPCA-2 performs slightly better than WPCA-1. In addition, SWPCA 

and PSWPCA outperform all other PCA methods with much lower misclassification rates. 

Notice that even using simple classification procedures, SWPCA/PSWPCA directly applied 

Guo et al. Page 14

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the whole image can already lead to a misclassification percentage around 20% for ADNI 

data. To illustrate our proposed dimension reduction tool, we applied simple classification 

procedures. It suggests that the classification performance can be more improved by 

incorporating more sophisticated procedures.

Numerical examples illustrated that SWPCA and its penalized version PSWPCA provided 

substantial improvement over other commonly used dimension reduction methods in image 

classification by incorporating spatial and class information via introduced global and local 

spatial weights. Computationally, SWPCA algorithm provides an efficient implementation, 

which produces all PCs simultaneously unlike other methods like Shen and Huang (2008) 

that compute PC one-by-one in a sequential way and converges much faster than the WPCA 

algorithm by Skočaj et al. (2007) since it does not have arbitrary rotation problem. In 

practice, the computing time of SWPCA varies depending on the analysis and method used 

for weight determination.

5 Discussion

This article is to develop a general SWPCA framework to generate low-dimensional 

representations for high-dimensional imaging classification. By incorporating the global and 

local spatial weights, SWPCA enables a selective treatment and selection of individual 

features, accommodates the complex dependence among features of imaging data, and has 

the ability of utilizing the underlying spatial pattern possessed by imaging data and class 

label information. SWPCA integrates feature selection, smoothing, and feature extraction in 

a single framework. In the simulation studies and real data analysis, SWPCA shows 

substantial improvement over PCA, SPCA, and WPCA.

The contributions of this article are two-fold. Firstly, from an image analysis point of view, 

our proposal timely responds to a number of growing needs of neuroimaging classification. 

It may also provide a systematic solution to the integrative analysis of multi-modality 

imaging data and imaging genetics data (Friston, 2009; Casey et al., 2010). Secondly, from a 

statistical methodology point of view, our proposal provides a novel and broad framework 

for the use of covariates with graphic structure to predict clinical outcomes. A large number 

of models and extensions are potential outcomes within this framework. Although there has 

been imaging studies utilizing tensor/matrix structure (Li et al., 2005; Park and Savvides, 

2007; Li et al., 2010; Zhou et al., 2013), our proposal, to the best of our knowledge, is the 

first work that integrates the spatial and graphic structure of imaging data into a statistical 

supervised learning paradigm. Our work can be viewed as a logic extension from the 

classical classification methods to a functional classification model.

Several important issues need to be addressed in future research. First, we will 

systematically investigate the theoretical properties of SWPCA and its variations by 

extending the existing results in the literature (Johnstone, 2001; Baik and Silverstein, 2006; 

Paul and Johnstone, 2007; Jung and Marron, 2009; Benaych-Georges and Nadakuditi, 

2011). Second, we will extend our SWPCA from a classification framework to a regression 

framework in order to predict more complex univariate and multivariate clinical outcomes. 

Third, we will develop new global weighting methods based on some joint important feature 
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selection methods and more complex screening methods, such as a robust rank correlation 

screening in (Li et al., 2012). Many more complexities and new statistical tools will 

definitely come out these new developments.
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A Appendix: Proofs

A.1 Proof of Lemma 1

The WRE  can be rewritten as follows:

where C is a scalar independent of A and V . Thus, minimizing  is equivalent to 

minimizing (6) as stated in Lemma 1.
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A.2 Proof of Lemma 2

Lemma 2 can be proved by using Theorem 4 of Zou et al. (2006) as follows. We kept their 

original notations here.

Theorem 4 (Reduced Rank Procrustes Rotation; Zou et al., 2006): Let Mnχp and Nnχk be two 

matrices. Consider the constrained minimization problem:

Suppose the SVD of MTN is UDVT , then Â = UAT.

Based on Lemma 1 and the discussion in Section 2.2, we have a similar minimization 

problem of A given V :

(13)

If we set  and  in Theorem 4, then Â that minimizes (13) given V 
subject to ATA = Iq is Â = PUT, where P and U are orthogonal matrices from SVD of 

.

A.3 Proof of Lemma 3

Assuming A is given, we take the derivative of  in (6) with respect to V . By setting it 

to zero, we obtain the solution

In Algorithm 1, since A derived from Step (b) is subject to ATA = Iq, V becomes XT
h A in 

Step (c).

A.4 Proof of Lemma 4

Since we can write:

Guo et al. Page 17

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minimizing  is equivalent to the following 

minimization problem. For each k = 1,..., q, we have

where xhj is the j-th column of Xh and vjk is the j-th element of vck. This completes the proof 

of part (i).

Part (ii) can be easily obtained by applying the lemma below to each element of vck.

Lemma The minimizer of (β–y)2 + λ |β| is 

The proof of this lemma is straightforward, so we omitted here.

A.5 Proof of Lemma 5

Assuming V is given, we can obtain the solution of A by taking the derivative of (6) with 

respect to A.

References

Allen, GI.; Grosenick, L.; Taylor, J. Tech. rep. Rice University; 2011. A generalized least squares 
matrix decomposition. 

Baik J, Silverstein J. Eigenvalues of large sample covariance matrices of spiked population models. 
Journal of Multivariate Analysis. 2006; 97:1382–1408.

Bair E, Hastie T, Paul D, Tibshirani R. Prediction by supervised principal components. Journal of the 
American Statistical Association. 2006; 101:119–137.

Benaych-Georges F, Nadakuditi R. The eigenvalues and eigenvectors of finite, low rank perturbations 
of large random matrices. Advances in Mathematics. 2011; 227:494–521.

Casey B, Soliman F, Bath KG, Glatt CE. Imaging genetics and development: Challenges and 
promises. Human Brain Mapping. 2010; 31:838–851. [PubMed: 20496375] 

Guo et al. Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chung D, Keles S. Sparse Partial Least Squares Classification for High Dimensional Data. Statistical 
Applications in Genetics and Molecular Biology. 2010; 9:1–32.

Clemmensen L, Hastie T, Witten D, Ersbøll B. Sparse discriminant analysis. Technometrics. 2011; 
53:406–413.

Davatzikos C, Genc A, Xu D, Resnick S. Voxel-based morphometry using the RAVENS maps: 
methods and validation using simulated longitudinal atrophy. NeuroImage. 2001; 14:1361–1369. 
[PubMed: 11707092] 

Friston, KJ. Statistical Parametric Mapping: the Analysis of Functional Brain Images. Academic Press; 
London: 2007. 

Friston KJ. Modalities, modes, and models in functional neuroimaging. Science. 2009; 326:399–403. 
[PubMed: 19833961] 

Huang JZ, Shen H, Buja A. Functional principal component analysis via regularized best basis 
approximation. Electronic Journal of Statistics. 2008a; 2:678–695.

Huang JZ, Shen H, Buja A. Functional principal components analysis via penalized rank one 
approximation. Electronic Journal of Statistics. 2008b; 2:678–695.

Johnstone I. On the distribution of the largest eigenvalue in principal components analysis. The Annals 
of Statistics. 2001; 29:295–327.

Johnstone IM, Lu AY. On consistency and sparsity for principal components analysis in high 
dimensions. Journal of the American Statistical Association. 2009; 104:682–693. [PubMed: 
20617121] 

Jolliffe, I. Principal component analysis. 2nd ed. Springer-Verlag; 2002. 

Journée M, Nesterov Y, Richtárik P, Sepulchre R. Generalized power method for sparse principal 
component analysis. Journal of Machine Learning Research. 2010; 11:517–553.

Jung S, Marron J. PCA consistency in high dimension, low sample size context. The Annals of 
Statistics. 2009; 37:4104–4130.

Lazar, NA. The Statistical Analysis of Functional MRI Data. Springer; New York: 2008. 

Leng C, Wang H. On general adaptive sparse principal component analysis. Journal of Computational 
and Graphical Statistics. 2009; 18:201–215.

Li B, Kim MK, Altman N. On dimension folding of matrix or array valued statistical objects. The 
Annals of Statistics. 2010; 38:1097–1121.

Li G, Peng H, Zhang J, Zhu L. Robust rank correlation based screening. Ann. Statist. 2012; 40:1846–
1877.

Li Y, Du Y, Lin X. Kernel-based multifactor analysis for image synthesis and recognition. Tenth IEEE 
International Conference on Computer Vision. 2005:114–119.

Li Y, Zhu H, Shen D, Lin W, Gilmore JH, Ibrahim JG. Multiscale adaptive regression models for 
neuroimaging data. Journal of the Royal Statistical Society: Series B. 2011; 73:559–578.

Meyer FG, Chinrungrueng J. Spatiotemporal clustering of fMRI time series in the spectral domain. 
Medical Image Analysis. 2005; 9:51–68. [PubMed: 15581812] 

Park SW, Savvides M. Individual kernel tensor-subspaces for robust face recognition: a 
computationally efficient tensor framework without requiring mode factorization. IEEE 
Transactions on Systems, Man, and Cybernetics. Part B. 2007; 37:1156–1166.

Paul, D.; Johnstone, I. Technical Report. UC Davis; 2007. Asymptotics of sample eigenstructure for a 
large dimensional spiked covariance model. 

Pinto da Costa JF, Alonso H, Roque L. A weighted principal component analysis and its application to 
gene expression data. IEEE Transactions on Computational Biology and Bioinformatics. 2011; 
8:246–252. [PubMed: 21071812] 

Polzehl J, Spokoiny VG. Propagation-separation approach for local likelihood estimation. Probability 
Theory and Related Fields. 2006; 135:335–362.

Shen H, Huang J. Sparse principal component analysis via regularized low rank matrix approximation. 
Journal of Multivariate Analysis. 2008; 99:1015–1034.

Skočaj D, Leonardis A, Bischof H. Weighted and robust learning of subspace representations. Pattern 
Recognition. 2007; 40:1556–1569.

Guo et al. Page 19

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thomaz, CE.; Giraldi, GA.; da Costa, JFP.; Gillies, DF. Tech. rep. Department of Computing Imperial 
College London; 2010. A simple and efficient supervised method for spatially weighted PCA in 
face image analysis. 

Wang D, Shib L, Yeunga DS, Tsanga EC, Hengb PA. Ellipsoidal support vector clustering for 
functional MRI analysis. Pattern Recognition. 2007; 40:2685–2695.

Wang, Y.; Nie, J.; Yap, P.; Shi, F.; Guo, L.; Shen, D. Robust deformable-surface-based skull-stripping 
for large-scale studies. In: Fichtinger, G.; Martel, A.; Peters, T., editors. Medical Image 
Computing and Computer-Assisted Intervention. Vol. 6893. Springer; Berlin / Heidelberg: 2011. 
p. 635-642.

Witten D, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse 
principal components and canonical correlation analysis. Biostatistics. 2009; 10:515–534. 
[PubMed: 19377034] 

Ye J, Lazar N, Li Y. Geostatistical analysis in clustering fMRI time series. Statistics in Medicine. 
2009; 28:2490–2508. [PubMed: 19521974] 

Zhou H, Li L, Zhu H. Tensor regression with applications in neuroimaging data analysis. Journal of 
American Statistical Association. 2013 in press. 

Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. Journal of Computational and 
Graphical Statistics. 2006; 15:265–286.

Guo et al. Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
True mean images for Simulation I. The left panel is the true mean image of Class 0: μ0, in 

which purple and red colors represent θj0 = 0,1, respectively; the right panel is the true mean 

image of Class 1: μ1, in which purple, red, and yellow colors represent θj0 + θj1 = 0, 1, 2, 

respectively.
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Figure 2. 
Weight illustration for Simulation I: a three-view slice illustration at coordinate (13, 7, 3) of 

the spatial weights used for WPCA-1 (left panel) and WPCA-2 and SWPCA (right panel). 

The left panel contains the importance scores of SPCA, while the right panel contains the 

WG of SWPCA, i.e., the FDR-corrected -log 10 p-value map.
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Figure 3. 
Two-dimensional representation for Simulation I. The first two PCs from PCA, SPCA-50 

(SPCA based on top 50 voxels), WPCA-1, WPCA-2, SWPCA, and PSWPCA are plotted. 

The training set (top panels) and test set (bottom panels) are used to extract the PCs. Points 

with blue and red colors represent true Class 0 and Class 1, respectively.
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Figure 4. 
True mean images for Simulation II. The left panel is the true mean image of Class 0: μ0, in 

which two ROIs with purple and red colors represent θj0 = 0 and 1, respectively; the middle 

panel is the true mean image of Class 1: μ1, in which two ROIs with purple and red colors 

represent θj0 + θj1 = 0 and 1, respectively; the right panel is the true mean image of Class 2: 

μ2, in which three ROIs with purple, red, and yellow colors represent θj0 + θj2 = 0, 1, and 2, 

respectively.
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Figure 5. 
Weight illustration for Simulation II: a three-view slice illustration at coordinate (7, 6, 16) of 

the spatial weights used for WPCA-1 (left panel) and WPCA-2 and SWPCA (right panel). 

The left panel contains the importance scores of SPCA, while the right panel contains the 

WG of SWPCA, i.e., the FDR-corrected -log 10 p-value map.
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Figure 6. 
Two-dimensional representation for Simulation I. The first two PCs for PCA, SPCA-400 

(SPCA based on top 400 voxels), WPCA-1, WPCA-2, SWPCA and PSWPCA are plotted. 

The training set (top panels) and test set (bottom panels) are used to extract the PCs. Points 

with blue, red, and green colors represent Class 0, Class 1, and Class 2, respectively.
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Figure 7. 
Data and weight illustration for ADNI study. The left panel is a three-view slice illus tration 

at coordinate (49, 57, 32) of a sample RAVENS-map; the middle panel shows the important 

scores of SPCA; the right panel illustrates the FDR-corrected – log 10 p-value map used as 

WG for WPCA-2, SWPCA and PSWPCA.
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Figure 8. 
Weight illustration for ADNI study. Selected axial slices show the FDR-corrected -log 10 p-

value map used in SWPCA which correctly identifies some important regions reported in the 

literature for AD, such as hippocampus and amygdala.
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Table 2

Average Misclassification Percentage for Simulation I (Non-PCA Methods)

SPLS-REG SPLS-kNN SPLS-SVM SPLS SDA

.130 (.052) .139 (.056) .156 (.066) .128 (.050) .120 (.050)

Standard deviations are in parenthesis.
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Table 4

Average Misclassification Percentage for Simulation II (Non-PCA Methods)

SPLS-REG SPLS-kNN SPLS-SVM SPLS SDA

.341 (.119) .356 (.125) .337 (.120) .339 (.112) .277 (.076)

Standard deviations are in parenthesis.
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Table 5

Average Misclassification Percentage for ADNI Data

PCA SPCA WPCA-1 WPCA-2 SWPCA PSWPCA

REG .329 (.029) .312 (.043) .307 (.052) .274 (.029) .213 (.034) .198 (.033)

k-NN .382 (.028) .343 (.045) .344 (.052) .313 (.030) .254 (.035) .227 (.041)

SVM .329 (.029) .313 (.042) .310 (.042) .274 (.030) .216 (.033) .215 (.032)

Standard deviations are in parenthesis.
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