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Abstract: The FOXF1 (Forkhead box F1) gene, located on chromosome 16g24.1 encodes a member of the
FOX family of transcription factors characterized by a distinct forkhead DNA binding domain. FOXF1
plays an important role in epithelium-mesenchyme signaling, as a downstream target of Sonic hedgehog
pathway. Heterozygous point mutations and genomic deletions involving FOXF1 have been reported in

newborns with a lethal lung developmental disorder, Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins
(ACDMPV). In addition, genomic deletions upstream to FOXF1 identified in ACDMPV patients have revealed
that FOXF1 expression is tightly regulated by distal tissue-specific enhancers. Interestingly, FOXF1 has been found to be
incompletely paternally imprinted in human lungs; characterized genomic deletions arose de novo exclusively on maternal
chromosome 16, with most of them being Alu-Alu mediated. Regulation of FOXF1 expression likely utilizes a combina-
tion of chromosomal looping, differential methylation of an upstream CpG island overlapping GLI transcription factor
binding sites, and the function of lung-specific long non-coding RNAs (IncRNAs). Foxfl knock-out mouse models dem-
onstrated its critical role in mesoderm differentiation and in the development of pulmonary vasculature. Additionally, epi-
genetic inactivation of FOXF1 has been reported in breast and colorectal cancers, whereas overexpression of FOXF1 has
been associated with a number of other human cancers, e.g. medulloblastoma and rhabdomyosarcoma. Constitutional du-
plications of FOXF1 have recently been reported in congenital intestinal malformations. Thus, understanding the genomic
and epigenetic complexity at the FOXF1 locus will improve diagnosis, prognosis, and treatment of ACDMPYV and other

human disorders associated with FOXF1 alterations.
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INTRODUCTION

The superfamily of Forkhead Box (FOX) transcription
factors in mammals includes 50 members that share a com-
mon, evolutionary conserved winged helix DNA binding
domain [1, 2]. To date, 19 subfamilies (A-S) have been iden-
tified in this superfamily [3]. The forkhead domain contains
three N-terminal «-helices (H1-3), three j -strands, and
two C-terminal region loops (W1-2) comprising the winged
helix (forkhead) structure [4]. In the human genome, 52%
(26/50) of the FOX genes are organized in nine clusters, e.g.
FOXE3-FOXD2 (1p33), FOXQ1-FOXF2-FOXC1 (6p25.3),
and FOXF1-FOXC2-FOXL1 (16924.1). The focus of this
review is genomic and epigenetic complexity in the regula-
tion of Forkhead Box F1 (FOXF1), previously known as
Forkhead RElated ACtivator (FREAC-1) or Hepatocyte nu-
clear factor 3/fork head homolog (HFH-8), as well as func-
tional consequences of genetic variants involving FOXFL1 in
human development and disease.
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Expression Pattern

Expression studies in humans have shown that FOXF1 is
mostly expressed in fetal and adult lungs, neonate lung mes-
enchymal stromal cells, placenta, and prostate tissue [5-7]. In
mice, Foxfl expression initiates at embryonic day 6.5 (E6.5)
in the extra-embryonic and lateral plate mesoderm [8]. Later
in embryonic development, Foxfl expression is found in the
septum transversum mesenchyme and splanchnic mesoderm,
ultimately being expressed in the mesenchyme surrounding
developing epithelium of the respiratory tract, oral cavity,
and urinary and digestive systems [8-10]. In mouse embry-
onic lungs, Foxfl expression is localized in mesenchyme-
derived cells, including endothelial cells and peribronchiolar
smooth muscle cells [11, 12]. Additional sites of Foxfl ex-
pression include the mesenchyme of the brain, neural crest,
cardiac cushion, as well as endothelial cells of the yolk sac,
and embryonic regions of the placenta [12-14, 10]. In adult
mice, Foxfl continues to be expressed in alveolar endothelial
cells [12, 15], stellate cells of the liver [16], and visceral
smooth muscle cells surrounding trachea, bronchi, stomach,
small intestine, colon, and gallbladder [8-10, 12, 15, 16].
Additionally Foxfl is expressed in adult mice in the pituitary
gland, eyes, and a subset of cortical and cerebellar astrocytes
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[13]. FOXF1 has also been identified as a novel marker of
nucleus pulposus (NP) cells and is used to determine the
differentiation of mesenchymal stem cells (MSCs) to NP
cells [17].

Role of Foxfl in Mouse Embryonic Development

To date, two different Foxfl knockout mouse lines have
been described [11, 18, 19]. Foxfl” mice are embryonic le-
thal at E9.5 due to defects in mesodermal differentiation and
cell adhesion [18]. The embryos fail to turn and exhibit ex-
tra-embryonic defects such as lack of vasculogenesis in the
yolk sac and allantois and failure of chorioallantoic fusion.
Haploinsufficiency of Foxfl in Foxfl*" mice causes 90%
perinatal lethality on a CD-1 mouse background [19]. The
Foxf1™" phenotype was associated with lung hypoplasia and
various tracheal abnormalities such as esophageal atresia and
tracheo-esophageal fistula. Mahlapuu et al. [19] also showed
that Foxfl plays a role in epithelium-mesenchyme cross talk
during lung development as a downstream target of sonic
hedgehog (Shh) (Fig. 1). This was demonstrated by the lack
of Foxfl expression in lungs, foregut, and sclerotomes of
Shh™ embryos and the activation of Foxfl by exogenous
SHH in lung organ explants. Additionally, SHH has been
shown to activate expression of Bmp4 during primary vascu-
lar tube formation via FOXF1 [20]. In the developing stom-
ach and intestine, Foxfl along with another FOX transcrip-
tion gene FoxI1, controls epithelial proliferation as a target
of GLI2, which functions downstream of SHH [21]. Addi-
tionally, Foxfl was found to be upregulated in Shh™; Gli3”
lungs relative to Shh™" lungs, suggesting that GLI3 is a poten-
tial repressor of Foxfl, independent of SHH [22].
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Fig. (1). Epithelial-mesenchymal interactions mediated by
Sonic Hedgehog pathway in embryonic lung. FOXF1 expression
is regulated by SHH, GLI12, and IncRNAs. Downstream effectors of
FOXF1 include notch, collagen and endothelial genes.

On a Swiss black background, 55% of Foxf1™" mice die
perinatally due to lung hemorrhages and respiratory insuffi-
ciency [11]. Additional pulmonary defects in Foxfl™" em-
bryos include fusion of lung lobes and vessels [23].
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NOTCH2 and its downstream target HES1 are downregu-
lated in FoxfL™" mouse lungs, suggesting that FOXF1 acts
upstream of Notch signaling associated with vascular stabili-
zation [24]. Foxf1*" mice that survived after birth exhibited
pulmonary mastocytosis, enhanced pulmonary inflammation,
and abnormal lung repair after chemically-induced or aller-
gen-mediated lung injury [25, 26]. Foxf1™" mice also display
defects in gall bladder development [10]. Gall bladders in
Foxf1*" mice are smaller in size with severe structural ab-
normalities such as a deficient external smooth muscle cell
layer. In addition, Foxf1*" mice exhibit defective stellate cell
activation and abnormal liver regeneration following CCl4
injury [16].

Tissue-specific knock out of Foxfl using Tie2-Cre trans-
gene (endothelium and hematopoietic lineage specific) also
leads to embryonic lethality in mice [12]. Tie2-Cre Foxf1fl/fl
mice die around E13.5-E16.5 exhibiting growth retardation,
polyhydramnios, cardiac ventricular hypoplasia, and vascular
abnormalities in the lung, placenta, and yolk sac. Endothelial
specific deletion of Foxfl (Pdgfb-CreER) at E9.5 was suffi-
cient to cause polyhydramnios and reduced vascular branch-
ing in the placenta, yolk sac, and lung of E12.5 embryos.
Ablation of Foxfl during the postnatal period (P0-P2) using
Pdgfb-CreER impaired retinal angiogenesis [12]. Smooth
muscle cell specific knockout of Foxfl (smMHC-Cre) causes
neonatal lethality and the loss of differentiated smooth mus-
cle layers in esophagus [27]. Most recently, Foxfl along with
another forkhead gene, Foxf2, has been shown to regulate
cardiac septation in mouse embryos. Atrioventricular septal
defects were found in Foxf1™; Foxf2*" compound heterozy-
gote embryos at E14.5 [28].

Interestingly, mice that overexpress Foxfl by knocking-
in Foxfl at the ROSA26 locus also exhibit embryonic lethal-
ity. ROSA26-Lox-Stop-Lox (LSL)-Foxfl mice mated to
CMV-cre mice to overexpress Foxfl in all tissues exhibit
early embryonic lethality around E12.5. ROSA26-LSL-Foxfl
mice mated to Tie2-cre mice to overexpress Foxfl in endo-
thelial and hematopoietic cells, exhibit hemorrhages around
E15.5 and die perinatally (Dharmadhikari et al. manuscript
in preparation). Additional studies are needed to determine
developmental defects caused by constitutive over-
expression of Foxfl.

Alveolar Capillary Dysplasia with Misalignment of Pul-
monary Veins

In 2009, heterozygous genomic deletions and point muta-
tions in FOXF1 were identified in patients with Alveolar
Capillary Dysplasia with Misalignment of Pulmonary Veins
(ACDMPV; MIM# 265380), suggesting that haploinsuffi-
ciency of the gene causes this rare lethal developmental dis-
order of the lung [29-31]. ACDMPV is primarily diagnosed
by a post-mortem lung autopsy or a lung biopsy. To date,
over 100 cases have been described in the literature; how-
ever, the actual occurrence of ACDMPV is under estimated
given the challenging diagnosis. The cardinal diagnostic fea-
tures of ACDMPV include misalignment (malposition) of
pulmonary veins, medial thickening of smooth muscles in
pulmonary arteries, hyperplasia of alveolar epithelium, and
drastically decreased number of capillaries and lobular un-
derdevelopment [32]. Approximately one third of the pa-
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tients also have lymphangiectasis. Recent reports using 3D-
reconstruction of post-mortem ACDMPYV lungs suggest that
the misaligned pulmonary veins are in fact intrapulmonary
shunt vessels [33, 34]. The disease usually presents within a
few hours after birth although late presentations have been
reported [35-37]. The first case of ACDMPV was described
by McMahon in 1948 [38]; however, the seminal case of
ACDMPV was described by Janney et al. in 1981 [39]. The
majority of the patients with ACDMPV also have extra-
pulmonary anomalies, including various defects in gastroin-
testinal, cardiovascular, and genitourinary systems [40, 41].
Infants with ACDMPV present with severe hypoxemia and
pulmonary hypertension [42]. Almost all patients die within
the first month of life although some prolonged survivals
have been described [43].

Treatment, including high pressure oxygen, nitric oxide,
extra corporeal membrane oxygenation (ECMO) [44-46],
and Sildenafil [47] provide only temporary relief as the dis-
ease is uniformly lethal. Recent advances towards treatment
include use of a paracorporeal lung assist device that led to a
successful lung transplant in patients with ACDMPV [48,
49].

Thus far, 44 heterozygous point mutations [29, 31, 50-
52] and 36 heterozygous genomic deletions involving
FOXF1 or upstream of FOXF1 in 16g24.1 have been re-
ported [29, 37, 53-57]. Additionally, a 1.1 Mb genomic dele-
tion involving FOXF1 was detected in a prenatal case with
cystic hygroma [58].

Mouse Modeling of ACDMPV Lungs

The phenotype of Foxfl*" mice partially resembles the
symptoms seen in patients with ACDMPV [29]. Most
FoxfL™ mice (55-90%) die shortly after birth, exhibiting
alveolar capillary dysplasia and additional cardiac and/or
gastrointestinal defects. However, the characteristic mis-
alignment of pulmonary veins has not been observed in the
lungs of Foxfl*" mice. Additional genetic mouse models
have also been described with phenotypes resembling
ACDMPV.

Of note, mesodermal inactivation of Pten in mice leads to
an ACD-like phenotype with evidence of failure in blood
oxygenation [59]. These mice also show decreased expres-
sion of Foxfl. Interestingly patients with ACDMPV also
showed decreased PTEN expression [59]. Further, loss of
semaphorin-neuropilin-1 signaling in mice causes dysmor-
phic vascularization reminiscent of ACDMPV [60]. These
mice also displayed misalignment of pulmonary veins which
is absent in the Foxfl-deficient and Pten-deficient mouse
models. Endothelial NO synthase (eNOS)-deficient mice also
exhibit defective lung vasculature development and fatal
respiratory distress similar to ACDMPV patients [61]. These
findings suggest that Foxfl, Pten, Sema3c-Nrpl, and eNOS
might all be involved in the same signaling network regulat-
ing development of pulmonary vasculature.

Upstream Gene Regulation

In mice, Foxfl has a ~ 400 bp conserved downstream
regulatory element located 1 kb 3' to Foxfl, that is essential

Current Genomics, 2015, Vol. 16, No. 2 109

for the tissue-specific regulation of the Foxfl promoter dur-
ing mouse embryogenesis [62]. About 7.5 kb upstream of
Foxfl, an ~ 100 bp conserved region was identified as cru-
cial for GLI-mediated transcriptional activation of Foxfl and
FoxI1 in the murine gut [21]. An additional 48 bp regulatory
element located 90 kb upstream of Foxfl was recently de-
scribed that mediates GLI1, GLI3, and TBX5 regulation of
Foxfl expression during cardiac septation in the mouse em-
bryo [28].

In addition to genomic deletions encompassing FOXF1, a
comparable number of overlapping copy-number deletions
upstream of FOXF1 and leaving the gene intact have been
found in ACDMPV patients [29, 37, 56]. These deletions
enabled to define an ~ 60 kb noncoding, evolutionarily-
conserved, and differentially-methylated cis-regulatory en-
hancer region that maps ~ 272 kb upstream of FOXF1 and
harbors lung-specific long non-coding RNA (IncRNA) genes
[29, 56]. This enhancer region physically interacts with
the FOXF1 promoter, and a INcRNA LINC01081, encoded in
this region, has been recently shown to positively regulate
FOXF1 expression [37]. The enhancer region also includes
GLI2 binding sites overlapping with a differentially methy-
lated CpG island, located within the intronic region of an-
other IncRNA LINC01082. These findings further support
conclusions from mouse models that showed Foxfl acting
downstream of SHH and GLI transcription factors. Addi-
tionally, a deep intronic deletion in FOXF1 in a patient with
ACDMPV enabled to identify an intronic transcriptional
enhancer region at the FOXF1 locus [63]. This deletion re-
duces FOXF1 expression in the peripheral lung tissue by
40%, causing fully manifested ACDMPV.

Interestingly, a substantial fraction of these deletions is
mediated by Alu repetitive elements, suggesting that an Alu-
rich genomic architecture at chromosome 16g24.1 may pre-
dispose to microhomology-mediated DNA replication errors
[64]. Alu-Alu mediated copy-number changes have been re-
ported previously at various genomic regions, e.g. the SPAST
locus on 2p22.3 [65]. Additionally, transposable elements
have been attributed to be major players in the origin and
regulation of IncRNAs [66]. Thus, the presence of Alu re-
petitive elements at chromosome 16¢g24.1 may also explain
the abundance of multiple IncRNA genes at this locus.
Moreover, it is possible that some patients with ACDMPV
that are FOXF1 mutation and deletion negative, may carry
submicroscopic retrotransposon (e.g. LINE-LINE)-mediated
balanced paracentric inversions [67, 68] that separate
FOXF1 from its long-range upstream regulatory elements
[69]. Such rearrangements are challenging for detection us-
ing currently available diagnostic technologies.

The bidirectional INcRNA gene FENDRR, encoded 1.67
kb upstream of FOXF1, has been shown to interact with the
chromatin-modifying complex (PRC) 2 to regulate gene ex-
pression [70]. Homozygous loss of Fendrr in mice has been
demonstrated to be either embryonic lethal due to heart and
body wall defects [71] or perinatal lethal due to multiple
defects in lung, heart, or gastrointestinal tract [72]. Interest-
ingly, IncRNAs have been also shown to play an important
role in lung development, often by regulating the expression
of transcription factors like Nkx2.1, Gata6, Foxa2, and Foxfl
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[73] and by linking epigenetic control mechanisms to gene
regulatory networks [74].

An additional potential upstream regulator of Foxfl ex-
pression is HOXA13. In the mouse placenta Foxfl has been
shown to be a target of HOXA13, which is essential for pla-
cental vascular patterning and labyrinth endothelial specifi-
cation [75]. Foxfl expression has been found to be decreased
in the yolk sacs of keratin (-/-) embryos [76] and in lungs of
epithelial-specific Gprl77 knockout embryos [77], both
mouse lines exhibiting impaired embryonic vascular devel-
opment.

Genomic Imprinting of the FOXF1 Locus

In patients with ACDMPYV for whom the parental origin
of deletions involving the FOXF1 locus could be deter-
mined, all 24 studied arose de novo on the maternal chromo-
some 16, suggesting that FOXF1 is paternally imprinted in
the human lungs. The 60 kb cis-regulatory enhancer region
of FOXF1 has been found to harbor a differentially methy-
lated CpG island, located within the intronic region of the
IncRNA LINCO01082 and differential allelic expression of
FOXF1 was detected in newborn human lungs [56], further
suggesting that FOXF1 is likely paternally imprinted in the
human lungs, although incompletely. Furthermore, segrega-
tion analysis of a missense mutation in FOXF1 (c.416G>T,;
p. Argl39Leu) in a familial case of ACDMPV provided ad-
ditional support for paternal imprinting of FOXF1 in humans
[78].

Trisomy 16, typically resulting from maternal meiosis |
nondisjunction, is the most common trisomy observed prena-
tally and lethal postnatally [79]. In a third of cases, trisomy
rescue leads to maternal uniparental disomy 16 [UPD(16)],
which is the most common UPD reported other than
UPD(15), and often accompanied by confined placental mo-
saicism with trisomy 16 cell line [80]. Maternal UPD(16) has
been associated with intrauterine growth restriction (IUGR),
congenital heart defects, and pulmonary hypoplasia [81]. In
contrast, a relatively normal phenotype with only prenatal
and postnatal growth retardation is associated with a very
rarely reported paternal UPD(16) [82], suggesting the pres-
ence of paternally imprinted gene(s) on chromosome 16 [81]
and further confirming the incomplete paternal imprinting of
FOXF1 in the human lungs. We propose that paternal im-
printing of FOXF1 could explain key phenotypic differences
between maternal vs. paternal UPD(16).

In contrast to humans, Foxfl has been found not to be
imprinted in mice, with no difference in its expression be-
tween parental alleles in E15.5, E18.5, and P0.5 lungs from
reciprocal crosses. Additionally, biallelic expression of
Foxfl has been identified in E15.5 placentas and P21 lungs
from reciprocal C57 and PWD strain of mice (unpublished
data). The perinatal mortallty in FoxfL™" mice also does not
show a parent-of-origin inheritance pattern when investi-
gated on the CD-1 [69] and C57BL/6J backgrounds (unpub-
lished data). Surviving Foxfl”" Swiss Black pups up-
regulated the level of Foxfl to wild type levels and showed
only mild abnormalities in alveolar septation without obvi-
ous vascular defects [11]. This compensation phenomenon
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described by Kalinichenko et al. [11] could be specific to
Swiss Black background or may reflect the influence of sto-
chastic methylation in the g -galactosidase (3 -gal) con-
struct used to knock-out the Foxfl gene. The presence of
modifiers of Foxfl expression in different mouse strains
might explain the differences in phenotypes observed.

Future studies will be directed towards deciphering the
entire landscape of IncRNAs involved in the epigenetic regu-
lation and imprinting of FOXF1. Novel treatment strategies
for ACDMPV could involve using anti-sense oligos (ASOs)
to manipulate IncRNAs to modify FOXF1 expression.

Downstream Expression Effects

FOXF1 has been demonstrated to activate expression of
P-selectin in response to cytokines such as IL-6 [8] as well
as expression of the growth hormone variant (GHV) gene in
placental BeWo choriocarcinoma cells [83].

FOXF1 has been shown to be essential for the migration
of mesenchymal cells and to directly induce integrin-beta3
expression in mouse embryonic lungs [84], and to regulate
expression of the FIk1, FIt1, Pdgfb, Pecaml, and Tie2 genes
critical for VEGF, PDGF, and Ang/Tie2 signaling [11, 12].

Additionally, FOXF1 regulates cell adhesion, migration,
and mesenchymal cell differentiation in the gall bladder by
decreased expression of vascular cell adhesion molecule-1
(Vcam-1), alpha(5) integrin, platelet-derived growth factor
receptor alpha (Pdgfra), and hepatocyte growth factor (Hgf)
genes [10]. In visceral smooth muscle cells, FOXF1 regu-
lates gene transcription by binding to myocardin, serum re-
sponse factor (Srf), and myocardin—related transcription fac-
tors (MRTFs) [27].

Comparative analyses of Iung transcriptomes in patients
with ACDMPV and in FoxfL*" newborn mice show similar
pathways deregulated [85]. Several genes and pathways in-
volved in lung development, angiogenesis, and in pulmonary
hypertension development, were found to be deregulated.
Expression changes in 14 genes, COL15A1, COL18Al,
COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL,
NOS3, RASL11B, MATN2, PRKCDBP and SIRPA, over-
lapped in ACDMPV and Foxf1*" lungs. Down- regulatlon of
Notch pathway genes as previously described in Foxfl1*"
lungs [24] was identified. Additionally, down-regulation of
Sema3c was found, further suggesting a cross-talk between
Foxfl and semaphorin-neuropilin signaling during develop-
ment of pulmonary vasculature. Mast cell chymases, tryp-
tases, and the chemokine CXCL-12 essential for mast cell
migration and chemotaxis were significantly up-regulated as
previously described in Foxf1™" lungs [25]. Numerous mem-
bers of collagen genes were up- regulated in lungs of both
ACDMPV patients and Foxf1™~ mice, suggesting that loss of
FOXF1 may stimulate endothelial-mesenchymal transition
leading to pulmonary fibrosis and lung dysfunction. How-
ever, this hypothesis requires further experimentation with
endothelial-specific and fibroblast-specific Foxfl knockout
mice. Of note, differential expression of FOXF1 has been
detected in cases of usual and nonspecific interstitial pneu-
monia, idiopathic pulmonary fibrosis, and in fibrotic lesions
in human lung allografts [86-88].
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Role of FOXF1 in Cancer

While there have been various reports of FOXF1 levels
being deregulated in cancer, the role of FOXF1 in carcino-
genesis is still controversial. In fact, several studies proposed
that FOXF1 functions as a tumor suppressor. FOXF1 has been
reported to be epigenetically inactivated by hypermethy-
lation of its promoter in breast cancer cell lines and invasive
ductal carcinomas [89]. FOXF1 was also found to be in-
cluded in a panel of genes methylated with high frequency in
colorectal cancer but showing very low methylation in pe-
ripheral blood [90]. Due to this differential methylation pat-
tern, FOXF1 was proposed as a suitable diagnostic marker
for colorectal cancers. FOXF1 was also shown to be a target
of vitamin D3 in human colon cancer cells [91] and was
found deregulated in hepatitis C-related hepatocellular carci-
noma cells [92]. In addition, FOXF1 was identified as a tar-
get gene of tumor suppressor p53 and along with p53 forms
a transcriptional network that regulates cancer cell migration
and invasiveness [93]. In prostate cancer, genomic deletions
involving FOXF1 have been identified and FOXF1 expres-
sion has been found to be decreased in prostate cancer sam-
ples [93, 94]. Finally, FOXF1 has also been identified as a
reprogramming mediator contributing to mesenchymal stem
cell fusion-induced reprogramming of lung cancer cells [95].

On the other hand, several studies have shown that
FOXF1 may function as an oncogene. Overexpression of
FOXF1 promotes invasion and metastasis of breast carcino-
mas [96]. In lung cancer, FOXF1 enhances the tumor-
promoting properties of cancer-associated fibroblasts [97].
FOXF1 may contribute to hedgehog-associated tumorigene-
sis [98] because its levels are up-regulated in patched-
associated tumors like basal cell carcinoma (BCC), medul-
loblastoma (MB), rhabdomyosarcoma (RMS), and non-small
cell lung cancer (NSCLC) [99-101]. FOXF1 target genes
Bmil and Notch2 were up-regulated in PTCH1-associated
BCC and MB, further confirming its key role in hedgehog-
associated tumorigenesis. FOXF1 overexpression in NSCLC
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correlated with lymph node metastasis and over expression
of SHH associated genes PTCH1, GL1 and its target gene
BMI1. Common variants mapping on chromosome 16g24.1
close to FOXF1 have also been associated with susceptibility
to Barrett’s esophagus and esophageal carcinoma
(rs9936833) [102, 103], and breast cancer (rs1728400) [104]
in genome-wide association studies. These SNPs are located
approximately 141 kb and 109 kb upstream of FOXF1, re-
spectively. Further analysis of the genomic region close to
the SNP rs9936833, led to the identification of additional
SNPs associated with susceptibility to esophageal carcinoma
[105].

These contrasting findings in different cancer types sug-
gest that the role of FOXF1 in tumorigenesis can be context-
dependent and epigenetically regulated. Since the majority of
published studies utilized either cultured tumor cell lines or
transplantation of tumor cells into immunocompromised
mice, transgenic mouse models are needed to identify mo-
lecular mechanisms regulated by Foxfl during carcinogene-
sis.

Constitutional FOXF1 Duplications

A patient harboring a complex de novo duplication-
triplication rearrangement in 16¢24.1-q24.3 involving
FOXF1, presented with severe psychomotor disability, nu-
merous dysmorphic features, and congenital malformations,
including gut malrotation and gall bladder agenesis [106].
Recently, 16924.1 duplications involving FOXF1 were re-
ported in four unrelated families 1-4 [107]. In families 1 and
2, 16g24.1 duplications that included FOXF1 but not its up-
stream regulatory enhancer region were found. Both patients
did not exhibit any pulmonary abnormalities. In families 3
and 4, 16924.1 duplications involved FOXF1 as well as its
upstream regulatory region. Whereas patient 3 presented
with pyloric stenosis, mesenterium commune, and aplasia of
the appendix, patient 4 did not manifest any pulmonary or
intestinal abnormalities.

FOXF1 protein

_ Trisomy 16 & maternal UPD(16)
Mosaic trisomy 16 & maternal UPD(16)

Maternal duplication 16q24.1

Maternal UPD(16)
Paternal duplication 16¢g24.1

Disomy 16

Paternal UPD(16)
Paternal deletion 16q24.1
FOXF1 insufficiency

Maternal deletion 16¢24.1 /
FOXF1 inactivating mutation

Fig. (2). Correlation of predicted FOXF1 deficiency and overexpression levels and associated ACDMPYV, 16g24.1 duplication, and
UPD16 phenotypes. Predicted FOXF1 levels are shown in a gradient pattern to depict decrease in FOXF1 levels due to deletions or muta-
tions and increase in FOXF1 levels as a result of duplications, UPD(16), and trisomy 16.
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A summary of the phenotypes associated with predicted
levels of FOXF1 deficiency and overexpression is shown in

(Fig. 2).
CONCLUSION

In aggregate, FOXF1 is a transcription factor involved in
hedgehog-regulated developmental processes. Disruptions or
amplifications in FOXF1 cause severe human disorders. The
identification of FOXF1 as a causative gene for ACDMPV
has enabled prenatal genetic testing and estimation of recur-
rence risks for parents of infants with ACDMPV. Consistent
with previous empirical observations for mutations in some
genes located on the X chromosome [108, 109], recent
mathematical analyses of the sexual dimorphisms of game-
togenesis suggest that new mutations that occur on the ma-
ternal allele are more likely to be recurrently transmitted to
offspring [110, 111]. Thus, given that all hitherto analyzed
deletions of the FOXF1 locus arose de novo on the maternal
chromosome 16qg24.1, the recurrence risk for ACDMPV may
potentially be elevated in comparison to that observed for
other sporadic diseases.

Discerning the effects of FOXF1 over- and/or ectopic
expression is of primary importance for any future work to-
ward FOXF1-based gene therapies for ACDMPYV and other
disorders caused by FOXF1 abnormal dosage. Future studies
will involve designing novel therapeutic strategies to treat
ACDMPV by manipulation of the epigenetic INcRNA regu-
lation of FOXF1, using antisense oligos (ASOs). Generation
of novel mouse models with conditional inactivation or
overexpression of Foxfl in different cell types will help elu-
cidate molecular mechanisms regulated by Foxfl during em-
bryonic development and various human diseases. Due to
phenotype similarities in haploinsufficient mice and humans,
Foxf1™ mouse line can be used as a preclinical model to
develop novel therapeutic strategies to treat ACDMPV.
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