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Abstract

Cancer stem cell (CSC) theory suggests a cell-lineage structure in tumor cells in which CSCs are 

capable of giving rise to the other non-stem cancer cells (NSCCs) but not vice versa. However, an 

alternative scenario of bidirectional interconversions between CSCs and NSCCs was proposed 

very recently. Here we present a general population model of cancer cells by integrating 

conventional cell divisions with direct conversions between different cell states, namely, not only 

can CSCs differentiate into NSCCs by asymmetric cell division, NSCCs can also dedifferentiate 

into CSCs by cell state conversion. Our theoretical model is validated when applying the model to 

recent experimental data. It is also found that the transient increase in CSCs proportion initiated 

from the purified NSCCs subpopulation cannot be well predicted by the conventional CSC model 

where the conversion from NSCCs to CSCs is forbidden, implying that the cell state conversion is 

required especially for the transient dynamics. The theoretical analysis also gives the condition 

such that our general model can be equivalently reduced into a simple Markov chain with only cell 

state transitions keeping the same cell proportion dynamics.

INTRODUCTION

One of the salient features suggested by cancer stem cell (CSC) theory [1–3] is the 

hierarchical cell-lineage structure in tumorigenesis [4] associated with normal tissue 

biology. That is, CSCs are capable of continuous proliferation and giving rise to the other 

non-stem cancer cells (NSCCs) but not vice versa. CSCs are therefore called tumor-forming 

cancer cells, and the central role of CSCs has also been supported in metastasis and cancer 
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recurrence [5,6]. More effectively CSCs-targeted therapies thus hold hope for improving 

survival and quality of lives [7,8].

However, recent studies challenged the theory and claimed that the relation between CSCs 

and NSCCs could be much more complicated. It was reported that CSCs can be generated 

from more differentiated cell states [8–13]. In particular, the conversion from NSCCs to 

CSCs was in situ visualized in Yang et al’s work [13]. An alternative scenario of CSC 

theory was thus proposed that bidirectional interconversions between CSCs and NSCCs 

could happen [10]. Even though this scenario remains controversial [14] and its molecular 

mechanism is poorly understood, these new ideas may provide valuable insights into cancer 

biology and therapeutic strategy. In this study, we present a general mathematical 

investigation for a further understanding of the relation between CSCs and NSCCs, 

especially with the aim of investigating the role of cell state conversion from NSCCs to 

CSCs in regulating cellular population structure in cancer. Mathematical exploration of 

cancer has been an important part of cancer research since the 1950s [15–17]. In recent 

years, CSC theory has become one of the major topics in mathematical cancer study [18–

21]. In particular, the hierarchical organization of cancer was widely investigated in 

previous work [22–29], where the role of asymmetric and symmetric divisions of CSCs in 

the processes of carcinogesis received special attention [23,24,29]. However, less attention 

was paid to bidirectional conversions between CSCs and NSCCs. As a pioneering work, 

Gupta et al. introduced a Markov chain model of stochastic transitions between different 

phenotypic states of cancer cells [10], for explaining the phenotypic equilibrium in cell state 

mixture in breast cancer cell lines. In their model, the dynamic changes of cell state 

proportions in cancer were only attributed to cell state transitions which are not biologically 

justified before, where cell divisions and death that have extensively been investigated in 

conventional CSC model were not accounted for. Therefore, it is not mechanistically 

distinguishable whether the cell state equilibrium can be the evidence supporting the 

existence of bidirectional cell state conversions, or can only be a result of conventional 

CSCs mechanisms.

To systematically describe the biological kinetics of cellular population in cancer, we built a 

compartmental cell model [30] entirely upon biologically known cellular mechanisms, such 

as symmetric and asymmetric cell divisions of CSCs, symmetric cell division of NSCCs, 

and phenotypic conversions between different cell states. In particular, we term the model 

with positive conversion rate from NSCCs to CSCs the bidirectional model, otherwise it is 

called unidirectional model, i.e., unidirectional model describes the conventional 

hierarchical structure of CSCs model. Therefore, our approach provides a unified framework 

to investigate both conventional and bidirectional relations between CSCs and NCSSs.

By comparing the equilibrium behavior of the bidirectional and unidirectional models, we 

found that they both can display phenotypic equilibria in the proportion of cells in various 

states. That is, whether or not the phenotypic equilibria arise, it cannot be used as a 

significant criterion for distinguishing the two models.

However, based on the dynamic analysis of the transient behavior of the two models, we 

found that they will differ in their transient dynamics even when they both tend to the same 
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equilibrium state. In particular, starting from a purified NSCCs subpopulation, i.e., when the 

initial proportion of CSCs is very small, the bidirectional model predicted a rapid rise of 

CSCs proportion, whereas the CSCs proportion in the unidirectional model gradually 

increased to its final equilibrium. We showed that this disparity between the two models can 

be applied to investigate the existence of cell state conversion from NSCCs to CSCs.

When applying our model to recent experimental data on cancer cell lines: On one hand, the 

time series data was well predicted by our bidirectional model; on the other hand, just as our 

theoretical result showed, the conversion from NSCCs to CSCs contributes to the transient 

increase in CSCs proportion shortly after the isolation of the NSCCs subpopulation.

Moreover, comparing our model with the Markov chain with cell state transitions [10], it is 

shown that our model can be a generalization of the Markov chain model. In particular, our 

model will be equivalent to the Markov chain only if different cell states in the population 

can equally contribute to the growth of the whole population. Otherwise, the dynamics of 

the proportions in various cell states should be captured by nonlinear models. Meanwhile, it 

is also found that the linearity of the model corresponds to the exponential growth of the 

whole population with a constant rate, which is in line with their hypothesis and 

interpretation of the experimental result [10].

RESULTS

The models

To apply the compartmental cell model to investigate the dynamics of cancer, we treat 

cancer as a population of different cell states [31], where each cancer cell can be assigned to 

one of the several phenotypic states: CSC, NSCC1, NSCC2, …, NSCCm. To better illustrate 

our model, we consider three cell states: CSC, NSCC1 and NSCC2. In particular, CSCs can 

not only replicate themselves by symmetric cell division, they can also differentiate into 

other NSCCs by asymmetric cell divisions:

where αi represent the division rates accordingly. In addition, cell death is also included in 

our model:

For NSCCs, besides the symmetric cell divisions and cell death, i.e.,
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the spontaneous cell state conversions between different cell states are also accounted for:

where β3 and γ3 are the reaction rates of the conversions from NSCCs to CSCs. We term this 

type of reactions the dedifferentiation reaction; while β4 and γ4 are the transition rates 

between NSCC1 and NSCC2.

The above group of biochemical kinetics schemes can be extended to the general case of 

CSC, NSCC1, NSCC2, …, NSCCm, providing a systematic framework to investigate the 

population dynamics of various cell states in cancer. For example, the breast cancer cell 

lines SUM159 and SUM149 were studied [10] and three cancer cell states (stem-like, basal 

and luminal corresponding to CSC, NSCC1 and NSCC2 respectively in our framework) 

were identified via cell-surface markers.

Denote the number of CSCs, NSCC1 and NSCC2 at time t as St,  and  respectively. 

Note that the change of St can arise not only from symmetric cell division and death of 

CSCs, but also from cell state conversions from NSCC1 and NSCC2, so the rate of change in 

St consists of
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where α1 − α4 can be seen as the net growth rate of St contributed by CSCs themselves. 

Similarly, we can have the rates of changes in  and , then the dynamics of this 

population can be described by a system of ordinary differential equations (ODEs) of (St, 

)

(1)

where β1−β2−β3−β4 is the net growth rate of  contributed by NSCC1 themselves (similar 

to the biological meaning of γ1 − γ2 − γ3 − γ4). If time series data of (St, ) can be 

experimentally measured, we can estimate the values of the coeffcients in Eq. (1) by statistic 

method, but not all the αi, βi and γi individually. For example, the value of α1 − α4 can be 

estimated, but we cannot estimate α1 and α4 individually (the same as β1 − β2 − β3 − β4 and 

γ1 − γ2 − γ3 − γ4). In other words, based on population-level data, we can only estimate the 

net growth rates accordingly. With the development of single cell technology, we believe 

that stochastic cell based model would be established in future as a powerful approach to 

resolve the parameters individually [32].

Interestingly, however, the reaction rates of the cell state conversions, i.e., β3, β4, γ3 and γ4 

are present as independent coeffcients, namely, we can estimate all the conversion rates 

individually from the time series data on cell populations. When focusing on the general cell 

lineage relation between CSCs and NSCCs, we simplify the model to a population 

composed of only two cell states: CSC and NSCC (denote the numbers of CSCs and NSCCs 

as St and Nt respectively). When the conversion rate from NSCCs to CSCs is positive, i.e., 

β3 > 0, we have the bidirectional model:

(2)

when β3 = 0, i.e., there is no conversion from NSCCs to CSCs, the model will become the 

conventional hierarchical model of cancer cells, we term it the unidirectional model:

(3)

In fact, the existence of dedifferentiation reaction distinguishes the bidirectional model from 

the unidirectional one.

Instead of the absolute numbers of cell populations, however, only the proportions of 

various cell states are usually experimentally measured. Thus one often converts the 
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population model to a proportion one. Let st be the proportion of CSCs, nt = 1 − st be the 

proportion of NSCCs, then the dynamics of CSCs proportion can be captured by the 

following nonlinear ODE (Supplemental Materials):

(4)

where A = (α1 + α2 − α4) − (β1 − β2) and B = (α1 − α4) − (β1 + β3 − β2). In particular, the 

nonlinear term A measures the difference between the net growth rates of the whole 

population contributed by CSCs, i.e., α1 + α2−α4, and by NSCCs, i.e., β1 − β2. When β3 = 0, 

the model will become

(5)

Eq. (4) corresponds to the bidirectional model, and Eq. (5) is for the unidirectional model.

Theoretical analysis of the models

Equilibria in cell state mixture of the two models—Previous work [10,13] has 

reported that the populations of cancer cells can display equilibria in cell state proportions. 

In both of our bidirectional and unidirectional models, the CSCs proportions can tend 

towards equilibria over time, independent of their initial nonzero proportions (Supplemental 

Materials). For the unidirectional model, in particular, if the net growth rate contributed by 

the symmetric cell division of CSCs is larger than that by NSCCs, the population will tend 

to nonzero equilibrium of CSCs proportion; otherwise NSCCs will take up the whole 

population. Therefore, even without cell state conversion from NSCCs to CSCs, given the 

above condition, the population driven by the unidirectional model can still maintain the 

equilibrium of the cell state proportions. This suggests that the proportion equilibrium in cell 

states cannot distinguish the bidirectional model from the unidirectional one, and then may 

not be used as a significant criterion for investigating the existence of dedifferentiation from 

NSCCs to CSCs.

Differences between the two models on the transient dynamics starting from 
very small CSCs proportion—We now turn to the transient dynamics rather than the 

equilibrium behavior of the two models. Especially starting from a purified NSCCs 

population, i.e., when the initial value of CSCs proportion is very small, the two models 

differ a lot in their initial growth rates (Supplemental Materials). For the unidirectional 

model, the growth of CSCs is only contributed by the self-renewal of the residual CSCs 

themselves. Note that there are only a few residual CSCs shortly after the cell sorting of 

NSCCs subpopulation, and the initial growth of CSCs proportion should be very slow. Then 

the growth rate will gradually increase with the accumulation of CSCs. During this period, 

the trajectory of CSCs proportion is convex-like (Figure 1). Compared to the gradual 

increase predicted by the unidirectional model, the bidirectional model predicts a relatively 

rapid rise in CSCs proportion. This is due to the dedifferentiation reaction. Even though the 

amount of CSCs is very limited at the very beginning, the conversion from NSCCs to CSCs 

effectively speeds up the increase of CSCs in the population. From the example in Figure 1, 
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it is shown that the disparity between the growths of the two models enlarges shortly after 

the initiation, and then gradually shrinks as they approach to their final equilibria. Note that 

after about 7 time points, the two dynamics would become essentially indistinguishable, and 

we call it the characteristic time before which the differences between the two models can 

be used to investigate the existence of cell state conversion from NSCCs to CSCs.

The relation between our model and Markov chain model—To explain the 

phenotypic equilibrium in cell state mixture in breast cancer cell lines, Gupta et al. described 

the population dynamics of cancer cells by a Markov chain [10], where cell state transitions 

were the only biological mechanisms contributing to the dynamic change of cell state 

proportions, and the conventional cell divisions and death were totally ignored. We now 

discuss the relation between our model and theirs. Based on our theoretical analysis 

(Supplemental Materials), it is shown that their model can be a specific case of our 

framework only when the nonlinear terms in our model vanish. For the proportion model in 

Eq. (4), in particular, it could be equivalent to a Markov chain only when the nonlinear term 

A is negligible, implying that the trajectory of the cell proportions described in our model is 

exactly the same as the Markov chain with cell state transitions. Note that A = (α1+ α2 − α4) 

− (β1 − β2) measures the difference between the contributions by CSCs and NSCCs to the 

whole population growth, and our result indicates that only if different cell states in the 

population can equally contribute to the growth of the whole population, the changes of cell 

state proportions can be equivalently described as a Markov chain only with cell state 

transitions. Otherwise, the Markov chain model cannot correctly capture the cellular 

kinetics. Considering the cell cycle time of CSCs and NCSSs can be different [33], one 

should be cautious about the scope of application of Markov chain method to the population 

modeling of cancer cells.

Nonlinear term—It was shown above that the nonlinear term plays a crucial role in 

determining whether our proportion model can be reduced into a Markov chain. Another 

biological significance of A is that, when A vanishes, not only will the proportion model be a 

linear equation, but the dynamics of the total population size will also be linear 

(Supplemental Materials), leading to the exponential growth of the whole population with a 

constant rate. In other words, when our proportion model can be equivalent to a Markov 

chain, the trajectories of the population dynamics will be exponential-like curves. It has been 

reported that the total population size of breast cancer cell line grew with constant doubling 

time [10], which is in line with the prediction of our theoretical result. Otherwise, when the 

nonlinear term are not negligible, the populations can be shown to grow as sigmoid-like 

curves (Supplemental Materials).

Model validation with experimental data

To validate our theoretical model with real experimental data, we now use two data sets of 

cancer cell lines from recent published work: SW620 colon cancer cell line [13], and 

SUM159 breast cancer cell line [10].

We first apply our model to the data on SW620 cell line (Figure 2). We estimated the 

parameters in Eq. (4) from the time series data on the first 6 (out of 13) time points by least 

Zhou et al. Page 7

Quant Biol. Author manuscript; available in PMC 2015 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



squares method, and then predicted the values of CSCs proportion for the remaining time 

points. Figure 2 shows that the evolutions of CSCs proportions initiated from four different 

states can be well predicted by our model, where the best fit value of A is approximately 

zero. As discussed in the last section, A being zero corresponds to the well-balanced growth 

rates contributed by CSCs and NSCCs.

To further explore the role of dedifferentiation reaction in our model, we fitted the 

unidirectional model to the data. Except for the purified NSCCs case in Figure 3A, the other 

three cases in Figure 3B, C and D are still reasonably predicted by the model. For Figure 

3A, in particular, we found that the increase of CSCs proportion in the first few days 

predicted by the unidirectional model is much slower than that measured on data. Actually, 

when initiated from the purified NSCCs, the increase of CSCs immediately after cell sorting 

could only be attributed to the self-renewal of the residual CSCs themselves when the 

conversion from NSCCs to CSCs was forbidden. However, based on the rate limitation of 

cell division cycle and the purity in the FACS experiment (at least 99% purity in Ref. [13]), 

even the most rapidly dividing human cells known cannot support such a rapid increase of 

cell state proportion [10,34]. It is thus suggested that the rapid increase of CSCs proportion 

in the transient dynamics could be conceptually explained by the dedifferentiation reaction. 

This is in line with our theoretical prediction.

Similar results can be presented when we generalize our model to the case of three cell 

states (stem-like, basal and luminal) [10]. When applying our bidirectional model to their 

data on SUM159 cell line, we found that the trajectories predicted by our model are in good 

accord with theirs. We also fitted our unidirectional model with the data. The fitting result 

again implies that the conversion of NSCCs into CSCs is necessary for the transient 

dynamic regulation of cell population structure.

DISCUSSION

By adding cell state conversions into the conventional hierarchical organization of CSC 

paradigm, we have presented a mathematical framework that can provide theoretical insights 

into the population dynamics of cancer cells. It was found that the conversion from NCSSs 

to CSCs plays an important role in the transient dynamics, rather than the long-term 

equilibrium behavior. Growing evidence supports that cellular heterogeneity is essential in 

keeping cancer as an organic and adaptive complex system [35]. Our results support that the 

dedifferentiation mechanism could contribute to the robustness of cancer heterogeneity and 

survival after the perturbations (e.g., CSCs-targeted therapy) that try to eradicate CSCs. 

From an evolutionary point of view, bidirectional cell state conversions can be seen as a 

cooperative mechanism of different cancer cells that increases their collective fitness in the 

process of competing with various anticancer mechanisms [36]. This inspired us to rethink 

about therapeutic strategy of cancer. In particular, it is suggested that the targets of 

anticancer therapies should be balanced, that is, the effective therapies need to aim to the 

combination of CSCs and their niches.

Even though the bidirectional scenario has enriched the conventional CSC hypothesis, it 

seems to be too early to embrace the fundamental change in CSC theory. In particular, the 
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molecular mechanism for the cell state conversion is poorly understood. It has been reported 

that TGF-β might have important roles in the conversion and homeostasis between CSCs 

and NSCCs through activating the process of epithelial mesenchymal transition (EMT) [13]. 

Further studies on related molecular-cellular systems should be important tasks in future. 

Currently, in particular, CSCs are often simply identified via one or several cell surface 

antigen markers (e.g., CD133 for SW620 colon cancer cell line [13]). With the rapid 

development of genomic and imaging techniques, it is believed that multi-dimensional 

genetic and epigenetic characteristics for different cell states will provide more detailed 

information to the researches of bidirectional conversions between CSCs and NSCCs in 

cancer.

Besides the deterministic models on cellular population level we studied in this work, 

stochastic molecular level models should be taken into account. From the viewpoint of 

stochastic dynamics, the cell state conversion can be seen as the stochastic transition from 

one epigenetic metastable state to another [37,38]. Therefore, with the accumulation of 

related high-throughput data, analytical and computational methods developed in stochastic 

network dynamics can be used to build reasonable models for interpreting the molecular 

mechanisms of the cell state conversions in cancer.

Moreover, according to the mathematical theory of nonequilibrium biochemical systems 

[39–41], our model can be shown not to satisfy the condition of detailed balance, implying 

that the process of our model shows time-irreversible complexity with associated cycle 

fluxes. The analysis of nonequilibrium properties in our model can also be interesting work 

in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The comparison of the transient dynamics between bidirectional and unidirectional 
models
To better illustrate our theoretical result, we set in this example that both models start from 

the same purity (about 99.5%) of NCSSs subpopultion, and end with the same equilibrium 

state (about 0.65). It is found that the two models differ in their transient dynamics. The 

disparity between the growths of the two models enlarges shortly after the initiation, and 

then gradually shrinks as they approach to their final equilibria. After about 7 time points, 

the two dynamics would become essentially indistinguishable.
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Figure 2. Validation of the bidirectional model (Eq. (4)) with the data on SW620 colon cancer 
cell line
We trained our parameters with the data on the first 6 time points, then predicted the 

remaining time points of four different cases together with the best fitting parameters. The 

colorful lines are the trajectories predicted by the model, and the discrete dots are the 

experimental data accordingly. The best fitting parameters are A ≈ 0, B ≈ −0.40 and 

β3≈0.26.
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Figure 3. Fitting the unidirectional model (Eq. (5)) to the data
The red lines are the trajectories predicted by our unidirectional model, and the black dots 

are the experimental data. It is shown that in (B), (C) and (D), the predicted trajectories are 

in good accord with the data. In (A), however, we found that the increase of CSCs 

proportion predicted by our model is much slower than that shown on data in the first few 

days. The optimum parameters are A ≈ 1.39, B ≈ 0.96.
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