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Abstract

Alternative polyadenylation (APA) is a pervasive mechanism in the regulation of most human 

genes, and its implication in diseases including cancer is only beginning to be appreciated. Since 

conventional APA profiling has not been widely adopted, global cancer APA studies are very 

limited. Here we develop a novel bioinformatics algorithm (DaPars) for the de novo identification 

of dynamic APAs from standard RNA-seq. When applied to 358 TCGA Pan-Cancer tumor/normal 

pairs across 7 tumor types, DaPars reveals 1,346 genes with recurrent and tumor-specific APAs. 

Most APA genes (91%) have shorter 3′ UTRs in tumors that can avoid miRNA-mediated 

repression, including glutaminase (GLS), a key metabolic enzyme for tumor proliferation. 

Interestingly, selected APA events add strong prognostic power beyond common clinical and 

molecular variables, suggesting their potential as novel prognostic biomarkers. Finally, our results 
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implicate CstF64, an essential polyadenylation factor, as a master regulator of 3′ UTR shortening 

across multiple tumor types.

Introduction

The dynamic usage of mRNA 3′ untranslated region (3′ UTR), mediated through alternative 

polyadenylation (APA), plays an important role in post-transcriptional regulation under 

diverse physiological and pathological conditions1, 2. Approximately 70% of human genes3 

are characterized by multiple polyA sites that produce distinct transcript isoforms with 

variable 3′ UTR length and content, thereby significantly contributing to transcriptome 

diversity4. The majority of APA examples utilize alternative polyA sites located within the 

terminal exon proximally downstream of the stop codon (tandem APA). As a result, while 

the protein-coding sequence (CDS) is unaltered, the regulatory elements in the distal 3′ UTR 

that might reduce mRNA stability or impair translation efficiency can be removed, including 

AU-rich elements5 and microRNA (miRNA) binding sites6. A small percentage of APA 

sites can be located within internal introns/exons (splicing APA) and are coupled with 

alternative splicing to produce mRNA isoforms encoding distinct proteins. A well-

documented example occurs during B cell differentiation, where IgM switches from a 

membrane-bound form to a secreted form by using a proximal polyA site instead of a distal 

one7. More recent studies8 have shed light on the importance of APA in human diseases 

such as cancer but its clinical significance to tumorigenesis is only beginning to be 

appreciated. Both proliferating cells2, 9 and transformed cells10 have been shown to favor 

expression of shortened 3′ UTRs through APA, leading to activation of several proto-

oncogenes, such as Cyclin D18. Collectively, these observations imply that truncation of the 

3′ UTRs may serve as prognostic biomarkers10, 11. While compelling, these studies were 

highly limited to either a limited number of genes or a small sample size. It remains to be 

determined to what extent APA occurs in cancer patients, to what level of clinical utility 

APA may have, and the molecular mechanisms and functional consequences of APA during 

tumorigenesis across multiple tumor types.

RNA-seq has become a routine protocol for gene expression analysis; however, methods to 

quantify relative APA usage are still under development. Previous global APA studies use 

microarrays2, 12, which are limited by the dependence on annotated polyA databases as well 

as inherent technical biases such as cross-hybridization. Recent APA protocols use polyA 

junction sites enrichment followed by high throughput sequencing (PolyA-seq)13, 14. These 

PolyA-seq protocols, although powerful in providing the precise locations of polyA sites, 

are hampered by technical issues, such as internal priming artifacts, and thus have not been 

widely adopted by the cancer community. In contrast, RNA-seq has been widely employed 

in almost every large-scale genomics project, including The Cancer Genome Atlas (TCGA). 

However, very few RNA-seq reads contain polyA tails, challenging our ability to identify 

APA events. For example, an ultra-deep sequencing study15 only identified ∼40 thousand 

putative polyA reads (∼0.003%) from 1.2 billion total RNA-seq reads. Moreover, although 

the popular RNA-seq tool MISO16 can detect annotated alternative tandem 3′ UTRs, it 

cannot identify any novel APA events beyond polyA databases. Finally, the short 3′ UTRs 

are often embedded within the long ones, and thus the isoforms with short 3′ UTRs are 
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commonly overlooked by transcript assembly tools, such as Cufflinks17. Despite these 

inherent limitations, we hypothesize that any major changes in APA usage between different 

conditions will result in localized changes in RNA-seq density near the 3′ end of mRNA. 

And this localized RNA density change can be readily detected through single-nucleotide 

resolution RNA-seq analysis. We therefore developed a novel bioinformatics algorithm, 

Dynamic analyses of Alternative PolyAdenylation from RNA-Seq (DaPars), to directly infer 

dynamic APA events through the comparison of standard RNA-seq data between different 

conditions.

TCGA has characterized a comprehensive list of genomic, epigenomic, and transcriptomic 

features in thousands of tumor samples; however, it lacks a PolyA-seq platform for APA 

analysis. To fill this knowledge gap, we used DaPars to retrospectively analyze the existing 

RNA-seq data of tumors and matched normal tissues derived from 358 patients across 7 

tumor types. We discover 1,346 genes with highly recurrent tumor-specific dynamic APA 

events, demonstrate the additional prognostic power of APA beyond common clinical and 

molecular variables, and expand our knowledge of the mechanisms and consequences of 

APA regulation during tumorigenesis.

Results

DaPars identifies dynamic APA events

DaPars performs de novo identification and quantification of dynamic APA events between 

tumor and matched normal tissues regardless of any prior APA annotation. For a given 

transcript, DaPars first identifies the de novo distal polyA site based on continuous RNA-seq 

signal independent of gene model (Fig. 1a, Supplementary Fig. 1a,b). Assuming there is an 

alternative de novo proximal polyA site, DaPars models the normalized single-nucleotide-

resolution RNA-seq read densities of both tumor and normal as a linear combination of both 

proximal and distal polyA sites. DaPars then uses a linear regression model to identify the 

location of the de novo proximal polyA site as an optimal fitting point (vertical arrow in Fig. 

1a) that can best explain the localized read density change. Furthermore, this regression 

model is extended towards internal exons, so that splicing coupled APA events can also be 

detected. Finally, the degree of difference in APA usage between tumor and normal can be 

quantified as a change in Percentage of Distal polyA site Usage Index (ΔPDUI), which is 

capable of identifying lengthening (positive index) or shortening (negative index) of 3′ 

UTRs. The dynamic APA events with statistically significant ΔPDUI between tumor and 

normal will be reported. The DaPars algorithm is described in further detail in the Methods. 

One example of an identified dynamic APA event is given for the TMEM237 gene (Fig. 1b), 

where the shorter 3′ UTR predominates in both breast (BRCA) and lung (LUSC) tumors 

compared to matched normal tissues. Another example is LRRFIP1 (Fig. 1c), where the 

distal 3′ UTR is nearly absent in both breast and lung tumors.

DaPars evaluation using simulated and experimental APA data

To assess the performance of DaPars, we conducted a series of proof-of-principle 

experiments. First, we used simulated RNA-seq data with predefined APA events to 

evaluate DaPars as a function of sequencing coverage. We simulated 1,000 genes in tumor 
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and normal at different levels of sequencing coverage (reads per base gene model). For each 

gene, we simulated two isoforms with long and short 3′ UTRs (3000 and 1500 bp), 

respectively. The relative proportion of these two isoforms is randomly generated, so that 

the ΔPDUI between tumor and normal for each gene is a random number ranging from -1 to 

1. According to these gene models and expression levels, we used Flux Simulator18 to 

generate 50-bp paired-end RNA-seq reads with a 150-bp fragment length, taking into 

account typical technical biases observed in RNA-seq. The simulated RNA-seq reads were 

used as the input for DaPars analysis, while the short/long isoforms and the ΔPDUI values 

were hidden variables to be determined by DaPars. As a criterion for accuracy, the DaPars 

dynamic APA prediction is considered to be correct if the predicted de novo APA is within 

50-bp distance of the bona fide polyA site, and the predicted ΔPDUI is within 0.05 from the 

pre-determined ΔPDUI. The final prediction accuracy (percentage of recovered APAs) is 

plotted as a function of the different coverage levels (Fig. 1d). Using genes with a single 

isoform as negative controls, we also reported ROC curves at different coverage levels with 

areas under ROC curves (AUC) ranging from 0.762 to 0.985 (Supplementary Fig. 2). Our 

results indicate that dynamic APA events can be readily identified across a very broad range 

of coverage levels. Importantly, we determined that a sequencing coverage of 30-fold can 

achieve more than 70% accuracy and close to 0.9 AUC in dynamic APA detection. 

Therefore, we filtered out genes with less than 30-fold coverage for all further analysis.

As an additional proof-of-principle, we directly compared APA events detected by DaPars 

with that of PolyA-seq. To achieve this, we used the RNA-seq data19 and PolyA-seq data3 

based on the same Human Brain Reference and the Universal Human Reference (UHR) 

MAQC samples20. For PolyA-seq, the differentially altered 3′ UTR usage was identified as 

described in Methods. From the comparison between Brain and UHR, we found that ∼60% 

(P-value < 2.2e-16; Fisher's exact test) of 372 DaPars predicted APA events could be 

strongly supported by PolyA-seq (Fig. 1e,f). Both PolyA-seq and DaPars reported longer 3′ 

UTRs in Brain than in UHR in more than 94% dynamic APA events, which is consistent 

with recent reports that brain tissues normally have the longest 3′ UTRs21, 22. Close 

inspection of the raw data indicates that the non-overlapping dynamic APA events can be 

partially explained by the individual assay limitations. For example, PolyA-seq is designed 

to amplify polyA tags; therefore, some dynamic APA events reported by PolyA-seq may 

have a small magnitude of changes that are not readily detectable by RNA-seq 

(Supplementary Fig. 1c). Meanwhile, probably due to additional steps such as fractionation, 

PolyA-seq may also fail to detect dynamic APAs that are clearly observed by RNA-seq 

(Supplementary Fig. 1d). Together, we conclude that DaPars can reliably detect dynamic 

APA events between different conditions using standard RNA-seq.

Broad and recurrent shortening of 3′ UTRs across tumor types

Since TCGA lacks a PolyA-seq platform for APA analysis, we sought to fill this knowledge 

gap through DaPars retrospective analysis of existing TCGA RNA-seq data, which were 

originally sequenced for gene expression. We focused our analysis on 7 tumor types that 

have more than 10 tumor/normal pairs, including bladder urothelial carcinoma (BLCA), 

head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC), 

lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), kidney renal clear cell 
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carcinoma (KIRC) and Uterine Corpus Endometrioid Carcinoma (UCEC) (Supplementary 

Table 1). TCGA RNA-seq data are of high quality with a mean coverage around 50-fold, 

which corresponds to 80% accuracy for DaPars APA analysis based on our simulation study 

(Fig. 1d). For each tumor type, we identified 224 to 744 genes with statistically significant 

and recurrent (occurrence rate >20%) dynamic APA events during tumorigenesis, leading to 

a total of 1,346 non-redundant events across 7 tumor types (Fig. 2a, Supplementary Fig. 3a 

and Supplementary Data 1). As a negative control, we did not observe any recurrent APA 

events between different batches of normal tissues of the same tumor type, indicating that 

the 1,346 DaPars reported tumor-specific APA events are not likely due to technical 

artifacts, such as sequencing bias or batch effect. Overall, lung (LUSC and LUAD), uterine 

(UCEC), breast (BRCA) and bladder (BLCA) cancers possess the highest amount dynamic 

APA events than the other tumor types (Fig. 2a, Supplementary Fig. 3a,b). Furthermore, 

55% of the 1,346 dynamic APA events occur in at least 2 tumor types (Supplementary Fig. 

3c), indicating potential concerted mechanisms in APA regulation across tumor types. 

Strikingly, the majority (61-98%) of APA events have shorter 3′ UTRs in tumors (Fig. 2a 

and Supplementary Fig. 3a), which is consistent with previous reports that transformed cells 

preferentially express mRNAs with shortened 3′ UTRs8.

Multiple lines of evidence indicate that DaPars reported de novo APA events are indeed 

regulated through alternative polyadenylation. First, 51% of DaPars predictions are within 

50 bp of the annotated APAs compiled from Refseq, ENSEMBL, UCSC gene models and 

polyA database23. There is a ∼6-fold enrichment of annotated APAs in our DaPars 

predictions compared to random controls (Fig. 2b). Second, in the upstream (-50nt) of our de 

nov APA sites, canonical polyA signal AATAAA can be successfully identified by MEME 

motif enrichment analysis24 (Fig. 2c). In addition, AATAAA and ATTAAA are the most 

prevalent motifs among variants25 of polyA signals (Supplementary Fig. 4)4. By comparing 

±50 bp flanking sequences of the distal and proximal polyA sites of the 3′ UTR shortening 

events, DREME26 discriminative motif discovery algorithm reported that AATAAA motif is 

significantly stronger in distal polyA sites (Supplementary Fig. 5), suggesting the molecular 

basis for differential polyA site selection27. Furthermore, the canonical polyA signal can 

also be identified (Supplementary Fig. 6 and Supplementary Fig. 7) on those de novo APA 

sites that do not coincide with previous annotation. As expected, the de novo DaPars 

analysis enables us to detect novel APAs that are not annotated in any database. For 

example, we found a potential novel proximal APA site in AGPS that is significantly up-

regulated in LUSC tumor (Fig. 2d). Together, we conclude that DaPars reliably identified a 

comprehensive list of novel and existing APA target genes across 7 TCGA tumor types, and 

the preferential shortening of 3′ UTR is a major layer of transcriptomic dynamics during 

tumorigenesis.

APA events remain far from complete

To explore to what extent the discovered 1,346 APA events have reached saturation, we 

performed “down-sampling” saturation analysis. We repeated DaPars analysis (occurrence 

rate >20%) on random subsets of samples of various smaller sizes. Saturation is expected to 

occur when increasing sample size fails to discover additional APA events. The results 

indicate that the number of APA events increases steadily with increasing sample size in 
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total (Fig. 2e), sample size per tumor type (Supplementary Fig. 3d), and the number of 

tumor types studied (Fig. 2f). This suggests that APA events derived from 358 samples 

across 7 tumor types remain far from complete. DaPars analysis on a larger sample size or 

more tumor types is likely to reveal many more novel APA events. This prediction is 

consistent with a recent report demonstrating that cancer genome sequencing normally 

requires thousands of samples per tumor type to approach saturation28. This observation also 

highlights the need for de novo discovery of APA, since any prior annotation based 

detection methods are likely to miss a significant portion of novel APA events from tumor 

samples.

Genes with shorter 3′ UTRs are prone to be up-regulated

The current model predicts that 3′ UTR shortening through APA during tumorigenesis may 

up-regulate its parental gene by escaping miRNA repression. To test this hypothesis, we 

calculated the numbers of miRNA binding sites lost due to 3′ UTR shortening in tumors 

(Fig. 3a). Using this approach, we determined that ∼67% genes with shorter 3′ UTRs in 

tumors have lost at least 1 predicted miRNA-binding site (Fig. 3a). Furthermore, when 

compared with all the genes of sufficient sequencing coverage, those genes with shorter 3′ 

UTRs in tumors have overall greater miRNA binding site density in their gene models (P-

value=1.8e-11, t-test; Fig. 3b). These data imply that APA regulation tends to maximize the 

miRNA binding loss through preferentially shortening those 3′ UTRs already heavily 

regulated by miRNA. To examine the consequences of 3′ UTR and miRNA binding loss, we 

compared the gene expression between tumors and matched normal tissues. As expected, 

those genes with shorter 3′ UTRs in tumors tend to be more up-regulated in tumors (Fig. 3c). 

In conclusion, our data strongly support the hypothesis that many genes are up-regulated 

during tumorigenesis by shortening their 3′ UTRs to escape post-transcriptional miRNA 

repression.

APA events add prognostic power beyond common covariates

Very little is known of the clinical implications of the dynamic 3′ UTRs in cancer patients. 

To address this issue, we used a standard Cox proportional hazards model32 for the 

correlation between patient overall survival and multiple clinical and molecular covariates. 

Here we only used BRCA, LUSC and KIRC due to high mortality rate and large sample 

size. We first used common clinical covariates including only tumor stage, age, gender 

(excluding breast cancer) and smoking status (lung cancer only) to generate low and high 

risk groups, which are visualized by Kaplan-Meier (KM) plots and compared by the log-

rank test (Fig. 4a). We next used the same Cox regression model integrated with LASSO to 

select the APA (ΔPDUI) events besides clinical covariates that can best separate risk groups. 

With clinical covariates always included, we used leave-one-out cross-validation (CV) to 

select the optimal 1-3 APA events (Supplementary Table 2) to constitute new APA-clinical 

Cox regression models (Fig. 4d), which have much more significant P-values in the risk 

group comparison. To quantify the added prognostic power of APA events, we used a 

likelihood-ratio test (LRT) to compare the new APA-clinical models with the clinical only 

models. The LRT results (Fig. 4e) clearly demonstrate a strong additional prognostic power 

of APA events beyond clinical covariates. Among these 6 APA covariates, significant worse 

survival is associated with 3′ UTR shortening of 3 genes (SYNCRIP in BRCA; TMCO7 and 
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PLXDC2 in KIRC) and 3′ UTR lengthening of 2 genes (ATP5S in BRCA; RAB23 in LUSC), 

respectively (Supplementary Table 2). This result strongly suggests that, depending on the 

tumor types or genes studied, either lengthening of shortening of 3′ UTRs may be associated 

with poor clinical outcome. Since our CV procedure only selects the optimal APA events, it 

is highly likely that even more APA events can be associated with patient survival. 

Furthermore, we combined clinical covariates with tumor mRNA expression (mRNA-

clinical) and tumor-vs-normal gene expression fold change (mRNA-FC-clinical model) of 

the same APA genes (Supplementary Table 2) as two additional Cox regression models and 

repeated the same analyses. Compared with APA-clinical model, both mRNA-clinical and 

mRNA-FC-clinical models provide much less additional prognostic power (Fig. 4e), less 

significant log-rank P-values in risk group comparison (Fig. 4b,c,d). Finally, we show that 

the separated high and low risk groups by APA-clinical models have no correlation with 

TCGA Pancan12 significantly mutated gene (SMGs; doi:10.7303/syn1750331) (Fig. 4f). 

Together, APA events provide additional power in survival prediction beyond clinical 

covariates, and independent of commonly used molecular data such as gene expression and 

somatic mutations.

Cancer metabolism gene GLS is regulated through APA

Ingenuity IPA and literature searches were used to characterize the pathways enriched in 

1,346 dynamic APA events (Fig. 5a and Supplementary Data 2). The vast majority of 

enriched pathways are cancer related, such as ERK/MAP signaling and Glutamine 

Metabolism. The metabolism gene glutaminase (GLS) is of particular interest. It is well 

known that tumors are considerably more dependent on the glycolytic pathway, regardless 

of oxygen availability, to supply a great deal of their energetic and biosynthetic demand for 

cell division. This phenomenon, termed the Warburg effect, is a hallmark of cancer33. GLS 

is a key enzyme in glutaminolysis and its high expression is essential to support the cancer 

metabolic phenotype34. There are two major GLS isoforms termed distal Kidney-type (KGA) 

and proximal Glutaminase C (GAC), which have distinct 3′ UTRs and slightly different C-

termini35, 36, 37 (Fig. 5b). KGA has a number of miRNA binding sites within its 3′ UTR 

whereas GAC surprisingly is not predicted to have any (Fig. 5b). Furthermore, it has been 

shown that miR-23 represses KGA in most cells. However, in myc-transformed cells, MYC 

overexpression de-represses GLS through down-regulation of miR-23, resulting in 

glutamine-dependent growth characteristics38. Interestingly, we found a strong alternative-

splicing coupled 3′ UTR shift from KGA in normal to GAC in tumor, leading to a 

significantly increased percentage of GAC in LUAD, LUSC and KIRC (Fig. 5b,c). This is 

consistent with previous report that GAC is key to the mitochondrial glutaminase 

metabolism of cancer cells34. The implication of the 3′ UTR switch to GAC is that the 

expression of GLS is no longer regulated by miR-23 or MYC. Consistently, we did not 

observe any significant expression changes of miR-23 between tumors and normal tissues, 

though MYC is up-regulated in LUSC and KIRC tumors (Supplementary Fig. 8a), 

suggesting that GLS potentially utilizes 3′ UTR switch, rather than MYC to escape miR-23 

mediated repression.

To investigate the potential clinical utility of the APA-mediated GLS isoform switch, we 

examined the correlation between GAC percentage and clinical survival information for 
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KIRC tumors, using the Cox proportional hazards model with age and gender as covariates. 

We found that higher GAC percentage is highly correlated with worse survival (P=3.2e-13, 

hazard ratio = 50, 95% confidence interval: 17-141; Fig. 5d), which is consistent with 

previous studies indicating that GAC is essential for cancer cell growth39. Overall, patients 

with the high GAC ratios in KIRC have a median survival of approximately 55 months, 

compared to more than 92 months for those with low GAC ratios. We did not find a 

statistically significant correlation between GAC percentage and survival outcome in LUSC 

and LUAD possibly because the GAC percentages ([0.5, 0.97] and [0.59,0.98], respectively) 

(Supplementary Fig. 8b) have very limited dynamic range in these two tumor types, and thus 

may not have enough power to stratify patients. In contrast, GAC percentage ranges from 

0.05 to 0.96 in KIRC (Supplementary Fig. 8b), allowing patient stratification based on a full 

range of GAC levels. Together, the GLS APA regulation suggests a novel and potentially 

MYC-independent and miRNA-independent mechanism of glutaminase regulation in tumors, 

and GLS APA can be used to predict patient survival in KIRC.

Potential Mechanisms for APA Regulation during Tumorigenesis

We sought to investigate the potential mechanisms governing APA dynamics in 

tumorigenesis. Although many details remain poorly understood, APA is thought to be 

regulated in cis through genetic aberrations40, 41 of the underlying nascent mRNA (derived 

from DNA), and in trans by regulatory proteins in responding to dynamic environmental 

changes42. These cis-elements include canonical polyA signal AAUAAA and other 

auxiliary sequences such as U/GU-rich downstream elements43. The core polyadenylation 

trans-factors involve four multi-subunit protein complexes, CPSF (cleavage and 

polyadenylation specificity factor), CstF (cleavage stimulation factor), CFI and CFII 

(cleavage factors I and II). The chemical cleavage of pre-mRNA process mainly employs 

CPSF to recognize the canonical polyA signal upstream of the cleavage site, and utilizes 

CstF to bind downstream U/GU-rich elements43 mainly through the CstF64 subunit42.

To examine the role of genetic aberrations in the regulation of APA, we compared our 1,346 

recurrent APA events with 64 Pancan12 Significantly Mutated Genes (SMGs; doi:10.7303/

syn1750331). Surprisingly, there are only 5 genes in common (Fig. 6a; P-value 0.48 by 

Fisher's exact test). This result indicates that most of the dynamic APA events are probably 

not due to aberrations of underlying cis-elements but may be the result of aberrant 

expression of polyA trans-factors. To address this possibility, we investigated the gene 

expression of 22 important polyA trans-factors44 based on the TCGA RNA-seq data. The 

significantly up- and down-regulated factors between tumors and matched normal tissues are 

indicated by yellow and blue, respectively (Fig. 6b). In general, we observed global up-

regulation of most polyA factors in 5 tumor types (LUSC, LUAD, UCEC, BLCA and 

BRCA), which also have more 3′ UTR shortening events. Therefore, we conclude that most 

core polyadenylation factors are expressed at higher levels in tumor types where proximal 

APAs are favored. Our results are consistent with previous studies showing that 3′ UTR 

shortening in proliferating cells is also accompanied by an increased expression of 

polyadenylation factors9, 12, 27.
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We further investigated the correlation between gene expression and 3′ UTR shortening for 

4 polyadenylation factors (CPSF1, CPSF3, CstF64 and PABPC1), which are differentially 

expressed between tumor and normal in at least 3 cancer types (Fig. 6b). Among them, 

CstF64 has the greatest correlation between gene-expression fold change and the number of 

shortening events per patient in tumors (Spearman's correlation 0.54 with P-value 2.8e-28, 

Fig. 6c), followed by CPSF3. In contrast, CPSF1 and PABPC1 have weak correlations 

(Supplementary Fig. 9). This result is consistent with a recent iClip-seq study, suggesting 

that CstF64 is one of the top 3 most important factors for polyA site selection46. Also, a 

recent study indicated that CPSF plays an important role in recruiting CstF64 to RNAs47. 

Furthermore, a recent global study in HeLa cells suggests that CstF64 induces the usage of 

proximal APAs47. They reported 171 genes with lengthening in 3′ UTRs upon knock down 

of CstF64, among which 46 genes from our analysis have shortened 3′ UTRs in tumors 

where CstF64 is up-regulated (Fig. 6d; P-value = 3.9e-19 using Fisher's exact test; 

Supplementary Fig. 10). This significant overlap indicates that a subset of 3′ UTR 

shortening events we observed in tumors can indeed be explained by the expression level of 

CstF64. Finally, using CstF64 iCLIP-seq in HeLa cells47, we showed that those 1,346 genes 

have more CstF64 bindings in their 3′ UTRs than other genes (Fig. 6e). Together, our study 

provides strong evidence that key polyA trans-factors, such as CstF64, are up-regulated in 

tumorigenesis, leading to preferential 3′ UTR shortening in tumors.

Discussion

We have developed a novel bioinformatics algorithm, termed DaPars, dedicated to the de 

novo identification and quantification of dynamic APA events using standard RNA-seq. The 

accuracy of DaPars is evidenced by the fact that our de novo predicted APAs are enriched 

for the canonical polyA signal AATAAA and have a high degree of overlap with annotated 

polyA sites (Fig. 2b,c). Our extensive DaPars analysis of TCGA datasets convincingly 

demonstrate that any investigator(s) conducting standard RNA-Seq is now capable of 

identifying the majority of functionally important APA events in most biological systems. 

DaPars is not just yet another APA assay; instead, its key methodology innovation is the 

inference of de novo APA events from existing RNA-seq data without relying on any 

additional wet bench experiments. For example, our current APA analysis was based on 

RNA-seq of 358 tumor/normal pairs across 7 cancer types. An analysis of this scale would 

be prohibitively cumbersome using any previous method, such as microarrays, EST and 

PolyA-seq, but was made possible now with our DaPars method.

While our paper was under review, Wang et al.50 reported a change-point model to detect 3′ 

UTR switching using RNA-seq. Wang et al.’s model relies on the annotated distal polyA 

sites to infer the proximal ones, only supports genes with two polyA sites, and only support 

pair-wise comparison. In contrast, our DaPars method is fully de novo, can handle multiple 

(>2) polyA sites and multiple (>2) samples, and thus is much more powerful and flexible 

than Wang et al.’s model. Most of our analyses based on hundreds of TCGA patient samples 

would not be possible using Wang et al.’s model.

It has been reported that shorter 3′ UTRs are preferentially used by several oncogenes in 

cancer cell lines8 but what was not clear from this work is how pervasive and recurrent APA 
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is in clinical samples. Lin et al.51 reported 126 3′ UTR shortening genes in 5 tumor/normal 

pairs but unfortunately did not provide a supplementary table for those genes. To direct 

compare our results to Lin et al., we repeated the same analysis as described in their paper 

and detected a total of 120 genes with 3′ UTR shortening and up-regulation of the short 

isoform. Among them, 53% were also found in our 1,201 shortening APA genes 

(Supplementary Fig. 11; P-value 2e-43 by Fisher's exact test), including POLR2K, the main 

APA gene reported by Lin et al.. Two examples of consistence and inconsistence between 

TCGA RNA-seq and PolyA-seq from Lin et al. are shown in Supplementary Figures 12 and 

13, respectively. In this study, we have substantially increased the number of dynamic APA 

events based on 358 tumor/normal pairs. To our knowledge, this is the largest global APA 

analysis to date, leading to a 71-fold increase in sample size compared to Lin et al..

Several novel and significant biological and clinical insights are noticeable from our large 

scale APA analysis. First, dynamic APA events are highly tumor type and patient specific. 

We observe that lung, uterus, breast and bladder cancers have significantly more APAs than 

head/neck and kidney cancers. Moreover, similar to other caner genomic data, there is 

considerable APA heterogeneity among patients within the same tumor type. Second, our 

saturation analysis indicates that APA events derived from 358 samples across 7 tumor types 

remain far from complete, highlighting the need for de novo discovery of APA, and the need 

for expanding DaPars analysis to more tumor types and samples when they become 

available. Third, selected APA events provide a surprisingly strong additional prognostic 

power beyond common clinical covariates and conventional molecular data, such as somatic 

mutation and gene expression. A recent study52 also indicated that conventional molecular 

data had poor prognostic power beyond clinical data. Although the exact cause is unknown, 

we speculate that it may reflect a role for APA as a driver of tumor progression. Fourth, our 

study reveals a novel link between altered 3′ UTR usage and cancer metabolism. We 

observed that the GAC isoform of the glutaminase gene (GLS), which lacks any predicted 

miRNA binding, is predominantly expressed in LUSC, LUAD and KIRC tumors. Therefore, 

this APA event would abrogate the need to attenuate miR-23 expression through MYC up-

regulation and result in increased Glutaminase expression and altered glutamine metabolism. 

Fifth, our observation of correlating CstF64 levels with increased 3′ UTR shortening 

suggests that this factor is a potential master activator of proximal APA usage in 

tumorigenesis. This hypothesis predicts that tumor cells increase CstF64 levels to promote 

the 3′-end processing at the proximal and weaker polyA sites thereby preventing the usage 

of the distal polyA sites42, 47. Finally, APA is likely to be regulated by many factors in a 

tissue specific manner. For example, we recently reported CFIm2554 as a global repressor of 

proximal APA in brain tumor. CFIm25 has opposite function of CstF64, since its decreased 

expression correlates with increased 3′ UTR shortening. However, CFIm25 is not a master 

APA regulator in the cancer types we studied here because it is not differentially expressed 

between tumor and normal (NUDT21 in Fig 6b).

Our DaPars analysis of RNA-seq reveals a comprehensive list of previously unobserved, 

highly recurrent and functionally important 3′ UTR somatic “RNA aberrations”. These RNA 

aberrations represent an illustrative case of genomic “dark matter” beyond coding regions, 

and thus may also provide new directions for tumor gene discovery55. Although there is a 
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lack in observed genetic aberrations within 3′ UTRs of most genes undergoing APA, caution 

should be taken as current TCGA mutation analyses utilize primarily exome sequencing, 

which excludes 3′ UTR. We will revisit this issue in the future when more whole genome 

sequencing data are available. Finally, although focused on cancer genomics in this study, 

our novel DaPars framework will open the door for APA analysis in numerous biological 

and pathologic systems. It also underscores the power of innovative bioinformatics analyses 

that can derive novel biological insights from existing sequence data.

Methods

Datasets

All the RNA-seq BAM files were downloaded from the UCSC Cancer Genomics Hub 

(CGHub, https://cghub.ucsc.edu/). Here we only processed BRCA, BLCA, LUSC, LUAD, 

HNSC, UCEC and KIRC cancers that have more than 10 tumor-normal pairs 

(Supplementary Table 1). Gene expression and miRNA expression were downloaded from 

The Cancer Genome Atlas data portal (https://tcga-data.nci.nih.gov/tcga/

dataAccessMatrix.htm). MAQC brain and UHR RNA-seq reads were obtained from 

Sequence Read Archive (SRA) with accessions ERP000016 and ERP000400, respectively. 

For MAQC PolyA-seq, the filtered polyA sites with normalized read counts were 

downloaded from the UCSC browser3.

DaPars Algorithm

DaPars performs de novo identification and quantification of dynamic APA events between 

two conditions, regardless of any prior APA annotation. DaPars identifies a distal polyA site 

based on RNA-seq data, uses a regression model to infer the exact location of the proximal 

APA site after correcting the potential RNA-seq non-uniformity bias along gene body, 

detects statistically significant dynamic APAs, and has the potential to detect more than 2 

dynamic APA events.

Distal polyA site Identification from RNA-seq—Given two or more RNA-seq 

samples, distal polyA site refers to the end point of the longest 3′ UTR among all the 

samples, which will be used in the next step to identify the proximal polyA within this 

longest 3′ UTR region. To identify possible distal polyA site that may locate outside of gene 

annotation, we extend the annotated gene 3′ end by up to10 kb before reaching a 

neighboring gene. RNA-seq data from all input samples will be merged to have a combined 

coverage along the extended gene model. To address possible uneven and discontinuous 

issues, we applied a 50bp window to smooth this combined coverage. We then scan the 

extended 3′ UTR from 5′ to 3′ to find the distal polyA site whose coverage is significantly 

lower (i.e. < predefined cutoff at 5%) than the coverage at the start of the preceding exon. A 

similar strategy has been successfully used to detect lengthening of 3′ UTRs in the 

mammalian brain21. The de novo distal APA estimated directly from RNA-seq, which may 

not be included in gene model, will benefit the downstream proximal APA identification 

(Supplementary Fig. 1a).
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Since most current RNA-seq datasets are not strand-specific, potential overlapping of 3′ 

UTRs from two neighboring “tail-to-tail” genes from different strands may give false 

positive distal polyA. So after previous distal APA analysis, if 3′ UTRs of two neighboring 

genes overlap, we will gradually increase the cutoffs until the two 3′ UTRs are separated. In 

this way, we can recover the proper distal polyA, which may be overlooked by other 

methods such as Cufflinks (Supplementary Fig. 1b). The distal polyA site identification 

method implemented in DaPars has very good performance. For all the predicted distal 

polyA sites from TCGA RNA-seq, on average 81% are within 50 bp of the annotated polyA 

sites.

Regression model in DaPars—For each RefSeq transcript with a distal APA estimated 

from previous step, we use a regression model to infer the exact location of a de novo 

proximal polyA site at single nucleotide resolution, by minimizing the deviation between the 

observed read density and the expected read density based on the two-polyA-site model, in 

both tumor and matched normal samples simultaneously. This regression model solves the 

following optimization problem:

(Eq.1)

where  and  are the abundances of transcripts with distal and proximal polyA sites for 

sample i, respectively,  is the read coverage of sample i at 

single nucleotide resolution normalized by total sequencing depth, L is the length of the 

longest 3′ UTR from previous step, P is the length of alternative proximal 3′ UTR to be 

estimated, IL and IP are indicator functions such that  and 

.

For each given 1 < P < L, the expression levels of two transcripts with distal and proximal 

polyA sites in both tumor and normal tissues can be estimated by optimizing this linear 

regression model using quadratic programming56. The optimal de novo proximal polyA site 

P* is the one with the minimal objective function value, as demonstrated by the vertical 

arrow in Figure 1a. In order to quantify the relative polyA site usage, we define the 

percentage of distal polyA site usage index (PDUI) for sample i as the following:

(Eq.2)

where  and  are the estimated expression levels of transcripts with distal and proximal 

polyA sites for sample i. The greater the PDUI is, the more distal polyA site of a transcript is 

used and vice versa. Finally, the regression model is extended towards the internal exons, so 

that splicing coupled APA events can also be detected.
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Non-uniformity correction—It has been reported that RNA-seq reads are not uniformly 

distributed along the gene body. DaPars provides an option to address the issue of non-

uniformity by statistical modeling57. Since it is technically difficult to distinguish non-

uniform distribution from dynamic APA, we decide to train our statistical model based on a 

subset of genes with no APA change, i.e. with only one 3′ UTR. We first run DaPars to 

select those genes with no APA change and divide their RNA-seq gene body coverage into 

100 bins, yielding an observed gene body sequencing profile (Supplementary Fig. 1e). In the 

conventional DaPars, the elements of IL and IP in Equation 1 are un-weighted and all 1s on 

3′ UTR regions. We will infer the weighted IL and IP based on the observed gene body 

sequencing profile, then re-run DaPars with the weighted IL and IP to correct the non-

uniformity in RNA-seq (Supplementary Fig. 1e).

Differential Percentage of Distal APA Usage Index—We used the following three 

criteria to detect the most significant APA events:

First, given long 3′ UTR expression level  and short 3′ UTR expression level 

estimated from (Eq.1), we used Fisher's exact test to determine the P-value of PDUI 

difference between tumor and matched normal tissue of the same patient, which is further 

adjusted by Benjamini-Hochberg (BH) procedure to control the false discovery rate (FDR) 

at 5%. Second, the absolute mean difference of PDUIs of all the patients in the same tumor 

type must be no less than 0.2. Third, the mean fold-change of PDUIs of all the patients in the 

same tumor type must be no less than 1.5.

(Eq.3)

To avoid false positive estimation on lowly expressed genes, we only included genes with 

more than 30-fold mean coverage (reads per base gene model).

More than 2 dynamic APAs—Our DaPars framework can be easily extended to address 

more than 2 dynamic APAs. We formulated the multiple APA analysis in the following 

matrix format,

(Eq.

4)

where m is the length of the longest 3′ UTR of a transcript. wij is the expression level of one 

possible 3′ UTR j on sample i. The number of non-zero wij determines how many polyA 

sites will be derived from RNA-seq. In most cases, there are only a few wij will be non-zero. 

So we can solve this equation using a positive Lasso optimization method as reformulated in 

the following form:
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(Eq.5)

where C, M and W are corresponding to the left, middle and right matrix in Equation 4, 

respectively. In practice, we only consider no more than 4 APAs in a real dataset to reduce 

the complexity of model selection and avoid over-fitting issues. In Supplementary Fig. 1f, 

we showed that our DaPars can also identify more than 2 APAs from RNA-seq and the 

predictions are highly consistent with the annotation. Though many genes have more than 2 

annotated APAs, the majority of dynamic APAs only involve 2 polyA sites1. Therefore in 

the current large-scale TCGA RNA-seq analysis, we only focus on 2 APAs in the dynamic 

APA detection.

PolyA-seq Processing

We downloaded the processed polyA sites with normalized read counts of MAQC Brain and 

UHR PolyA-seq datasets (2 replicates for each tissue) from the UCSC Genome Browser3. 

We calculated the signal intensity of a given polyA site based on all the same-strand PolyA-

seq reads within 50 bases of the polyA site. We then used Fisher's exact test to detect the 

statistically significant differential APAs between Brain and UHR with BH adjusted FDR 

cutoff of 0.1 and read count difference of >10%. For a fair comparison, we also used FDR of 

0.1 and 10% ΔPDUI for DaPars analysis of MAQC RNA-seq data derived from the same 

Brain and UHR samples.

Survival analysis using Cox proportional hazards model

A standard Cox proportional hazards model32 implemented in the R package ‘survival’ was 

used for patient survival and Kaplan-Meier (KM) plotting. Hazard ratios exceeding 1 

indicate poor prognosis for patients possessing shorter 3′ UTR, whereas those below 1 are 

associate with better outcome. The high-risk group and low-risk group were generated based 

on prognostic index (PI). The PI is the linear component of the Cox model, 

where xi is the value of covariate i and its risk coefficient, βi was estimated from the Cox 

fitting. The high-risk and low-risk groups were generated for survival plot by splitting the 

ordered PI (higher values for higher risk) with equal number of samples in each group.

Survival analysis using Cox model and LASSO feature selection

We combined tumor-vs-normal shortening/lengthening events of APA genes (ΔPDUI 

values) with clinical covariates, such as age, gender, stage and smoking status (lung cancer), 

in survival analysis. We used a Cox regression model with LASSO feature selection to 

determine the contributions of APAs in survival prediction using the R package “glmnet”58. 

We chose the optimal APA genes based on the leave-one-out cross-validation. Here the 

clinical covariates are not penalized and always selected. Finally, we used a likelihood-ratio 

test (LRT) to estimate the additional prediction power of the new APA-clinical models over 

the clinical only models.
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Software availability

The open source DaPars program is freely available at https://code.google.com/p/dapars/. 

We will update this website periodically with new versions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the DaPars Algorithm and its Performance Evaluation
(a) Diagram depicts the DaPars algorithm for the identification of dynamic APA between 

tumor and normal samples. The top panel shows RNA-seq coverage on exons with 10kb 

extension without any prior knowledge of APA sites. The distal APA site is inferred directly 

from the combined RNA-seq data of tumor and normal tissues (middle panels). The Y-axis 

of the bottom panel is the fitted value of our regression model and the locus with the 

minimum fitted value (red point below vertical arrow) corresponds to the predicted proximal 

APA site (red horizontal bar). (b) An example of DaPars identified dynamic APA from the 

TCGA RNA-seq data. The shorter 3′ UTR of TMEM237 is preferred in BRCA and LUSC 

tumors. (c) Another example of dynamic APA, here the distal APA of LRRFIP1 is nearly 

absent in both BRCA and LUSC tumors while the proximal APA is unchanged. (d) A 

simulation study to demonstrate DaPars performance. The percentage of recovered APA 

events is plotted against different sequencing coverage. The quantile box shows the variation 

of DaPars prediction based on 1000 simulated events. The black line in each box is the 

median recovery rate. (e) An example of dynamic APA between MAQC UHR and BRAIN 

detected by both DaPars analysis of RNA-seq and PolyA-seq. The 3 bottom tracks are the 

RefSeq gene structure, Cufflinks prediction and DaPars prediction. (f) Venn diagram 
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comparison between PolyA-seq and DaPars analysis of RNA-seq based on the same MAQC 

UHR and BRAIN samples.
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Figure 2. Broad Shortening of 3′ UTRs across 7 TCGA Tumor Types
(a) The central heatmap shows genes (rows) undergoing 3′ UTR shortening (blue) or 

lengthening (red) in each of the 358 tumors (columns) compared to matched normal tissues 

across 7 tumor types. The upper histogram shows the number of APA events per tumor. The 

side histograms show the percentage of tumors with 3′ UTR shortening (left) or lengthening 

(right) for each APA gene. (b) Bar plots show the percentages of DaPars predicted APAs 

and randomly selected APAs from 3′ UTR regions overlapping with annotated APAs from 

four databases (Refseq, UCSC, ENSEMBL and PolyA_DB). The P-value was calculated by 

t-test using 50x bootstrapping of data. (c) MEME identifies the canonical polyA motif 

AATAAA with very significant E-value (1.8e-135) from the upstream (-50bp) of the 

proximal polyA sites predicted by DaPars. (d) An example of DaPars predicted novel polyA 

site (red bar) in a LUSC tumor that is far away from any annotated polyA sites. (e) 

Saturation analysis of APA events by adding more samples. Each point is a random subset 

of samples of various smaller sizes. All the points were fitted by a smoothed read line. (f) 
Saturation analysis by adding more tumor types. Each grey line represents a random 

ordering of 7 tumor types and red curve is the fitting line. The percentage of dynamic APA 

events increased with the number of tumor types.
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Figure 3. Genes with Shorter 3′ UTRs in Tumors are Prone to be Up-regulated
(a) Number of genes losing miRNA-binding sites due to the shortening of their 3′ UTRs. 

Here we selected miRNA bindings sites predicted by both TargetScanHuman V6.229, 30 and 

miRanda31, as a more conservative list of miRNA targets. Number in the bracket represents 

the percentage of genes losing at least 1 miRNA binding site. (b) Genes with shorter 3′ 

UTRs in tumors have greater miRNA binding sites density in 3′ UTR region than all RefSeq 

genes. We used RefSeq gene models for all the calculations regardless of the APA detection. 

The Y-axis is the number of miRNA binding sites normalized by 3′ UTR length (per Kb). 

The P-value was calculated by t-test. (c) For genes with shorter 3′ UTRs in tumors, their 

fold-change expression between tumors and normal tissues are plotted against their ΔPDUI 

values. All isoforms of the same gene were combined for the expression measurement. The 

genes significantly up- or down-regulated in tumors are shown in red and blue, respectively, 

which were identified by paired t-test with Benjamini-Hochberg (BH) false discovery rate at 

5%. Accordingly, the red and blue bar plots indicate the number of up and down regulated 

genes, respectively.
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Figure 4. Prognostic Power of Dynamic APA Events
(a-d) Kaplan-Meier survival plots for high (red line) and low (blue line) risk groups 

separated by clinical only (a), clinical with mRNA expression (b), clinical with tumor-vs-

normal mRNA expressions fold change (c) and clinical with dynamic APAs (d). P-value 

was calculated by log-rank test.

(e) Additional prognostic power of APA, mRNA expression and mRNA tumor-vs-normal 

expression fold change beyond clinical variables. The P-value is calculated by likelihood-

ratio test.

(f) No correlation between risk groups separated by APA-clinical models and mutation 

profiles of significantly mutated genes (SMG). The dotted vertical line represents the P-

value (Mann–Whitney test) cutoff of 0.05. All SMG P-values are below this cutoff and thus 

are not significant.

Xia et al. Page 22

Nat Commun. Author manuscript; available in PMC 2015 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Pathway Analysis
(a) Significantly enriched (P-value < 0.05; Fisher's exact test) Ingenuity canonical pathways 

in the 1,346 dynamic APA events. (b) GLS has a significant 3′ UTR shift from KGA long 

isoform in normal to GAC short isoform in tumor. (c) GAC percentages are significantly 

higher in LUAD, LUSC and KIRC tumors. The P-value in each box was calculated by 

paired t-test. (d) Kaplan-Meier survival plot of two KIRC tumor groups stratified by the 

GAC ratios with equal patient number in each group. P-value was calculated by log-rank 

test.
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Figure 6. Potential Mechanisms for APA Regulation during Tumorigenesis
(a) Only 5 genes are in common between genes undergoing dynamic APA and genes 

significantly mutated in Pancan12 tumor types. (b) Heatmap of gene expression fold-change 

of known polyadenylation factors. Each rectangle represents the mean log2 fold change 

between tumor and matched normal tissues of one factor in one tumor type. A factor is 

considered differentially expressed if the false discovery rate from edgeR45 is less than 0.05 

and the mean absolute fold change is greater than 1.5. Yellow and blue boxes indicate the 

significantly up-regulated and down-regulated genes, respectively. White boxes are non-

significant genes. (c) Correlation between CstF64 expression fold-change and number of 3′ 

UTR shortening events per sample. Each point represents a patient sample across 7 tumor 

types. X-axis is the CstF64 log2 fold change between tumors and matched normal tissues. 

Y-axis is the number of shortening events per sample. Spearman's correlation coefficient 

(0.54) and P-value (2.8e-28) are indicated on the top. (d) Venn diagram comparison 

between genes preferring proximal APAs in tumor with higher expression of CstF64 and 

genes preferring distal APA in Hela cells with knockdown of CstF64 and CstF64T. (e) 

Genes with 3′ UTR shortening in tumors have more CstF64 iCLIP data derived from HeLa 

cells than background (P-value 3.3e-21 by t-test).
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