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Heart failure is a costly and deadly disease affecting over 23 million patients worldwide1. At 

the core of the pathophysiology of heart failure is the inability of the adult mammalian heart 

to regenerate following myocardial loss, which is in marked contrast to terelost fish2–4, 

urodele amphibians5–8, and mammalian neonates9, 10. In mammals most of the 

cardiomyocytes are permanently withdrawn from cell cycle soon after birth, and despite 

extensive efforts to identify regulators of cardiomyocyte cell cycle in mammals11–15, the 

signaling cascades that activate/repress cell cycle in mammalian cardiomyocytes remain 

unclear.

Hippo signaling, which is an evolutionary conserved pathway that regulates cell 

proliferation, survival differentiation, and organ size16, has received significant attention in 

the field of regenerative medicine recently. Upon activation of the Hippo pathway in mice, 

Ste20 family kinases MST1/2 interact with scaffolding protein WW45 to phosphorylate and 

activate LATS1/2 kinases which in turn forms a complex with its cofactor MOB1 to 

phosphorylate and inactivate YAP and TAZ, the downstream transcriptional regulators of 

the signaling pathway. In contrast, when the Hippo pathway is inactivated, YAP and TAZ 

accumulate in the nucleus to interact with TEA domain (TEAD) family of proteins, along 

with other proteins such as SMADs, OCT4 or AMOT, to promote gene expression for 

cellular proliferation and organ growth17.

Recently, several studies have uncovered the importance of Hippo signaling pathway in 

heart development and regeneration. Knock-down of an upstream effector of Hippo cascade, 

Salv (WW45)18, and also forced expression of a constitutively active form of YAP (S127A 

in human and S112A in mouse) in the fetal heart, promoted cadiomyocyte proliferation and 

thickening of myocardial wall19, 20. In contrast, specific deletion of Yap in cardiomyocytes 

resulted in cardiac hypoplasia and lethality19, 20, demonstrating the necessity of Hippo 

signaling pathway in cardiomyocyte proliferation during embryonic development. The 

significance of Hippo pathway in postnatal cardiac homeostasis and repair has also been 

demonstrated where cardiomyocyte specific knockout of Yap and/or Taz results in lethal 

cardiomyopathy13, whereas expression of YAPS112A in mouse heart stimulated postnatal 

re-activation of cardiomyocyte proliferation and enhanced cardiac function in mice after 

myocardial infarction (MI) injury 13, 21. In addition, deletion of Salv or Lats1/2 in postnatal 

mice with postnatal day 7 apex resection or adult with MI promotes heart regeneration22. 
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These results indicate that Hippo signaling is a potentially important target for promoting 

myocardial regeneration.

Despite these results, downstream mediators of Hippo signaling pathway that regulate 

cardiomyocyte proliferation are not fully understood. Previous studies using constitutively 

active YAP revealed that the Hippo-YAP pathway augments insulin-like growth factor 

(IGF) signaling, which in turn induces activation of the PI3K–AKT pathway19. 

Phosphorylated AKT inactivates GSK-3β by increasing its phosphorylation, leading to the 

stabilization of β-catenin, which in turn is required for Yap-mediated proliferation. This 

pathway has been well studied in a variety of disease models such cancer and diabetes23–25 26, 27.

In this issue, Lin et al28 reported the identification of one of the direct transcriptional targets 

of YAP, an isoform of PI3K catalytic subunit PIK3CB, that regulates cardiomyocyte 

proliferation as a downstream mediator of Hippo-YAP signaling. ChIP-seq analysis 

combined with three different systems – (1) overexpression of YAP in cardiomyocyte-like 

HL cells, (2) overexpression of YAP in rat neonatal ventricular cardiomyocytes (NRVMs), 

and (3) cardiomyocyte specific Yap homozygous knockout, identified YAP-binding sites 

which are significantly enriched in genes related to heart development. Among candidate 

YAP target genes, the authors focused on Pik3cb, the function of which has not been 

understood thus far. A YAP-bound region containing conserved TEAD motif, was in the 

first-intron of Pik3cb, through which YAP-TEAD activates transcription of Pik3cb. 

Importantly, the authors showed that forced-expression of PIK3CB is sufficient to activate 

PI3K-AKT pathway, and hence to regulate cardiomyocyte proliferation. Adenoviral 

transfection of Pik3cb to NRVMs, as well as in vivo overexpression of YAP driven by 

cTNT promoter in neonatal cardiomyocyte using AAV9, both significantly activated AKT 

by triggering the phosphorylation of AKT, and induced cardiomyocyte proliferation 

assessed by BrdU uptake and immune-staining with phosphorylated histone H3 (pH3) 

antibody. Mice with cardiomyocyte-specific Yap deletion showed reduced phosphorylated 

AKT but not total AKT, which is consistent with the findings in cancer cell lines29 and 

neonatal cardiomyocytes19.

Moreover, Lin et al showed that Pik3cb is necessary for Yap-mediated activation of AKT 

and cardiomyocyte proliferation. AAV9-mediated overexpression of YAP together with 

scrambled control or specific shRNA targeting Pik3cb showed that while YAP 

overexpression (with scrambled Pik3cb shRNA) promoted cardiomyocyte proliferation as 

previously described13, 19, 20, addition of Pik3cb shRNA resulted in a diminished effect of 

YAP overexpression on AKT phosphorylation and cardiomyocyte proliferation. Although 

these are convincing results, utilizing a Pik3cb knockout model would eliminate the 

potential off-target effects of shRNA. Finally, the authors show that AAV9-mediated 

overexpression of PIK3CB in the cardiomyocyte-specific Yap knockout mice induced 

cardiomyocyte proliferation, improved contractile function, and attenuated cardiomyocyte 

hypertrophy to an extent, demonstrating that Pik3cb can partially rescue the Yap knockout 

phenotype in cardiomyocytes. In summary, Hippo-YAP mediated activation of PI3K/AKT 

pathway, along with cardiomyocyte growth, is at least in part mediated by direct 

transcriptional activation of Pik3cb by Hippo-signaling mediator YAP/TEAD complex.
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Despite these important findings, some questions remain. For example, much of the terminal 

effect on cell cycle is attributed to p27, however the mechanism of regulation of p27 or the 

effect on other CDK Inhibitors has not been fully examined. In addition, in the loss of 

function studies both decreased proliferation and survival are noted. However, the isolated 

effects on cell survival and proliferation are not clearly dissected, although admittedly this 

may be quite a difficult task. Finally, it would be important for future studies to examine 

upstream regulators of Hippo-YAP pathway, and how this pathway is regulated in the 

postnatal heart. Nevertheless, this report demonstrates that Pik3cb is an important link 

between Hippo-YAP and PI3K-AKT pathways, and brings us one step closer to an 

understanding of molecular mechanism regulating cardiomyocyte growth and proliferation.
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Figure 1. Hippo and PI3K-Akt signaling pathways stimulate the cardiomyocyte proliferation
Pik3cb is a gene encoding for the catalytic subunit p110 of the Class IA PI3K. Lin et al 

found that Pik3cb is a direct target of YAP which links Hippo and PI3K-Akt signaling 

pathways to stimulate cardiomyocyte proliferation.
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