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Abstract

Researchers have only recently begun using functional neuroimaging to explore the human 

response to periods of sustained anxious anticipation, namely potential threat. Here, we 

investigated brain responses acquired with functional MRI during an instructed threat of shock 

paradigm used to create sustained periods of aversive anticipation. In this re-analysis of previously 

published data, we employed Quadratic Discriminant Analysis to classify the multivariate pattern 

of whole-brain functional connectivity and to identify connectivity changes during periods of 

potential threat. Our method identifies clusters with altered connectivity on a voxelwise basis, thus 

eschewing the need to define regions a priori. Classifier generalization was evaluated by testing 

on data from participants not used during training. Robust classification between threat and safe 

contexts was possible, and inspection of “diagnostic features” revealed altered functional 

connectivity involving the intraparietal sulcus, task-negative regions, striatum, and anterior 

cingulate cortex. We anticipate that the proposed method will prove useful to experimenters 

wishing to identify large-scale functional networks that distinguish between experimental 

conditions or groups.
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1. Introduction

Aversive processing is engaged by both transient stimuli and sustained contexts. For 

example, a previously shock-paired, brief tone may be encountered subsequently, thus 

eliciting a “fear” response; or a location where aversive events were experienced may be re-

encountered, thus eliciting a sustained state of “anxious apprehension”. Indeed, the Research 

Domain Criteria (RDoC) developed by the National Institute of Mental Health established 
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two constructs, namely “acute threat” (also called “fear”) and “potential threat” (also called 

“anxiety”), which may be subserved by different neural subsystems. The former is thought 

to involve a circuit centered on the amygdala, and the latter is thought to involve a circuit 

centered on both the bed nucleus of the stria terminalis (BNST) and the amygdala (Davis et 

al., 2010).

Studies of potential threat in humans have only appeared recently, but knowledge is 

accruing quickly (Alvarez et al., 2011; Davis et al., 2010; Hermans et al., 2014; Kim et al., 

2010; McMenamin et al., 2014; Mobbs et al., 2010; Somerville et al., 2010; Vytal et al., 

2014; Walker et al., 2003). Although the spatial resolution of neuroimaging studies thus far 

is too low for a conclusive answer, these studies have identified a site that is consistent with 

the location of the human BNST that is activated during potential threat. For example, in our 

recent study (McMenamin et al., 2014), the putative BNST area exhibited sustained 

responses during periods when participants could receive unpleasant, mild electric shocks.

To further understand brain processing during potential threat, in addition to studying 

evoked responses, it is important to unravel how the functional coupling between regions is 

altered by threat. In our study (McMenamin et al., 2014), we investigated changes in 

functional connectivity involving the amygdala, the BNST, and three large-scale networks, 

namely the salience, the executive, and the task-negative networks. We found that, for 

example, the salience network exhibited a transient increase in network efficiency followed 

by a period of sustained decreased efficiency.

While our previous analysis was developed to examine changes involving a priori sets of 

brain regions, here we develop a complementary approach and use it to re-analyze data from 

our previously published study (McMenamin et al., 2014). As proposed by others (Stanley et 

al., 2013; Zalesky et al., 2012), we employed whole-brain voxelwise functional connectivity 

analysis. Previous research has demonstrated that multivariate pattern analysis can be a 

powerful tool for inferring a participant’s cognitive state from patterns of whole-brain 

functional connectivity (Craddock et al., 2009; Richiardi et al., 2011; Shirer et al., 2012); 

unfortunately, all these approaches use regions of interest that are defined a priori and it is 

unclear whether they would “scale-up” to operate on a voxelwise basis. The present report 

identifies changes in functional connectivity between conditions using Quadratic 

Discriminant Analysis (QDA; (Hastie et al., 2009)), a generalization of Linear Discriminant 

Analysis that is able to distinguish between experimental conditions based on differences in 

covariance structure – here, differences in the pattern of functional connectivity. Moreover, 

the QDA algorithm can be applied to fMRI time series without specifying regions of 

interest. Thus our method is a type of multivariate pattern analysis applied to voxelwise 

patterns of connectivity.

2. Methods

2.1 Participants

Twenty-four right-handed participants (9 male, age 19–34 years) were recruited from the 

University of Maryland community. The project was approved by the University of 

Maryland College Park Institutional Review Board and all participants provided written 
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informed consent prior to participation. The datasets collected from these participants were 

described in a previous study (McMenamin et al., 2014).

2.2 Procedure and Stimuli

The experiment used a threat of shock paradigm in which a colored (e.g., yellow) circle on 

the screen indicated that participants were in a “threat” block and mild electric shocks would 

be delivered to their left hand at random; a circle of another color (e.g., blue) indicated that 

participants were in a “safe” block and no shocks would be delivered. Colors were 

counterbalanced across participants. Each block had the average duration of 60 s (range 42.5 

– 77.5 s). The whole experiment contained four “runs” resulting in a total of 16 threat and 16 

safe blocks. Each threat block contained zero to four electric shocks, with five of the 16 

threat blocks containing zero shocks.

Visual stimuli were presented using Presentation software (Neurobehavioral Systems, 

Albany, CA, USA) and viewed on a projection screen using a mirror mounted to the head 

coil. An electric stimulator (Coulbourn Instruments, PA, USA) delivered 500-ms stimulation 

to the fourth and fifth fingers of the left hand via MRI-compatible electrodes. To calibrate 

the intensity of the shock, each participant was asked to choose his/her own stimulation level 

immediately before the scanning began.

2.3 MRI data acquisition

MRI data collection used a 3 Tesla Siemens TRIO scanner (Siemens Medical Systems, 

Erlangen, Germany) with a 32-channel head coil. Each session began with the acquisition of 

a high-resolution MPRAGE anatomical scan (0.45 × 0.45 × 0.9 mm voxels). Each of the 

subsequent functional runs collected 201 volumes of EPI data (TR = 2.5 s, TE = 25 ms, and 

FOV = 192 mm). Each volume contained 44 oblique slices oriented 30° clockwise relative 

to the AC-PC axis with thickness 3 mm and voxels measuring 3 mm × 3 mm in plane.

2.4 Functional MRI preprocessing

Preprocessing of the functional and anatomical MRI data used the AFNI (Cox, 1996; http://

afni.nimh.nih.gov/) and SPM software packages (http://www.fil.ion.ucl.ac.uk/spm/) as 

described in the original report (McMenamin et al., 2014). Preprocessing included slice-

timing correction, rigid body transformation to correct head motion, spatial normalization to 

Talairach space using the TT_N27 template, spatial smoothing with a 6-mm full-width half-

maximum (FWHM) Gaussian filter, and intensity normalization within each run. Analyses 

were restricted to cortical and subcortical grey-matter regions, excluding cerebellum, 

defined by the Desai anatomical atlas (Desikan et al., 2006; Destrieux et al., 2010), resulting 

in 34,217 gray-matter voxels for subsequent analyses.

Initially, the responses at every voxel were analyzed for each participant using multiple 

regression in AFNI (Cox, 1996); for further details, see McMenamin et al. (2014). 

Activation due to safe-block onset, threat-block onset, and physical shock delivery were 

modeled using cubic spline basis functions that make no assumptions about the shape of the 

hemodynamic response. Responses to safe- and threat-block onsets were modeled for the 

first 40 s of the block because that was the minimum duration of any threat or safe block. 
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Response to physical shock delivery was modeled for 20 s. Constant, linear, and quadratic 

terms were included as covariates of no interest for each run to accommodate for slow-

varying drifts in the MR signal. Additional covariates of no interest comprised the average 

signal from white matter voxels, the average signal from ventricle voxels, and six rigid-body 

head motion parameters. The white matter and ventricle signals were defined using the 

eroded maps of white matter and CSF regions from each participant’s higher-resolution 

anatomical scan. After accounting for all the variables above, the residuals from the overall 

regression analysis were used for the analyses described here.

The original report (McMenamin et al., 2014) indicated that transitions into a threat block 

triggered transient activation changes lasting approximately 20 seconds, which was followed 

by a more sustained pattern of activation. To ensure that the classifiers were detecting 

connectivity changes corresponding to this period of sustained threat anticipation, we 

restricted our analysis to 20–40 s after block onset (nine volumes per block). Voxel time 

courses from these volumes were z-scored within each condition and run.

2.5 Feature selection for QDA

Our central goal was to classify experimental conditions based on the pattern of covariation 

across voxels. One could thus build a “connectivity” matrix (say, a correlation matrix of 

observed time series) and apply algorithms that would try to separate connectivity patterns 

observed during two conditions, for example. In general, the results obtained with statistical 

and machine learning classification procedures depend on the “input features” that are 

employed (Guyon and Elisseeff, 2003). Feature selection can greatly improve classification 

performance by preventing the classifier from using features that that are noisy or unreliable. 

Previous studies that applied QDA to fMRI data used an initial dimensionality-reduction 

step implemented by principal component analysis to perform feature selection that targets 

features that are reliable within each participant’s data (Schmah et al., 2010; Yourganov et 

al., 2014). Here, we employed a two-stage feature selection process to ensure that the input 

features were reliable both within participant and across participants. The feature selection 

procedure consisted of two sequential steps of standard principal component analysis.

2.5.1 First-stage feature selection (participant level)—The first stage identified 

prominent connectivity patterns within each participant by applying principal components 

analysis (PCA) to each participant’s data. Each participant’s inter-voxel covariance matrix 

(averaged across safe and threat conditions) was decomposed in the manner depicted by 

Figure 1 to identify sets of voxels that reliably co-activated with one another. This PCA 

decomposition results in a set of components (each component is an nvoxels-by-1 vector), 

each of which described a pattern of co-activation across voxels. Every component is 

associated with an eigenvalue – a scalar values that describes how prominent each 

component is in the original data. Larger eigenvalues indicate that the associated component 

explains a greater proportion of the variance of the original dataset, whereas small 

eigenvalues indicate that the pattern describes relatively little from the original training data 

and thus may be considered to be “noise” that is likely to be specific to the training set.
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Previous methodological reports (Jackson, 1993; King and Jackson, 1999) have found that 

the distribution of eigenvalues can be compared to a “broken-stick” distribution (a 

distribution related to the Dirichlet process, (Ishwaran and James, 2001)) to determine which 

components are likely to represent a genuine source of signal and which should be labeled as 

noise. If the jth component’s eigenvalue is greater than the jth value in the broken-stick 

distribution, the component is considered to be a source of genuine signal; however if the jth 

component’s eigenvalue is less than the jth value in the broken-stick distribution, the 

component is considered to be a source of “noise”. If the broken-stick distribution indicates 

that the top k components should be retained for participant i, we can create a “de-noised” 

dataset for each participant, , where Xi is the original nvoxels-by-ntimepoints data 

matrix and Vi is the nvoxels-by-k matrix of retained components1. The de-noised matrix data 

matrix, X̃
i, has the same dimension as the original data matrix but excludes the noisy 

patterns of voxel co-activation.

2.5.2 Second-stage feature selection (group level)—After the first stage of feature 

selection, every participant has a de-noised data matrix X̃
i that preserves the prominent 

patterns of inter-voxel co-activation within each participant. The second stage of feature 

selection combines all of the Xĩ to perform a second PCA and determine which of the 

remaining patterns of inter-voxel co-activation are consistent across participants. All of the 

X ̃
i are concatenated into a single nvoxels-by-(ntimepoints*nparticipants) matrix, X̃

Group. A 

second PCA is performed on X̃
Group, and once again the broken-stick distribution is used to 

determine the number of components to be retained. The nvoxels-by-k matrix of retained 

components, VGroup, is used to create second-level de-noised matrices for each participant, 

.

The QDA classifier was trained and tested exclusively using the de-noised datasets, namely 

X͌i (size nvoxels-by-ntimepoints).

2.6 Using QDA to measure changes in functional connectivity

If we were given a pattern of activation across voxels, x, and wished to determine whether it 

came from condition A or condition B, an intuitive approach to classification would be to 

simply compare the likelihood that x came from either condition. For example, if XA and XB 

are probability distributions that describe how data vectors are distributed in conditions A 

and B, respectively, the classifier could use the log-likelihood ratio as it’s classification 

decision value, . Large positive values w(x) of indicate that x was 

relatively more likely to occur in Condition A, whereas large negative values of w(x) 

indicate that x was relatively more likely to occur in Condition B.

1Many applications use PCA to perform “dimensionality reduction” by identifying a small set of components that explain a large 
proportion of the overall variance in Xi, for example the nvoxels-by-k matrix of retained components. Dimensionality reduction can be 
used to transform the original nvoxels-dimensional dataset into a k-dimensional dataset with the matrix multiplication 

. The “denoised” matrix, X̃i, is simply the projection of that low-dimensional dataset back 
into the original high- dimensional space.
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Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) both use 

the maximum-likelihood framework to classify data by adding the assumption that data from 

each condition has a multivariate normal distribution. This assumption allows the likelihood 

of any input to be computed quickly with a closed-form probability density function for the 

multivariate normal. The LDA classifier assumes the data from Conditions A and B have 

different means but identical covariance structure (i.e., XA ~  (μA, Σ0) and XB ~  (μB, 

Σ0)), resulting in a classifier that can identify how the mean pattern of activation across 

voxels differs between two conditions (Misaki et al., 2010). The QDA classifier makes the 

more general assumption that data from Conditions A and B have different means and 

different covariance structures (i.e., XA ~  (μA, ΣA) and XB ~  (μB, ΣB)) (Georgiou-

Karistianis et al., 2013; Hastie et al., 2009; Schmah et al., 2010).

The QDA classifier applied to fMRI data can not only learn to distinguish two conditions 

based on differences in the mean activation patterns across voxels (e.g., comparing nvoxels-

by-1 activation patterns μA and μB), but also based on differences in the functional 

connectivity patterns across voxels (e.g., comparing nvoxels-by-nvoxels connectivity matrices 

ΣA and ΣB). If two conditions evoked identical activation patterns, an LDA classifier would 

be unable to distinguish them even if their covariance differed (i.e., μA = μB, ΣA ≠ ΣB); 

however, a QDA classifier would be able to distinguish these two conditions based solely on 

the difference in covariance by implementing a non-linear decision boundary (Figure 2).

Classifiers are trained to determine condition labels from the inputs; but we can also use the 

classifiers to identify which input patterns are maximally diagnostic of membership to either 

condition. The nvoxels-by-1 input pattern that maximizes w(x) is the diagnostic feature vector 

for Condition A, dA = argmaxx,‖x‖=1[w(x)], and corresponds to the input pattern that the 

classifier would have the greatest confidence in labeling as Condition A. Conversely, the 

input pattern which minimizes w(x) is the diagnostic feature vector for Condition B, dB = 

argmaxx,‖x‖=1[w(x)].

Interpreting results from non-linear classifiers can be more difficult than interpreting the 

results from a linear classifier (Norman et al., 2006), but the implementation of QDA in the 

present report was developed to make the extraction and interpretation of diagnostic feature 

vectors straightforward. Because the activation time course of every voxel is z-scored within 

each condition, the mean activation pattern for each condition is a vector of all zeroes (i.e., 

μA = μB = 0). This simplifies the multivariate normal probability density functions, so w(x) 

can be re-written as:

From this equation, we can find the diagnostic feature vectors for each condition (dA and 

dB) by finding the unit-norm vector that maximizes or minimizes the value of 

. The solution to this maximization/minimization problem is well known 

and based on the eigendecomposition of  (Appendix 1): The value of w(x) is 

maximized when x is the eigenvector with largest associated eigenvalue, and minimized 
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when x is the eigenvector with smallest (oftentimes negative) associated eigenvalue. These 

two eigenvalues are the diagnostic feature vectors and are labelled as dA and dB, 

respectively. These diagnostic feature vectors are each nvoxels-by-1 vectors that can be 

plotted as a pattern of positive and negative values across the brain to understand patterns of 

whole-brain connectivity that distinguish the two conditions.2.

Figure 3 illustrates how the pattern of positive and negative values in each diagnostic feature 

vector can be interpreted. Voxels with the same sign in the diagnostic feature vector become 

more connected with one another (i.e., the voxels with positive values connect more strongly 

with other positive-valued voxels; voxels with negative values connect more strongly with 

other negative-valued voxels). Voxels with opposite signs “disconnect” with one another, 

that is, voxels with positive values connect less strongly from voxels with negative values).

The diagnostic feature vectors from QDA bear a similarity to the outputs from several 

mathematically related methods for unsupervised decomposition of fMRI time series into 

“intrinsic connectivity networks” (ICNs), such as factor analysis, and independent 

components analysis (Calhoun et al., 2001). The ICNs generated by these algorithms 

indicate which clusters of voxels consistently co-activate/deactivate in the fMRI time series, 

and are useful for identifying large-scale network structure. However, because these 

algorithms are unsupervised, the ICNs that are extracted may not have a clear relationship 

with experimental manipulations. By contrast, QDA is a supervised algorithm that ignores 

structure that is present across multiple conditions to specifically identify the differences 

between conditions.

2.6.1 Classifier training and testing—The QDA classifier was implemented using the 

SciKit-Learn package in Python (http://scikit-learn.org/) and file I/O was performed using 

the NiBabel package (http://nipy.org/nibabel/). Classifier performance was measured as the 

mean classifier accuracy in a leave-one-subject-out cross validation scheme. Each iteration 

of cross-validation divided participants into training and test datasets: the training dataset 

contained 23 participants and the test dataset contained a single held-out participant. This 

process was repeated 24 times so that each participant would serve as the test dataset. On 

every iteration, the two-stage feature selection (Section 2.5) was performed using the 

training dataset, and then QDA classifier was trained to discriminate between threat and safe 

conditions using the training dataset participants (23 subjects * 144 timepoints/subject = 

3312 timepoints/condition). The continuous-valued classifier outputs, w(x), were calculated 

for each volume of data from the remaining held-out participant in the test dataset. These 

outputs were averaged across the timepoints within each threat or safe block, resulting in an 

average decision value for each block of the held-out participant (sixteen threat and sixteen 

safe blocks). This process was iterated so each participant served as the held-out participant 

to have their classification accuracy measured.

2This framework for calculating the diagnostic feature vector is not unique to QDA or nonlinear classifiers. For example, a linear 
classifier uses the decision function w(x) = bTx to distinguish two conditions by placing a decision weight on each voxel (stored in the 
nvoxels-by-1 vector). The inner-product of the decision function can be rewritten as w(x) = ‖b‖‖x‖ cos α, where α is the angle between 
b and x. Subject to the contraint ‖x‖ = 1, w(x), is maximized when α = 0° and minimized when α = 180°. This means that the two 
diagnostic feature vectors for a linear classifier correspond to the pattern of decision weights across voxels given by 

.
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2.6.2 Estimating classifier chance performance—To determine if the classifier was 

operating above chance accuracy, a permutation test was used to simulate the null 

distribution of accuracy scores. We expected that the null distribution would be centered at 

50% given the goal to classify between two equiprobable categories. Nevertheless, we 

simulated the null distribution to estimate the variability in “chance” performance and to 

determine whether the observed classification accuracy was robustly greater than chance 

performance. On each iteration of the permutation test, the threat and safe labels were 

randomly reassigned within each participant, and the cross-validated accuracy was 

recalculated. This was repeated 10,000 times to create a distribution of classifier accuracy 

scores expected under the assumption that threat and safe blocks are exchangeable.

2.6.3 Extracting discriminant vectors—If the classifier successfully discriminated the 

safe and threat conditions, diagnostic feature vectors were extracted to explain which 

patterns of functional connectivity the classifier used to make the discrimination. The 

classifier was trained using data from all participants, and two diagnostic feature vectors 

were extracted from the classifier, dThreat and dsafe. These vectors are each size nvoxelsby-1 

with positive and negative values placed on each voxel to describe the patterns of functional 

connectivity diagnostic of each condition.

A bootstrapping procedure, analogous to that used by Woo et al (2014), was used to estimate 

the confidence intervals for each of the dimensions (i.e., voxels) in dThreat and dsafe to 

determine which ones were reliably greater-than or less-than zero. The bootstrapping 

procedure draws a random sample (with replacement) from the set of twenty-four 

participants in our sample, trains the QDA classifier to discriminate threat and safe blocks, 

and extracts two new diagnostic feature vectors. By repeating this 10,000 times, we can 

estimate the variability of each value in dThreat and dsafe as the standard deviation in feature 

scores across bootstrap iterations. Voxels were considered reliably positive/negative if their 

mean value across bootstrap iterations was at least 3.09 standard deviations away from zero 

(e.g., corresponding to uncorrected p < 0.001).

3. Results

3.1 Feature selection

Stimulus time series were pre-processed with PCA to derive a “de-noised” time series that 

emphasized patterns of voxel co-activation that could be identified within each participant 

(see Section 2.5). The analysis indicated that each participant should retain between 14 – 21 

principal components (M = 17.8). The second-stage of feature selection identified which of 

the first-stage patterns were consistent across participants. Twenty-two group-level principal 

components were retained for each iteration of the cross-validation analysis. Each 

participant’s data was “de-noised” using the 22 group-level patterns identified on each 

iteration, and these data (with the same dimensionality as the initial time series) were then 

used as the input of the classification procedure, outlined next.
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3.2 Classifier performance

We used quadratic discriminant analysis (QDA) to investigate the functional connectivity 

structure of the data under the safe and threat conditions. To evaluate classifier performance, 

we employed a leave-one-participant-out cross-validation procedure. The classification 

accuracy achieved by QDA was 62.9% correct. To assess the robustness of this value, we 

determined the null distribution for classifier performance by randomly flipping the 

condition labels (Section 2.6.2). According to this null distribution, the mean (i.e., “chance”) 

performance was 50.0% and classification accuracy exceeding 55.2% was very unlikely (p < 

0.01). The probability of the actual classification accuracy observed (63% correct) or higher 

was very small (p < 1e-4), indicating that QDA classification reliably identified safe and 

threat conditions based on inter-voxel connectivity patterns.

3.3.1 Diagnostic feature vectors for threat—To better understand the patterns of 

functional connectivity that contributed to classification, we extracted the diagnostic feature 

vectors for the safe condition (dsafe) and the threat condition (dthreat) (see Section 2.6.3). 

These nvoxels-by-1 vectors contained positive or negative values at each voxel that described 

the pattern of functional connectivity for each condition. Voxels with the same sign in the 

diagnostic feature vector become more connected with one another (i.e., the voxels with 

positive values connect more strongly with other positive-valued voxels; voxels with 

negative values connect more strongly with other negative-valued voxels). Voxels with 

opposite signs “disconnect” with one another, that is, voxels with positive values connect 

less strongly from voxels with negative values).

The diagnostic feature vector for the threat condition, dThreat, described a pattern of 

connectivity that occurred during threat conditions which involved multiple brain regions 

(Figure 4A; Table 1), including precuneus, bilateral inferior parietal lobule, bilateral 

intraparietal sulcus, bilateral fusiform gyrus, anterior cingulate cortex, and ventral parts of 

the striatum.

To help illustrate the pattern of threat-evoked connectivity change depicted by the threat 

diagnostic feature vector, dThreat, the change in functional connectivity was explicitly 

calculated between every pair of regions in Table 1. The average timeseries was extracted 

from each of the 11 regions of interest, and temporal correlations were calculated between 

every pair of regions for each participant and condition. Correlations were Fisher-

transformed, averaged across participants, and the Threat-Safe connectivity difference 

determined (Figure 4B).

The effect of threat on connectivity among these regions can be summarized by three 

general changes: a) regions often associated with the “task-negative network” (i.e., 

precuneus, bilateral inferior parietal lobule) become “disconnected” from the other regions 

(that is, threat decreases connectivity between them); b) connectivity increased among 

regions often associated with the “executive network” (i.e., bilateral intraparietal sulcus, 

bilateral fusiform gyrus); and c) connectivity increased between the cingulate and striatum 

regions.

McMenamin and Pessoa Page 9

Neuroimage. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3.2 Diagnostic feature vectors for safety—The bootstrapping analysis indicated 

that the diagnostic feature vector for the safe condition, dsafe, contained four regions reliably 

different from zero (Table 2; Figure 5A). In particular, the threat period changed the pattern 

of connectivity for bilateral premotor cortex, such that it “disconnected” from the 

supplementary motor area (SMA).

4. Discussion

The present study used Quadratic Discriminant Analysis to discover changes to whole-brain 

functional connectivity during periods of sustained threat. The analysis identified patterns of 

functional connectivity that a classifier could use to predict whether individuals were 

currently in a safe or threat condition. To identify whether an individual was in a safe or 

threat period, the classifier used a pattern of connectivity between regions from the putative 

task-negative network (e.g., precuneus), the putative executive control network (e.g., 

bilateral IPS), cingulate, and striatum. The patterns of connectivity that were used to 

distinguish threat and safety can be summarized by four general changes: 1) threat increased 

connectivity among “executive” regions, 2) threat increased connectivity between cingulate 

and striatum regions, 3) threat decreased connectivity between both “executive” and 

cingulate/striatum regions and task-negative regions, and 4) threat decreased connectivity 

between the supplementary motor area and bilateral premotor regions.

Why is the methodology involving QDA developed here needed? In a nutshell, it can be 

used as a type of “localizer” method for detecting functional connectivity differences. 

Importantly, our method can be used to determine changes in functional connectivity 

associated with experimental conditions in a voxel-wise manner without a priori regions 

having to be defined. In addition, if a given set of regions is of priori interest, our method 

can be used to test for changes in functional connectivity between those regions.

Of particular interest was the involvement of territories in the vicinity of the ventral caudate 

including a putative accumbens region of interest. The ventral portions of the caudate, 

including the accumbens, have traditionally been associated with transient, reward-related 

processes (Haber and Knutson, 2009), but recent more research has suggests a potential role 

for the nucleus accumbens during aversive processing (Becerra et al., 2001; Cabib and 

Puglisi-Allegra, 1994, 1996; Delgado et al., 2008; Jensen et al., 2003; McMenamin et al., 

2014; Oleson et al., 2012; Robinson et al., 2013; Salamone, 1994; Schoenbaum and Setlow, 

2003). Critically, this accumbens region of interest may have gone unnoticed if common 

data analysis strategies were used to search for connectivity changes (such as using 

amygdala-based seed analysis).

If a more lenient statistical threshold were applied, the accumbens region extends medially/

dorsally into a region consistent with the BNST. The BNST plays an important role during 

sustained threat states (Davis and Shi, 1999; Walker et al., 2003), and has strong anatomical 

connections to the accumbens (Alheid et al., 1998; Brog et al., 1993; Delfs et al., 1998; 

Dong et al., 2001; Dong and Swanson, 2004; Georges and Aston-Jones, 2001; Krüger et al., 

2015). Because the spatial resolution employed in our study was relatively coarse (3 mm 

isotropic voxels), the signals arising from accumbens and the BNST cannot be dissociated 
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and we cannot determine whether or not the functional connectivity changes we have 

identified are specific to either particular brain structure. In any case, the discovery of 

altered connectivity under threat demonstrates the importance of methods that include a 

data-driven component for identifying changes that may occur in unanticipated locations.

4.1 Alternative functional connectivity methods

Seed-based functional connectivity analyses are often used for testing changes in 

connectivity from a “seed” region to other voxels in the brain. The seed is generally selected 

based on a predefined anatomical structure, so the experimenter is limited to finding 

connectivity changes involving regions with which they have a priori theoretical interest. 

Unfortunately, this approach means that contributions from unanticipated (or hard to define 

anatomically) structures will be overlooked. For example, studies of negative affect often 

place their seed region in the amygdala (Hahn et al., 2011; Kim et al., 2010; Vytal et al., 

2014), which may lead to an amygdala-centric view of aversive processing that overlooks 

contributions from other structures.

An alternative method for defining seed regions is to use localizer tasks to identify regions 

with activation differences across conditions, and then test how their connectivity patterns 

differ across conditions (Rissman et al., 2004). Unfortunately, this approach will overlook 

regions that exhibit changes to connectivity but not activation level – precisely the pattern 

expected for key information processing “hubs” that are activated by many tasks but 

reconfigure their pattern of connectivity to alter network structure (Cole et al., 2013; Pessoa, 

2014; van den Heuvel and Sporns, 2011). Moreover, this approach requires a well-defined 

task with well-defined stimulus time courses to measure evoked responses, so it cannot be 

used on many datasets (e.g., resting-state data or free viewing of movies).

Closer to the methods developed here, another approach to measuring changes in functional 

connectivity between conditions would be to apply traditional multivariate statistical tests 

for differences in covariance, such as Wilks’ Lambda or Box's M (Nagarsenker and Pillai, 

1973; Seber, 1984). Conventional multivariate statistics are often ill-suited to the 

dimensionality of functional neuroimaging problems (i.e., the socalled “large p, small n” 

problem), but the use of feature selection in the present report maps the problem into a 

sufficiently low-dimensional space, where these statistics could be used to test whether 

covariance (i.e., connectivity) differs between conditions. Unfortunately, these tests are 

difficult to apply even after dimensionality reduction because dependence between 

successive samples of fMRI data (i.e., the time series exhibit autocorrelation), which make it 

difficult to determine the correct degrees of freedom to be employed. By formulating the 

problem in terms of out-of-sample classification accuracy, we bypass distributional 

assumptions related to multivariate statistics and instead perform a direct test of the 

reliability of covariance differences that can easily accommodate a repeated-measures 

design, for instance.

Given the limitations of seed-based connectivity analyses and traditional multivariate 

statistics, it is promising to see the development of machine learning algorithms for 

detecting and interpreting large-scale connectivity changes (Craddock et al., 2009; Richiardi 

et al., 2011; Shirer et al., 2012; Zalesky et al., 2012). However, these multivariate methods 
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still require some form of a priori region definition to make their implementation 

computationally tractable. In this respect, existing methods perform an initial data-reduction 

step that partitions the brain into regions of interest (usually on the order of 100 regions) 

using anatomical atlases or clustering based approaches. While valuable, unfortunately, this 

strategy will likely overlook smaller structures (e.g., the striatum cluster observed here). By 

contrast, the QDA method developed here showed that it can scale up to operate effectively 

on a voxelwise basis.
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Appendix 1: Use of eigendecomposition to maximize/minimize the QDA 

decision function

For a real-valued square matrix, M, and vector, x, the Rayleigh quotient is defined as 

. Ostrowski (1959) shows that for a given M, the 

local extrema of the Rayleigh quotient occur when x equals an eigenvector of M. Moreover, 

the global maximum occurs when x is the eigenvector with the largest associated 

eigenvalue, and the global minimum when the x equals the eigenvector with the smallest 

associated eigenvalue. This property of the Rayleigh quotient can be used to find the 

extrema of the QDA decision function, w(x) by setting . This results in the numerator 

of the Rayleigh quotient being equal to the first term in w(x), and the denominator serves as 

a scaling factor that enforces the constraint that ‖x‖ = 1.

Appendix 2: Connection between diagnostic feature vectors and derivative-

based voxel importance maps

Yourganov et al. (2014) developed a general framework for understanding which spatial 

activation patterns classifiers use to make category decisions. In this framework, given a 

particular classifier’s decision function w(x), a voxelwise an “importance map” is defined as 

the voxel-wise partial derivatives of the classifier’s decision function. This results in a map 

across voxels that can be used to illustrate how a change in activation at each voxel changes 

the classifier output – for example, a voxel with a positive value on the importance map 

means that increased activity in that voxel would push the classifier toward labelling a 

pattern “Category A”, and decreased activity in that voxel would push the classifier toward 

labelling a pattern “Category B”. Yourganov et al. report that the importance map for a 

QDA can be calculated by averaging the value of  across all of the x values used 

in classifier training. Therefore, the final nvoxels-by-1 derivative-based importance map, 

dMap, can be rewritten as:
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where μA,B is the grand mean across both conditions.

For the analyses carried out in the present paper, we know that μA = μB = 0, which results in 

dMap being a vector of all zeros. This is expected because without any systematic 

differences in the mean activation between conditions, a change in the activation level at any 

individual voxel would not affect the classifier’s output. However, a change in co-activation 

between pairs of voxels can convey useful information about the covariance structure that 

the QDA classifier uses for classification. To measure the effect of pairwise voxel co-

activation on classifier output, we can calculate the nvoxels-by-nvoxels Hessian matrix of w(x), 

H. This matrix contains all second-order partial derivatives of w(x), calculated as:

The value of H(x) does not depend on x, so this matrix does not need to be averaged over 

the values x the classifier used for training. Analogous to how the ith entry of the derivative-

based importance map tells us how a change in activation of the ith unit affects 

classification, the ijth entry of the matrix H tells us how an increase in connectivity between 

the ith and jth units affects classification.

Furthermore, we can use the Hessian matrix to find which nvoxels-by-1 pattern across voxels 

exhibits the co-activation pattern with the largest effect on classifier output. The scalar value 

xTHx indicates how much the input pattern x would alter the classifier output, so we can 

define the patterns which maximize and minimize the change in classifier output as:

Note that these Hessian-based importance maps are equivalent to the diagnostic feature 

vectors, dA and dB.
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Figure 1. 
Illustration of how factor analysis/principal components analysis can be used to decompose 

functional connectivity matrices into a small number of factors/components
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Figure 2. 
QDA can learn to discriminate two categories based on differences in covariance patterns. 

Here, Conditions A and B have the same mean so they are linearly inseparable. However, 

Condition A has a positive correlation between X and Y whereas Condition B has a negative 

correlation. The QDA classifier can use this covariance difference to create a non-linear 

decision boundary for separating the groups.
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Figure 3. 
Illustration of how Quadratic Discriminant Analysis (QDA) can be used to identify 

connectivity differences between conditions.
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Figure 4. 
Panel A depicts the diagnostic feature vector for threat. Panel B depicts the observed Threat-

Safe connectivity change between every pair of regions in the diagnostic feature vector. 

Panels C and D depict connectivity during Threat and Safe conditions, respectively.
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Figure 5. 
Panel A depicts the diagnostic feature vector for safety. Panel B depicts the observed Threat-

Safe connectivity change between every pair of regions in the diagnostic feature vector. 

Panels C and D depict connectivity during Threat and Safe conditions
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