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Abstract

To better understand the cortical circuitry underlying connectivity between large-scale neural 

networks, we develop a novel, data-driven approach to identify potential integration subregions. 

Between-Network Connectivity (BNC) associated with any anatomical region is the amount of 

connectivity between that point and all large-scale networks, as measured using simple and 

multiple correlations. It is straightforward to calculate and applicable to functional networks 

identified using Independent Components Analysis. We calculated BNC for all fMRI voxels 

within the brain and compared the results to known regional cytoarchitectural patterns. Based on 

previous observations of the relationship between macroscopic connectivity and microscopic 

cytoarchitecture, we predicted that areas with high BNC will be located in paralimbic subregions 

with an undifferentiated laminar structure. Results suggest that the anterior insula and dorsal 

posterior cingulate cortices play prominent roles in information integration. Cytoarchitecturely, 

these areas show agranular or dysgranular cytologies with absent or disrupted cortical layer IV. 

Since layer IV is the primary recipient of feed-forward thalamocortical connections, and due to the 

exclusive nature of driving connections to this layer, we suggest that the absence of cortical layer 

IV might allow for information to be exchanged across networks, and is an organizational 

characteristic of brain-subregions serving as inter-network communication hubs.
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1. Introduction

As we observe the world around us, our brains constantly process external input and create 

predictions about future events. These predictions are generated by constantly changing 

patterns of intrinsic activity within the brain, combining internal states, past experiences, and 

future predictions (Engel et al., 2001). Our integrated conscious experience likely emerges 

from the interaction of these patterns (Tononi, 2004). While the areas where this integration 

occurs is a topic of active investigation (Bullmore and Sporns, 2012), the mechanisms by 

which it occurs are currently unknown.

In neuroimaging, integration frequently refers to an area’s total connectivity throughout the 

entire brain (Buckner et al., 2009; Cole et al., 2010). However, integration in this sense does 

not distinguish connectivity within a sensory or processing system from connectivity 

between systems. Alternatively, integration may refer to areas where connectivity converges 

across sensory or higher-level systems. In this sense of the term, multimodal integration 

areas refer to association and paralimbic areas where sensory information from visual, 

somatosensory and auditory systems converges (Sepulcre et al., 2012; Yeo et al., 2011).

Integration may also refer to areas that are both highly connected throughout the brain and 

whose connections are bridges between segregated processing networks. In this sense, 

integration areas refer to connector hubs (Guimera and Amaral, 2005; Valencia et al., 2009; 

Zamora-López et al., 2010) or the rich club hubs of the brain’s structural core (Hagmann et 

al., 2008; van den Heuvel and Sporns, 2011).

Recent studies link the macroscale connectivity of rich-club and connector hubs to their 

microscale cytoarchitecture (Hilgetag and Grant, 2010; Scholtens et al., 2014). Based on the 

white matter tracings in cats and macaque, these areas have reduced cytoarchitectural 

differentiation into cortical layers (Beul et al., 2014; Zamora-López et al., 2011). However, 

this hypothesized relationship between macroscale connectivity and microscale 

cytoarchitecture has yet to be tested in functional networks, or in the human brain.

Examining the relationship between macroscale connectivity and microscale 

cytoarchitecture requires the identification of specific integration areas of the cortex. Many 

potential integration areas are in paralimbic regions of the cortex, including the insula and 

cingulate gyrus (Buckner et al., 2009; Hagmann et al., 2008; He et al., 2009; Rubinov and 

Sporns, 2011; Sepulcre et al., 2012; van den Heuvel et al., 2012; Zamora-López et al., 

2010). Each paralimbic region includes gradients of agranular, dysgranular, and granular 

cortical lamination patterns (Mesulam, 1998; Morecraft et al., 2004; Morel et al., 2013; Vogt 

et al., 2005). Agranular cortex lacks cortical layer IV, the primary recipient of thalamic 

projections. Dysgranular cortex features a minimal and inconsistently present layer IV; 

granular cortex has fully developed layer IV. This variety of cytoarchitectural 

differentiation, within candidate integration areas, presents an opportunity to test the 

relationship between macroscale connectivity and microscale cytoarchitecture.

We hypothesize that, within paralimbic regions, agranular or dysgranular subregions are 

strongly connected to many large-scale networks, while adjacent granular subregions lack 

this trait. We test this hypothesis in the human brain by developing a novel Independent 
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Component Analysis-based measure of the amount of integration potentially associated with 

a specific voxel, Between-Network Connectivity (BNC). Using BNC, we observe that areas 

whose connectivity bridges many large-scale networks occur in discrete regions of the 

cortex. Furthermore, we show that within paralimbic areas, BNC is associated with 

agranular or dysgranular subregions.

2. Materials and Methods

2.1 Subjects and experimental procedure

Twenty-seven healthy subjects (12 men, 15 women, mean age = 32 ± 3 years) were 

recruited from the general community. Exclusion criteria included axis I disorders, 

neurologic illness, or major medical illness. Subjects provided written informed consent as 

approved by the Colorado Multiple Institutional Review Board.

2.2 fMRI data acquisition and preprocessing

Resting state images were acquired on a 3 T whole-body MR scanner (General Electric, 

Milwaukee, WI, USA) using a standard quadrature head coil. A high-resolution 3D T1-

weighted anatomical scan was collected. Functional scans were acquired with the following 

parameters: TR 2000 ms, TE 32 ms, FOV 240 mm2, matrix size 64 × 64, voxel size 3.75 × 

3.75 mm2, slice thickness 3 mm, gap 0.5 mm, interleaved, flip angle 70°. Resting fMRI scan 

duration was 10 min, with subjects instructed to rest with eyes closed. Data were 

preprocessed using SPM8 (Wellcome Dept. of Imaging Neuroscience, London, UK) in 

Matlab 2009b. All subjects had less than 2 mm of movement. The first four images were 

excluded for saturation effects. Images were realigned to the first volume, normalized to the 

Montreal Neurological Institute (MNI) space, and smoothed using a 8 mm FWHM Gaussian 

kernel.

Voxel time series were processed to remove sources of noise and minimize the influence of 

movement. All voxel time series were detrended and band-pass filtered between 0.01 and 

0.1 Hz. Signals for white matter, cerebral spinal fluid, and global grey matter, along with six 

head realignment parameters were regressed out. Since these precautions have been shown 

to minimize, but not remove the influence of movement on fMRI time series, additional 

precautions were used as recommended by Power et al. (Power et al., 2012). fMRI volumes 

with excessive movement were identified through calculating framewise displacement (FD) 

and removing volumes with FD > 0.5 along with preceding and following volumes.

2.3 Independent Component Analysis of fMRI data

Spatial independent component analysis (ICA) was carried out using GIFT v1.3i (Calhoun et 

al., 2001)(http://icatb.sourceforge.net). Thirty-four components were estimated based on 

minimum description length (MDL) criteria and extracted using the infomax algorithm (Bell 

and Sejnowski, 1995; Li et al., 2007). Voxel time series were temporally concatenated 

across subjects and then variance-normalized in ICA preprocessing. Two data reductions 

steps were used, with 70 and 34 PCA components included after each. Resulting component 

spatial maps were reconstructed with GICA3 and scaled to z-scores (Erhardt et al., 2011). 

All spatial maps and time courses were visually inspected to identify noise components. 
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Seven components were identified as artifacts based on spatial distributions that were 

primarily in CSF or white matter, or high-frequency oscillations, and were excluded from 

further analysis. The remaining 27 components and all associated grey-matter voxels were 

used to calculate inter-network connectivity for each voxel.

2.4 Measuring Inter-Network Connectivity

Following large-scale network identification with ICA, we define a function that measures 

the amount of “integration” that occurs between these networks at a particular voxel. This 

function will be referred to as Between-Network Connectivity (BNC). We begin by more 

carefully defining what is meant by “integration” in this context and what BNC will 

measure:

1. Definition. Between-Network Connectivity is the influence of linear dependencies 

among large-scale networks on the linear prediction of a voxel’s activity.

The function will have the following desirable attributes:

1. The range of BNC is between zero and one.

2. BNC = 0 if a voxel is only connected to a single independent network.

3. BNC = 1 if a voxel is strongly connected to all correlated networks.

In the context of fMRI, the pattern of a voxel’s activity is its time series. Using ICA, large-

scale networks are ICA components. Following back-reconstruction in GIFT, each ICA 

component for each subject has an associated time series (Erhardt et al., 2011). Linear 

prediction is a regression equation, with the voxel’s time series as the response variable and 

ICA components’ time series as predictor variables. Let xv represent the centered and scaled 

time course for voxel v as a linear combination of back-reconstructed ICA time courses:

(2)

where K is the set of non-noise ICA components, |K| is its cardinality (the number ICA 

components in the set). Each ai is the back-reconstructed time course for component i, βvi 

are standardized regression weights, and e the error term. Let the population coefficient of 

determination from (2) be denoted as R2
v. Similarly, let r2

vi denote the population squared 

simple correlation between the time series from voxel v and ICA component i.

From definition (1) of BNC, it is clear that if there is no linear dependence (i.e., no 

correlations) among ICA components, then BNC must be equal to zero in all cases. For 

equation (2), this occurs if and only if the population coefficient of determination is equal to 

the sum of population squared simple correlations between voxel v and component i (Cohen 

et al., 2003):

(3)
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Or equivalently, subtracting R2
v from both sides results in an equation that describes an 

absence of BNC:

(4)

Since all terms in equation (4) are bounded and since there are a finite number of terms, the 

right hand side of (4) is bounded even in cases where the equality does not hold. By finding 

the upper and lower bounds of this equation (see supplementary materials), the right hand 

side of (4) can be scaled to the desired maximum of 1. We define the normalized BNC 

associated with voxel v as:

(5)

Intuitively, equation (5) describes the difference between the total connectivity to all large-

scale networks, as summed squared correlations, and the amount of variance explained by 

the networks, in the form of R2
v. This excess variance is shared among the networks and 

voxel v, consistent with the concept of between-network connectivity.

Equation (5) meets the desirable attributes listed above: 1. While (5) may take on negative 

values in individual samples, these cases are artifactual, located in white matter and cerebral 

spinal fluid (see supplementary materials), and will only rarely occur in the population. 

Alternatively, the normalization factor (|K| - 1) ensures equation (5) is less than or equal to 

1. The range of (5) is therefore [0,1]. 2. The case where voxel v is connected to a single 

independent network is a special case of equation (3), and substitution of these values into 

(5) demonstrates that BNC is 0 in this case. 3. Lastly, the case were voxel v is strongly 

connected to all correlated networks was considered in finding the bounds of the ride hand 

side of equation (4). In this case, the difference between the summed squared correlations 

and R2
v approaches (|K| −1) and equation (5) approaches 1.

Several important features of equation (5) deserve further consideration. The normalization 

factor (|K| −1) ensures the upper limit is independent of the number of components, while 

individual values of BNC may change based on the number of components chosen for ICA. 

This suggests the method we have used to determine the normalization factor is less than 

ideal and can be improved upon by future studies. However, since the number of 

components is consistent for all voxels within any study, equation (5) can be used to 

compare voxels and subjects within a study.

Other functions of BNC are possible using definition (1), including a similar equation using 

summed squared β coefficients (see supplementary materials). While this definition is 

possible, it is also problematic due to the relatively large number of terms in the regression 

equation and consequent inaccuracy in estimating β coefficients. Multicollinearity, a strong 

correlation among regressor variables, has a more damaging effect on the estimation 
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accuracy of regression coefficients relative to correlation coefficients and the coefficient of 

determination (Cohen et al., 2003). These observations motivated their use in equation (5).

So far, we have discussed BNC from a population point of view. In practice, we will have to 

estimate the number of independent components K as well as their time courses. To estimate 

the former, we use information-theoretic criteria such as Minimum Descriptive Length (Li et 

al., 2007). The estimation of the latter is accomplished by back-reconstruction during ICA 

(Erhardt et al., 2011). Based on these estimates, we then compute the empirical correlation 

coefficients for r2
vi and the multiple coefficient of determination from (2) using stand linear 

regression software. The estimates are then entered into equation (5) to obtain an estimate of 

BNC for each voxel.

2.5 Data analysis

To identify common large-scale networks, group mean ICA spatial maps were correlated 

with published ICA templates (Shirer et al., 2012). Thresholded spatial maps for each ICA 

component were created by overlaying the top 70% of all voxels onto the single-subject 

structural MRI image in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).

BNC was calculated as above using GIFT ICA output and voxel time series. Values were 

averaged across subjects and the results projected onto the PALS-B12 group cortical surface 

rendering using Caret5 (Van Essen, 2005; Van Essen et al., 2001). Additionally, to 

determine the significance of individual voxels, BNC values were converted into z-scores 

and then entered into a one-sample t-test for group-level analysis in SPM8. Whole-brain 

spatial maps of BNC were thresholded at p < 0.01, FDR corrected (Benjamini and 

Hochberg, 1995), and projected onto the PALS-B12 group cortical surface rendering using 

Caret5 (Van Essen, 2005; Van Essen et al., 2001).

The pattern of higher-level connectivity for select locations within the brain were displayed 

as weighted and unweighted bipartite graphs using Statistical Parametric Networks (Ginestet 

and Simmons, 2011). In this display, anatomical locations are displayed as red circles within 

silhouettes of a brain from three viewpoints (“glass brains”). Each line represents a 

correlation between a node representing anatomical point within the brain and a node 

representing an ICA network. Since the ICA networks are de-localized entities, they are 

displayed as purple circles above the brain. Correlations between the response and predictor 

variables in equation (2) were converted to z-scores, tested against a Bonferroni-corrected 

threshold of 0.001 and projected onto glass brain silhouettes of saggital, coronal and axial 

sections.

The relationship between BNC and cytology was tested using commonly observed 

cytoarchitectural gradients, based on gradual laminar differentiation between adjacent 

regions (Flynn, 1999; Vogt, 2009). This technique was necessary since current anatomical 

atlases used in fMRI either are not based on cytology, or currently do not include paralimbic 

regions. Cingulate subregions were identified using the method detailed by Vogt (Vogt, 

2009). Six point locations within paralimbic regions were chosen based on their proximity to 

macroscopic landmarks such as the marginal ramus, parietal-occipital sulcus, cingulate sulci, 

and gyri of the insula. Cingulate subregions and associated cytology were determined using 
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a template of the cingulate with these landmarks (Vogt, 2009). Locations were displayed on 

the T1 template provided in SPM with traced sulci. BNC was tested by constructing a 

gradient vector running from agranular subregions (insula & anterior cingulate cortex) or 

dysgranular subregion (posterior cingulate cortex), to the neighboring granular subregion. 

BNC was calculated along this line and correlated with distance from the agranular/

dysgranular end for each subject. Results were transformed into Fischer-transformed into z-

scores, scaled to standard error, and z-tested with a direction determined by the cytological 

gradient.

3. Results

3.1 Identifying large-scale networks within the brain

We first identified large-scale networks within the brain using resting-state fMRI in 27 

subjects. fMRI was chosen for its ability to measure connectivity throughout the entire brain 

with good spatial resolution. Independent Components Analysis (ICA) was chosen for 

spatial separation of large-scale networks, because it is data-driven and does not rely on the 

selection of seed-regions or a predetermined grey matter atlas. Twenty-seven non-artifactual 

components were identified with spatial distributions corresponding to known large-scale 

networks (Greicius et al., 2003; Shirer et al., 2012). These included sensorimotor, visual, 

auditory, executive function, and salience processing networks (Supplementary Figure 1). 

The Default Mode Network, a network associated with introspection and prominent when 

subjects are not engaged in a task (Greicius et al., 2003), was divided into ventral, anterior 

and posterior components (vDMN, aDMN, and pDMN respectively).

3.2 Measuring Between-Network Connectivity at each point in the brain

After large-scale networks were identified, we devised a measure that identifies areas within 

the brain where the network’s patterns of activity converge. Voxel-specific Between-

Network Connectivity (BNC) quantifies how widespread a voxel’s connections are 

distributed among the large-scale networks. BNC is the amount of redundant information in 

a multiple regression analysis of a single voxel and the large-scale networks. It is the sum of 

squared correlations between a voxel and every large-scale network, minus the explained 

variance of the regression model (see section 2.4 for a detailed explanation).

Descriptively, a voxel with high BNC will have many connections of varying strengths, to 

many large-scale networks (Figure 1). This indicates a point within the brain where the 

signals of many networks converge, potentially allowing for them to mix together. In 

contrast, a voxel with low BNC will have only weak connections to the large-scale 

networks, or will only be associated with a single network. This indicates a point within the 

brain that is only processing information related to a single network, or at most a small 

number of networks.

3.3 Mapping between-network connectivity throughout the brain

Mean BNC values for each voxel ranged from 0 to 0.047. The lower bound of the BNC 

measure is expected to be 0, corresponding to a voxel that is connected to a single 

independent network. The upper bound of BNC is 1, corresponding to a voxel that is 
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strongly connected to all correlated networks. Individual subject values ranged from −0.01 

to +0.13. Negative values in individual subjects were rare, scattered throughout white matter 

and cerebral spinal fluid, and inconsistently located across subjects (Supplementary Figures 

2–8).

A whole-brain map of BNC averaged across subjects revealed local peaks around discrete 

cortical regions (Figure 2). Most areas of high BNC were bilateral, including the post-central 

gyrus, parietal operculum, inferior parietal region, dorsal posterior cingulate cortex, and 

anterior insula. Lateralized areas of high BNC were all on the right side and included the 

temporoparietal junction, posterior bank of the post-central sulcus, and the cuneus. The only 

subcortical region with high BNC was the anterior thalamus.

Paralimbic areas with high BNC were located bilaterally in areas with agranular or 

dysgranular cytology. The agranular insula showed bilateral clusters of high BNC. 

Similarly, within the posterior cingulate cortex, bilateral clusters of high BNC were located 

anteriorly and superiorly in dysgranular regions of the cortex. In contrast, no granular 

paralimbic subregion showed high BNC.

To identify clusters of statistically significant inter-network connectivity throughout the 

entire brain, we constructed a whole-brain map of BNC for each subject and entered the 

results into a t-test, thresholded at p < 0.01 (FDR corrected, (Benjamini and Hochberg, 

1995). The results demonstrated a close between T-values and mean BNC values for all 

voxels (r=0.95, Supplementary Figure 9). Voxels with significant BNC clustered in discrete 

regions of the cortex (Figure 3), in a pattern similar to the local peaks of mean BNC values 

(Figure 2).

3.4 Between-Network Connectivity within paralimbic regions

BNC identified three clusters of high inter-network connectivity within the paralimbic 

regions (Figure 4). The first was within the dorsal posterior cingulate cortex (PCC) and 

located along the midline and just above the splenium of the corpus collosum. Two other 

clusters of high BNC were located in the anterior insula, approximately located in the short 

gyri. As expected, each peak location within the clusters connected to many large-scale 

networks that spanned a wide variety of processing modalities. Even at the robust statistical 

threshold of p < 0.001 Bonferroni-corrected, the total connectivity of these few points 

spanned most of the networks identified with ICA (Figure 4). No clusters of high BNC were 

located within the anterior cingulate gyrus.

We hypothesized that Between-Network Connectivity within paralimbic regions would be 

associated with agranular or dysgranular cytoarchitecture. To test this, we measured voxel 

BNC values within paralimbic regions and compared the results to known regional 

differences in cytology. Six locations were selected based on recognizable anatomical 

landmarks (Figure 5, labeled black dots). Within the dorsal posterior cingulate gyrus, we 

selected one point location from dysgranular subregion 23d, and a point from granular 

ventral subregion v23 (Vogt, 2009). Within the pregenual anterior cingulate gyrus, we 

selected a point from agranular subregion 24 and a point from granular subregion 10p 

(Ongür et al., 2003). Within the insula, we selected a point in the agranular anterior insula, 
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located in the short gyri, and a point in the posterior granular insula, located near the end of 

the long gyri (Flynn, 1999). For each of these paralimbic regions, a conceptual line can be 

drawn that begins in the agranular or dysgranular subregion and ends in a granular subregion 

(Figure 5). Based on hypothesis, we predicted that distance along this line would negatively 

correlate with BNC for each voxel. To test this hypothesis, BNC along each line was 

extracted for each subject and entered into a one-way t-test with a threshold of p < 0.05 

(Table 1).

The results supported the hypothesis for most areas tested. BNC significantly decreased 

along the cytoarchitectual gradient bilaterally in the PCC (z-score ± standard error, left: Z = 

−2.62 ± 0.2, p < 0.005, right: Z = −2.48 ± 0.2, p < 0.01) and insula (z-score ± standard error, 

left: Z = −2.17 ± 0.2, p < 0.05, right: Z = −2.92 ± 0.2, p < 0.005). Within the pregenual 

anterior cingulate cortex, however, results were not significant.

Visual inspection of higher-level connectivity along these gradients supported these results 

(Figure 6). Locations nearer to the agranular anterior insula were associated with many 

robust connections to many large-scale networks including the dDMN, anterior Salience 

network (aSN), and left Executive Control Network (LECN). Locations nearer to the 

granular posterior insula were associated with only a few networks, primarily the 

Sensorimotor (SM) and Auditory networks. The total number of significant connections was 

greatest near the anterior insula, and decreased steadily in the posterior direction, and was 

minimal within the posterior insula. Similar results were obtained for cytoarchitectural 

gradients with the PCC. The dysgranular dorsal PCC showed the greatest amount of 

connectivity to large-scale networks, while the granular ventral PCC was associated with a 

few networks. In both paralimbic regions, high BNC was associated with subregions 

featuring agranular or dysgranular cytoarchitecture.

4. Discussion

This study revealed a relationship between the cytology of paralimbic regions and their 

ability to connect across, and potentially integrate information between large-scale 

networks. As hypothesized, agranular or dysgranular paralimbic subregions, with absent or 

reduced layer IV, were identified as integration areas. We also have introduced a new data-

driven approach for measuring inter-network connectivity, BNC, which takes advantage of 

the full spatial resolution provided by fMRI. This method identifies integration areas within 

the brain that have high inter-network connectivity, and associated with cytoarchitectural 

gradients and subregions.

4.1 Between-Network Connectivity and multimodal connectivity

Whole-brain BNC (Figure 2) both agrees with and complements previous reports of 

connectivity within the brain. Many areas of high BNC were previously associated with high 

total connectivity or identified as multimodal integration areas. These include the PCC, 

temporoparietal junction, inferior parietal lobe, anterior insula, and thalamus (Buckner et al., 

2009; Cole et al., 2010; Sepulcre et al., 2012). Parts of the postcentral gyrus and the medial 

cuneus demonstrated a high BNC but were not previously identified as multimodal 
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integration areas (Sepulcre et al., 2012). Based on this observation, these subregions may 

combine unimodal sensory processing with processing in other systems.

Areas previously identified as connector hubs also showed BNC (He et al., 2009; Valencia 

et al., 2009). However, the reverse is not always true. The thalamus and temporoparietal 

junction have been identified as connector hubs in some (Valencia et al., 2009) but not all 

studies (He et al., 2009), possibly due to differing anatomical resolution. Lastly, most rich-

club hubs such as the PCC, paracentral lobule, and parietal lobes, were associated with high 

BNC (Hagmann et al., 2008; van den Heuvel and Sporns, 2011). However, other regions 

such as the insula, cuneus and fusiform gyri, are instead part of the “extended rich-club” 

identified using a high-resolution network (van den Heuvel and Sporns, 2011).

4.2 Microscale cytoarchitecture and macroscale network architecture

Neural connectivity between distinct cortical layers has been used to distinguish feedforward 

from feedback projections within the primate visual system, and consequently identify a 

processing hierarchy based on cytoarchitectural connectivity (Felleman and Van Essen, 

1991). Paralimbic and multimodal processing regions were fit into this hierarchical model 

with difficulty. Based on the regions they are connected to paralimbic regions were placed 

near the top of this hierarchy. However, the observed laminar pattern of afferent and efferent 

connectivity, which defined positions of other areas within this hierarchy, would have 

placed paralimbic regions at a lower level. Subsequent investigations in primate prefrontal 

cortices and the cat visual suggested that cytoarchitectural differences and the distance 

between pairs of regions predicted their connectivity, rather than their relative position in a 

processing hierarchy (Barbas and Rempel-Clower, 1997; Beul et al., 2014; Hilgetag and 

Grant, 2010).

Mesulam (Mesulam, 1998) proposed a more general hierarchy based on converging lines of 

distributed, parallel processing systems. Although not based on cytological criteria, the 

organization of neurons into layers was most prominent in specialized sensory regions at the 

periphery of the hierarchy and progressively decreased, as processing lines converged, into 

paralimbic regions at the core. Further investigations into cytology and connectivity within 

the cat brain confirmed many features of this model, demonstrating that rich-club hubs have 

low cytological differentiation with dysgranular or agranular cytologies, such as in 

paralimbic regions (Beul et al., 2014; Zamora-López et al., 2011). However, why these 

zones of converging macroscale connectivity feature relatively undifferentiated microscale 

cytoarchitecture is unknown.

4.3 Inter-network connectivity is related to cortical circuitry

Inter-network connectivity within paralimbic subregions was associated with agranular or 

dysgranular subregions. This cytological classification is based on the granular appearance 

of neurons in cortical layer IV. Granular subregions have a fully developed layer IV. 

Agranular subregions lack layer IV, and dysgranular subregions are intermediate between 

these states. This layer is notable for several reasons, including its importance for 

thalamocortical input to the cortex.
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Thalamic input to the cortex may be especially important for generating and stabilizing the 

large-scale networks (Doria et al., 2010; Edelman and Gally, 2013; Sporns, 2011). During 

development, large-scale networks emerge at the same time as thalamocortical projections 

(Doria et al., 2010). Thalamic stimulation projecting to layer IV results in patterns of cortical 

activity that is indistinguishable from spontaneously arising cortical activity (MacLean et al., 

2005). This thalamic input is capable of activating the same underlying cortical circuitry that 

generates intrinsic activity, including the large-scale networks.

Afferent thalamic connections to layer IV have several distinguishing features. They are the 

main source of primary sensory input to the cortex (Wang et al., 2013). They act to 

synchronize and stabilize the dynamics of widespread cortical regions (Chawla et al., 2001). 

Input to cortical layer IV functions as driving input, strongly affecting cortical activity (Lee 

and Sherman, 2008). In contrast, modulatory input to superficial and deeper cortical layers 

shows a weak but prolonged effect (Sherman and Guillery, 1998). Lastly, thalamocortical 

input to layer IV forms part of feed-forward reentry circuits between the cortex and 

thalamus (Shipp, 2005). In these reentry circuits, a single pattern of input activity dominates 

in a winner-take-all manner (Douglas and Martin, 2004).

The synchronizing, driving input with exclusive dynamics, characteristic of afferent 

connections to cortical layer IV, generates and stabilizes large-scale networks (Chawla et al., 

2001; Sherman and Guillery, 2011; Wang et al., 2013). However, this same circuitry may 

create barriers to integrating and exchanging information between these networks. The 

driving nature of layer IV input creates strong competition between patterns of activity. 

Simultaneously, winner-take-all dynamics prevent multiple patterns of intrinsic activity 

from accessing the same circuitry. This reasoning offers a plausible interpretation of the 

present observation that this driving circuitry is absent or modified within the regions of the 

cortex specialized for high inter-network connectivity, such as integration areas. In essence, 

by relaxing the winner-take-all competition between patterns of intrinsic activity created by 

this driving input, integration areas may be better able to mix together and evaluate the 

incoming signals associated with large-scale networks. This absence may allow other forms 

of afferent input to take precedence, possibly including modulatory input.

4.4 Conculsions

In summary, this study describes a novel, data-driven method, BNC, which uses ICA to 

identify areas within the brain where activity from many large-scale networks converge. 

This study extends prior work on the location of potential multimodal integration areas, such 

as rich-club hubs, which evaluate information from multiple processing systems. 

Additionally, this work supports an observed relationship between rich-club hubs and 

cytological differentiation, by demonstrating that paralimbic subregions with high BNC 

feature agranular or dysgranular cytology. These subregions lack cortical layer IV, with its 

strongly competitive and exclusive characteristics. An absence of the driving 

thalamocortical input to this layer may facilitate the mixing of incoming signals from 

throughout the brain. These findings advance our understanding of the functional 

organization of the brain by demonstrating that the ability to potentially integrate 

information on large scales is reflected in microscopic circuitry.
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Highlights

• Integration areas mediate information exchange between large-scale networks

• This paper describes a novel data-driven method to identify integration areas

• Paralimbic integration areas are associated with agranular cytoarchitecture
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Figure 1. 
Measuring voxel-specific Between-Network Connectivity (BNC) using ICA. Each voxel 

within the brain (red circles) is correlated with (grey lines) each a large-scale network 

(purple circles and associated spatial maps from Figure 1). Top: Voxels with strong 

connections to many higher-level networks can mediate information exchange between 

these networks. These voxels will have high BNC. Bottom: Voxels with a strong connection 

to a single larger network and weak connections to other networks will have a low BNC.
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Figure 2. 
Between-Network Connectivity throughout the brain. Local peaks of high BNC are found 

throughout the cortex. Association areas such as the insula and parietal lobes are especially 

prominent, as are areas of the DMN, such as the dorsal posterior cingulate and left inferior 

parietal cortices. Shown are BNC values for each voxel averaged across subjects, prior to 

statistical testing.

Wylie et al. Page 17

Neuroimage. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Clusters of significant Between-Network Connectivity. Statistically significant clusters of 

high BNC are centered around local peaks of high BNC (Figure 2), including the insula, 

inferior parietal lobes, and the dorsal posterior cingulate. All voxels p < 0.01 by a one-

sample t-test, FDR corrected.
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Figure 4. 
Between-Network Connectivity within paralimbic regions. Voxels with high BNC had many 

strong connections to many networks. Shown are the top voxels (red circles) from clusters of 

BNC within paralimbic regions, along with their significant connections (edges: grey lines, 

sig. at p < 0.001 Bonferroni-corrected) to large-scale networks (purple circles). 

SM=Sensorimotor, RECN & LECN=Right & Left Executive Control Networks, 

PrC=Precuneus network, aSN & pSN=anterior & posterior Salience Networks, 

dDMN=dorsal Default Mode Network, BG=Basal Ganglia network.
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Figure 5. 
Cytology of paralimbic regions. Each has subregions with granular, agranular, or 

dysgranular cytologies depending the presence, absence, or inconsistent presence of cortical 

layer IV. Labels are based on the numbers assigned to Brodmann’s Areas (Ongür et al., 

2003; Vogt, 2009). Posterior cingulate cortex includes dorsal and ventral subregions of 

Brodmann’s area 23, dysgranular region 23d and ventral region v23. The pregenual anterior 

cingulate cortex includes agranular region 24, dysgranular region 32, and granular region 

10p. The insula is divided into an agranular anteroventral subregion, a posterodorsal 
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granular, and a dysgranular transition zone between these two poles (Flynn, 1999). Grey 

vectors represent cytoarchitectural gradients running between subregions.
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Figure 6. 
Points along a cytoarchitectural gradient within the insula and their correlations to large-

scale networks. Anterior voxels (red circles) had many connections (edges, grey lines) to a 

wide variety of networks (purple circles). In contrast, posterior voxels were only connected 

to a few networks. All edges p < 0.001 Bonferroni-corrected. See Figure 4 caption for 

abbreviations.
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