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Abstract

Executive functions (EF) are a complex set of neurodevelopmental, higher-ordered processes that 

are especially salient during adolescence. Disruptions to these processes are predictive of 

psychiatric problems in later adolescence and adulthood. The objectives of the current study were 

to characterize the latent structure of EF using bifactor analysis and to investigate the independent 

and interactive effects of genes and environments on EF during adolescence. Using a 

representative young adolescent sample, we tested the interaction of a polymorphism in the 

serotonin transporter gene (5-HTTLPR) and parental supervision for EF through hierarchical linear 

regression. To account for the possibility of a hierarchical factor structure for EF, a bifactor 

analysis was conducted on the eight subtests of the Delis-Kaplan Executive Functions System (D-

KEFS). The bifactor analysis revealed the presence of a general EF construct and three EF 

subdomains (i.e., conceptual flexibility, inhibition, and fluency). A significant 5-HTTLPR by 

parental supervision interaction was found for conceptual flexibility, but not for general EF, 

fluency or inhibition. Specifically, youth with the L/L genotype had significantly lower conceptual 

flexibility scores compared to youth with S/S or S/L genotypes given low levels of parental 

supervision. Our findings indicate that adolescents with the L/L genotype were especially 

vulnerable to poor parental supervision on EF. This vulnerability may be amenable to preventive 

interventions.
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INTRODUCTION

Adolescence is a critical period for cognitive and emotional development, particularly for 

executive functioning (EF; Crone, 2009), which are neurocognitive processes that regulate 

and maintain higher-order actions and goal oriented behaviors (Barkley, 1997). During 

adolescence, typically developing youth improve in their abilities to regulate and plan their 

actions and thoughts (Huizinga, Dolan, & Van der Molen, 2006). The degree of maturation 

in adolescent regulatory abilities is thought to reflect neurobiological development and 

influences risk behaviors, including disruptive behavior (Hobson, Scott & Rubia, 2011; 

Matthys, Vanderschuren, & Schutter, 2013) and substance use disorders (Clark et al., 2013; 

Giancola & Tarter, 1999). Adolescent development is also strongly influenced by 

environmental factors, such as parenting behaviors (Clark, Thatchere, & Maisto, 2004; 

Clark, Kirisci, Mezzich, & Chung, 2008) and deviant peers (Huizinga et al., 2006). 

However, relatively little is known about how environmental and heritable factors interact to 

influence EF during this developmental epoch.

Regarding the taxonomy of EF, a tripartite framework has been proposed (Miyake, 

Friedman, Rettinger, Shah, & Hegarty, 2001), consisting of three distinct but moderately 

correlated factors. These dimensions include set-shifting [i.e., the ability to shift back and 

forth between multiple tasks, operations or mental sets (Monsell, 1996)], updating and 

monitoring [i.e., the ability to monitor and code information relevant to the task and 

manipulate the information appropriately when new information is provided; also similar to 

working memory (Goldman-Rakic, 1996)], and inhibition [i.e., the ability to deliberately 

suppress a dominant response in the presence of a nonessential stimuli (Logan, Schachar, & 

Tannock, 1997)]. However, emerging research suggests that the factor structure of EF may 

vary by age, particularly across childhood and adolescence (Huizinga et al., 2006; Lee, Bull, 

& Ho, 2013; Prencipe et al., 2011; Zelazo, Craik, & Booth, 2004). A two factor structure, 

representing inhibition and switching, was the best fit to the data during early to late 

childhood, but a three factor model, representing inhibition, updating, and switching, 

became the best fit to the data during adolescence (Lee et al., 2013). Prencipe and colleagues 

(2011) distinguished between “hot” (i.e., motivationally salient) and “cool” (i.e., abstract) 

EF tasks in a typically developing sample between 8 and 15 years of age and found that 

improvements in cool EF tasks (i.e., Color-Word Stroop, Backward Digit Span) began 

during the earlier aged cohorts, whereas improvements in “hot” tasks (i.e., gambling task, 

delay-discounting) developed more gradually and were most robust in the adolescent cohort. 

However, in their exploratory factor analysis for all tasks, a single factor model emerged as 

the best fit to the data. This suggests that the factor structure of EF may be organized 

hierarchically, such that the covariation among EF components may be modeled as a single 

latent factor (Alarcón, Plomin, Fulker, Corley, & DeFries, 1998; Friedman et al., 2008), 

whereas each sub-dimension of EF may be defined by unique genetic and environmental 

pathways.

Twin studies have established the important role of genetic influences for variation in EF, 

with heritability estimates for inhibition, set-shifting, and monitoring/working memory 

ranging from 43% to 77% (Ando, Ono, & Wright, 2001; Coolidge, Thede, & Young, 2000; 

Kuntsi et al., 2006). While the search for specific genes associated with EF have been 
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elusive, one particular candidate system with implications for EF is serotonin (5-HT; see 

Logue & Gould, 2014). The role of 5-HT in the development of EF is partly related to the 

expression of 5-HT in the prefrontal cortex (PFC; Puig & Gulledge, 2011), a region of the 

brain that is known to regulate higher order functions such as learning, working memory, 

and behavioral flexibility (Fuster, 2001; also see Blakemore & Choudhury, 2006). 

Serotonergic receptors are largely expressed in the PFC, which regulate 5-HT activity 

(Enge, Fleischhaauer, Lesch, Reif, & Strobel, 2011). Variations in extracellular 5-HT in the 

PFC have been associated with performance in response inhibition, reversal learning tasks 

and other EF tasks across human (Cools, Roberts, & Robbins, 2008; Crean, Richards, & de 

Wit, 2002) and nonhuman primate models (Homberg et al., 2007; Walker, Mikheenko, 

Argyle, Robbins, & Roberts, 2006), although associations with set-shifting abilities have 

been equivocal (Logue & Gould, 2014). Given the primacy of 5-HT regulation and EF 

performance in general, the functional polymorphism in the promoter region of the 5-HT 

transporter gene (5-HTTLPR) is a plausible candidate for EF, as the short (S) allele is known 

to convey reduced 5-HT transporter transcription (i.e., lower transporter levels) and 

subsequently reduced 5-HT reuptake than the long (La) allele (Hu et al., 2006). The A > G 

single nucleotide polymorphism (SNP) has also been identified within the L allele and is 

functionally similar to the S allele (Hu et al., 2006).

Genetic association studies have shown a link between the S allele and increased sensitivity 

to stress and higher risk for depression (see meta-analysis by Karg, Burmeister, Shedden, & 

Sen, 2011), but better performance on EF (Weikum et al., 2013). However, it is unclear 

whether 5-HTTLPR functionality is specific to any single domain of EF, or whether it is 

generally associated with EF performance. For example, a meta-analysis of youth with 

attention-deficit/hyperactivity disorder found an association between the L/L genotype and 

worse performance on measures of impulsivity, inattention, and working memory (Gizer, 

Ficks, & Waldman, 2009). Youth with the L/L genotype performed worse than non-L/L 

youth on EF tasks when their mothers endorsed high levels of depression symptoms, 

although they were also better than non-L/L youth on these tasks when their mothers 

endorsed few depression symptoms (Weikum et al., 2013). Adults carrying the L/L genotype 

performed worse on a tasks of risky decision making and visual planning (Roiser, Rogers, 

Cook, & Sahakian, 2006), set-shifting (Borg et al., 2009) and inhibition (Roiser et al., 2006) 

compared to individuals without this genotype. Taken together, these findings suggest that 

allelic variation in 5-HTTLPR may also be associated with EF performance (Weikum et al., 

2013). However, more research is needed to disentangle the possibility of specific 5-

HTTLPR effects as they relate to the various dimensions of EF.

Genetic influences for complex phenotypes are also widely believed to act in conjunction 

with environmental factors (i.e., gene-environment interaction; GxE), whereby genetic 

influences on a phenotype may be enhanced or attenuated as a function of the environment 

(or vice versa). An abundance of studies have examined GxE effects involving 5-HTTLPR 

and harsh or severe parenting, including for depression (Gibb, Uhrlass, Grassia, Benas, & 

McGeary, 2009; Kaufman et al., 2004), aggression (Li & Lee, 2010; Reif et al., 2007), and 

attention-deficit/hyperactivity disorder (Retz et al., 2008). However, GxE studies for EF 

have yet to emerge. One particular environmental factor that may moderate the association 
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between 5-HTTLPR and EF is parental supervision (i.e., knowledge of child’s whereabouts, 

availability). Parental supervision is a critical component of adolescent development, given 

its association with socioemotional (Li, Berk, & Lee, 2013; Wang, Pomerantz, & Chen, 

2007), behavioral (Clark, Thatcher, & Maisto, 2005; Dishion & McMahon, 1998), and 

academic achievement (e.g., Li, Walker, & Armstrong, 2014; Soenens, Vansteenkiste, 

Luyckx, & Goossens, 2006) outcomes. The extant literature on parental supervision and 

adolescent cognitive and academic achievement has been mixed, as although some studies 

have found an association between higher parental supervision and better performance (e.g., 

Rankin & Quane, 2002), others have found null or inverse associations with performance 

(e.g., Li et al., 2014; Weiss & Schwarz, 1996). Despite evidence suggesting a role of 

parenting on the development of EF and related phenotypes, studies regarding the potential 

interplay of 5-HTTLPR genotype and EF are lacking.

The aims of this study were to elucidate the latent architecture of EF and to investigate the 

interplay of 5-HTTLPR and parental supervision on EF in adolescents. A hierarchical three-

factor structure for EF was predicted, characterized by dimensions corresponding to those 

reported by previous studies (i.e., inhibition, working memory, and set-shifting; Friedman et 

al., 2008; Miyake et al., 2001), as a well as a higher-order general factor that would account 

for the covariation among the dimensions. Youth exposed to low parental supervision were 

predicted to have worse EF performance compared to youth reporting comparably higher 

parental supervision. In line with recent GxE findings (e.g., Weikum et al., 2013), it was 

also predicted that individuals carrying the L/L genotype would be more sensitive to 

environmental influences, such that youth carrying the L/L genotype would perform worse 

on EF in the presence of poor parental supervision compared to youth with the S/S or S/L 

genotypes.

METHOD

Participants

Adolescent participants (N = 142; ages 12–15 years) were recruited from the Pittsburgh area. 

All participants were a representative sample stratified by year of birth, sex, and race-

ethnicity. Among these participants, genotype data were available for 116. All descriptive 

data can also be found in Table 1. Adolescents were identified through a neighborhood-

based targeted random dialing telephone procedure. Successfully contacted families were 

screened for eligibility by staff at the University Center for Social and Urban Research 

(UCSUR) at the University of Pittsburgh. Eligible participants and their parents completed 

informed consent, a psychological assessment, and DNA collection. Written informed 

consent was obtained in person from a parent and assent from the adolescent before 

conducting any of the study procedures. The study protocol was approved by the 

university’s Institutional Review Board.

Genotyping

We extracted DNA from saliva using a mouthwash protocol (King et al., 2002). Samples 

were subjected to whole genome amplification using the genomiphi protocol (Dean et al., 

2002), quantified by the PicoGreen protocol, and diluted to 40 ng/μL for storage. A 
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polymerase chain reaction protocol followed by double restriction endonuclease digestion 

was used to identify the 5-HTTLPR and rs25531 variants: S, La, and Lg (Wendland, Martin, 

Kruse, Lesch, & Murphy, 2006). The primer sequences were: (forward) 5′-

TCCTCCGCTTTGGCGCCTCTTCC-3′, and (reverse) 5′-

TGGGGGTTGCAGGGGAGATCCTG-3′. The L allele was subtyped for rs25531. The A > 

G SNP of rs25531 was concurrently detected by digesting the amplified fragments with 

MspI (New England Biolabs, Beverly, MA), where the A > G substitution creates an 

additional MspI site. Amplification products were simultaneously resolved by 

electrophoresis on 3.5% agarose gels. The La variant (528 bp) has approximately three times 

the basal activity of the S promoter (484 bp) with the deletion (Lesch et al., 1996).

The genotype distribution for the available sample was: S/S (16.4%; n = 19), S/Lg (10.3%; n 

= 12), Lg/Lg (1.7%; n = 2), (12.1%; n = 14) S/La (35.3%; n = 41), and La/La (24.1%; n = 

28). Because the rare Lg and S allele are functionally equivalent, we combined the rs24431 

SNP and 5-HTTLPR polymorphism so that the variable had three levels: (1) “S/S,” which 

includes S/S and S/Lg genotypes, (2) “S/L,” which includes S/La and Lg/La genotypes, and 

(3) “L/L,” which includes the La/La genotype. Following empirical precedent (Greenberg et 

al., 1999; Little et al., 1998), we dummy coded 5-HTTLPR genotype where individuals 

carrying at least one copy of the low transcription alleles (i.e., S/S and S/L) were coded 0 

and individuals carrying zero low transcription alleles (i.e., L/L) were coded 1. Genotype 

frequencies did not deviate significantly from Hardy-Weinberg equilibrium (χ2 = .17; df = 

1).

Measures

Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 
2001)—The D-KEFS is a standardized neuropsychological assessment protocol with 

excellent psychometric properties. We used eight subtests of the D-KEFS: (1) Trail Making 

(attention, conceptual flexibility), (2) Verbal Fluency (processing speed, lexical 

organization), (3) Design Fluency (nonverbal processing speed), (4) Color-Word 

Interference (response inhibition, conceptual flexibility), (5), Sorting (conceptual 

flexibility), (6) Twenty Questions (deductive reasoning, working memory), (7) Word 

Context (deductive reasoning, conceptual flexibility, working memory), and (8) Tower 

(planning). Each test is described in greater detail in the D-KEFS manual (Delis et al., 

2001). In line with previous studies and empirical precedent (i.e., Delis et al., 2001; Latzman 

& Markon, 2010), we used the D-KEFS Total Achievement Scaled scores (i.e., mean = 10; 

SD = 2) for our analyses. Means, standard deviations and effect sizes are presented in Table 

1.

Loeber Youth Questionnaire, Supervision Subscale (LYQ; Jacob, Moser, 
Windle, Loeber, & Stouthamer-Loeber, 2000)—The 58-item LYQ was completed by 

the adolescent. We used the supervision subscale, which consists of four items including (1) 

whether parents know where and (2) with whom he/she is with when away from home, (3) 

when he/she will return, and (4) whether he/she would be able to contact the parents when 

the parents are away from home. Adolescents responded to these questions by selecting the 

frequency of these items: “almost never,” “sometimes,” “almost always,” and “does not 
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apply.” Psychometric properties of the LYQ have been described elsewhere (Loeber, 

Farrington, Stouthamer-Loeber, & Van Kammen, 1998). The internal consistency 

(Cronbach’s alpha) of the scale in the current sample was adequate (.71).

Statistical Analyses

Analyses were conducted in Mplus 6.11 (Muthén & Muthén, 2010) using the full sample (N 

= 142). In the first step, we established the optimal factor structure for the D-KEFS by 

conducting an exploratory factor analysis (EFA) with correlated factors (i.e., oblimin 

rotation) on the full correlation matrix using maximum likelihood estimation (see Satorra, 

2003). A scree plot was examined for visual inspection of the best fitting factor structure. 

The Bayesian Information Criterion (BIC) was used to assess goodness-of-fit from models 

comprising of one to eight factors. In step 2, we fit a bifactor model using the best fitting 

factor model from the EFA. The bifactor model allows each item to have a positive loading 

on the general trait (which is assumed to underlie all items) as well as loadings on one or 

more “group” factors, which is assumed to be more conceptually narrow (Reise, Morizot, & 

Hays, 2007). Factor scores were derived based on the results of the bifactor model. In the 

final step, we conducted a hierarchical linear regression using the available genotypic 

sample (n = 116) to model: (1) main effects of parental supervision and 5-HTTLPR genotype 

and (2) main effects plus the interaction of 5-HTTLPR genotype and parental supervision for 

bifactor-derived EF variables. In all models, child age, sex (1 = male, 2 = female), self-

reported race-ethnicity (1 = European-American, 2 = African-American, 3 = other), and 

parental education (1 = GED, 2 = partial college, 3 = college graduate, 4 = partial graduate 

school, 5 = masters level degree, 6 = doctoral level degree) were controlled.

RESULTS

Factor Analysis and Factor Score Derivation

Factor loadings for the best fitting EFA model are shown in Table 2. Comparison of the BIC 

values for one through eight factor models indicated that the three-factor model was optimal 

(i.e., smallest BIC value). Results of the scree plot also suggested that the three factor 

solution provided the best fit to the data (i.e., based on number of factors with eigenvalues 

>1) (table and figure are available upon request). Our findings are almost entirely consistent 

with those reported by Latzman and Markon (2010) among their 8- to 19-year-old subgroup. 

The Sorting tests, including Free Sort Correct (.96), Free Sort Description (.99), and Sort 

Recognition (.70), uniformly loaded onto a single dimension, which was labeled as 

“conceptual flexibility,” because these tests require flexibility in thinking and behavior, 

manipulation of both verbal and nonverbal processes, and the ability to initiate problem 

solving, among other abilities (Greve, Farrell, Besson, & Crouch, 1995; Latzman & Markon, 

2010). The second factor consisted of high factor loadings contributed by Trail Making (.

63), Verbal Fluency Category Fluency (.42), Design Fluency (.56), Color-Word Inhibition (.

74), and Color-Word Inhibition/Switching (.79). This domain was labeled “inhibition,” 

given that these tasks measure the ability to inhibit overlearned responses across a variety of 

visual-motor tasks (Latzman & Markon, 2010). Finally, the third factor was represented by 

two tasks: Verbal Fluency Category Switching (.99) and Verbal Fluency Accuracy (.78). In 

contrast to Latzman and Markon (2010), factor loadings for Verbal Fluency Letter (−.04) 
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and Category Fluency (.26) did not significantly load onto this dimension. We labeled this 

factor “fluency.”

Next, we fit a three-factor bifactor model, with the purpose of determining whether the D-

KEFS tests could be represented by a single general factor, whereas each subdomain (i.e., 

conceptual flexibility, inhibition, and fluency) could be represented by unique group factors. 

Factor loadings from the bifactor analysis are shown in Table 2 and graphically represented 

in Figure 1. Factor loadings on the general factor were consistently high (i.e., >.40) for most 

subtests of the D-KEFS, with the exceptions of Verbal Fluency Letter (.28), Category (.31), 

Twenty Questions (.29), and Tower (.19). As expected, factor loadings on the three group 

factors were relatively consistent with the three-factor EFA solution, although two subtests 

no longer loaded highly onto the inhibition domain: Verbal Fluency Category (.27) and 

Design Fluency (.38). The general factor accounted for 38% of the explained variance, 

whereas the conceptual flexibility, inhibition, and fluency group factors accounted for 24, 

15, and 23% of the remaining variance, respectively. These findings indicate that a general 

factor is a significant contributor to subtest scores on the D-KEFS. Factor scores for the EF 

general factor, conceptual flexibility, inhibition and fluency were derived based on these 

results.

Gene-Environment Interaction

The bifactor solution was used to regress the general factor and the group factors on 5-

HTTLPR genotype, parental supervision, and their interaction within hierarchical linear 

regression models. In all models, race-ethnicity, sex, parental education, and child age were 

statistically controlled. Parameter estimates from these models are presented in Table 3. In 

the main effects models, we found a significant main effect for 5-HTTLPR L/L genotype (B 

= −.55; SE = .27; p = .05), but not for parental supervision (B = .15; SE = .14; p = .31) on 

the EF general factor. Specifically, individuals with the L/L genotype had lower scores on 

the EF general factor. No main effects for 5-HTTLPR or parental supervision were detected 

for conceptual flexibility, inhibition, or fluency. In the final (interaction) models, we 

detected a significant interactive effect of 5-HTTLPR and parental supervision for 

conceptual flexibility (B = −1.18; SE = .45; p <.01) (Figure 2). Post hoc analyses indicated 

that parental supervision was significantly associated with conceptual flexibility among 

carriers of the L/L genotype (B = .94; SE = .34; p <.01), but not among S/S or S/L 

individuals (B = −.18; SE = .30; p = .59). We then examined regions of significance using 

the Johnson-Neyman method (Preacher, Curran, & Bauer, 2006), revealing that conceptual 

flexibility scores did not differ between L/L versus S/L and S/S genotype groups at parental 

supervision Z-scores greater than −1.51. In other words, despite the association with 

conceptual flexibility as a function of increasing parental supervision, the L/L genotype 

group had significantly lower scores on conceptual flexibility at very low self-reported 

levels of parental supervision compared to the S/L and S/S groups. No significant 5-

HTTLPR by parental supervision interactions emerged for the general EF factor (B = −.38; 

SE = .25; p = .14) or inhibition (B = −.04; SE = .14; p = .78), although a marginally 

significant interaction effect was found for fluency (B = 1.00; SE = .57; p = .08).
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DISCUSSION

As hypothesized, three factors of EF emerged that reflected domains related to conceptual 

flexibility, inhibition, and fluency. The covariation between EF factors was associated with a 

single general factor, evidence that EF may be comprised of both unitary and disparate 

components. There was a significant main effect of 5-HTTLPR genotype on the general EF 

factor, such that individuals with the L/L genotype had lower scores on this factor than 

individuals without this genotype. Additionally, a significant 5-HTTLPR genotype by 

parental supervision interaction emerged that was specific to conceptual flexibility, even 

after controlling for race-ethnicity, sex, parental education, and child age. Specifically, 

youth with the L/L genotype performed worse on conceptual flexibility given very low 

levels of parental supervision compared to youth with S/S or S/L genotypes.

The factor structure of EF is relatively consistent with previous factor analytic studies (e.g., 

Latzman & Markon, 2010; Lee et al., 2013). During adolescence, distinct factors 

representing conceptual flexibility, inhibition, and fluency emerged in prior studies, 

including a general factor that largely accounted for the covariation between these 

dimensions. However, there is likely to be factorial variance outside of this developmental 

epoch, particularly in younger children where a two-factor structure has been reported (e.g., 

Huizinga et al., 2006; van der Sluis, de Jong, & van der Leij, 2007). Over the course of 

development, particularly from childhood to young adulthood, different neural circuits and 

brain regions mature along distinct trajectories (Ernst, 2014); the PFC, in particular, is 

crucial in regulating EF process and its development typically follows a linear trajectory of 

maturation as a function of age, such that certain abilities and functions to do not fully come 

online until adolescence (Ernst, 2014). This may explain why adolescent and adult samples 

typically converge on three factors of EF, whereas younger samples typically converge on 

two factors. The PFC may be associated with the general factor of EF, regions within the 

PFC and other subcortical structures (e.g., striatum, amygdala) may regulate specific 

dimensions of EF (Ernst, 2014; Monchi, Petrides, Strafella, Worsley, & Doyon, 2006; Stuss 

& Alexander, 2000; Taylor et al., 2004). Inhibition, conceptual flexibility, and updating 

were preferentially activated in the posterior regions of the left superior parietal gyrus and 

right intraparietal sulcus in a neuroimaging study (Collette et al., 2005). Conceptual 

flexibility was associated with activation in the inferior frontal gyrus (Hirschorn & 

Thompson-Schill, 2006; Periáñez et al., 2004), whereas inhibition was associated with 

activation of the right orbitofrontal gyrus (Collette et al., 2005).

We found a main effect of 5-HTTLPR genotype on the EF general factor, whereby 

individuals with the L/L genotype had lower scores on the EF general factor than individuals 

without this genotype, again suggesting that 5-HT regulation plays a generally important 

role in EF (Logue & Gould, 2014). Studies have shown an inverse association between the L 

allele, which is more transcriptionally active in coding 5-HT transporter proteins compared 

to the S allele, and performance on conceptual flexibility tasks in humans (Borg et al., 2009; 

Jedema et al., 2010), rodents (Birrell & Brown, 2000) and nonhuman primates (Clarke, 

Dalley, Crofts, Robbins, & Roberts, 2004; Lapiz-Bluhm et al., 2008). In addition, 

dimensions of EF may be influenced by different (and overlapping) neurochemical and 

genetic pathways in the PFC (Anderson, Northam, Hendy, & Wrenall, 2001; Jurado & 
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Roselli, 2007). Genes associated with dopamine receptors and transporters have been linked 

to performance in response inhibition (Ghahremani et al., 2012; Krämer et al., 2009) and 

working memory (Bertolino et al., 2006; Blanchard, Chamberlain, Roiser, Robbins, & 

Müller, 2011). Furthermore, a functional polymorphism in the catechol-O-methyltransferase 

(COMT) gene was associated with sustained attention and conceptual flexibility (Logue & 

Gould, 2014). These other genetic pathways, not examined here, also warrant consideration.

Previous genetic association studies on EF have largely ignored the potential contribution of 

environmental influences. We found that the association of 5-HTTLPR genotype was 

moderated by parental supervision for conceptual flexibility, but not for fluency or 

inhibition, and no longer for the EF general factor. Specifically, individuals with the L/L 

genotype may be more sensitive to parental influences in the context of their cognitive 

maturation trajectories (Ernst, 2014). Human neuroimaging studies suggest that these 

associations may be mediated by the distinct neural pathways, whereby environmental 

stressors may be increase the activation of the amygdala, which in turn relays signals to 

regulatory circuits in the PFC (see Caspi, Hariri, Holmes, Uher, & Moffitt, 2010; Hackman, 

Farah, & Meaney, 2010). However, the fact that the L allele conveyed increased sensitivity 

to parental supervision for conceptual flexibility is in contrast to the prevailing GxE 

literature for 5-HTTLPR and psychopathology, which consistently show that S allele carriers 

are more sensitive to environmental influences for internalizing and externalizing 

phenotypes than individuals carrying the L allele (Gibb et al., 2009; Kaufman et al., 2004; Li 

& Lee, 2010; Reif et al., 2007; Retz et al., 2008). One explanation is that certain genes are 

known to be pleiotropic (i.e., genes that effect multiple traits; Chesler et al., 2005) and their 

associations may differ depending on the phenotype. For example, the Val/Met 

polymorphism in the COMT gene was differentially associated with emotion-regulation 

versus cognitive phenotypes (Mier, Kirsch, & Meyer-Lindenberg, 2010). Similarly, there 

may also be functional variation in 5-HTTLPR with respect to emotion versus cognition, 

such that S allele homozygotes performed better on cognitive tasks but were more 

vulnerable to depression and anxiety than L allele carriers (Gizer et al., 2009; Wiekum et al., 

2013). Allelic functionality may also diverge depending on the environment (Borg et al., 

2009), where certain genotypes that were previously believed to confer risk in an adverse 

environment may also be simultaneously beneficial in the context of an enriched or 

supportive environment (Belsky & Pluess, 2009). The phenotypic and genetic complexity of 

EF warrants additional study, as different genetic and environmental influences may be at 

play for specific dimensions of EF.

Although parental supervision has been well-studied across a variety of developmental 

phenotypes, including delinquency (Murray & Farrington, 2010) and substance use 

(Bogenschneider, Wu, Raffaelli, & Tsay, 1998; Clark et al., 2004, 2005, 2008), few studies 

have focused on parental supervision in the context of EF development. Previous empirical 

and meta-analytic studies have produced mixed results for parental supervision and 

academic achievement (Li et al., 2014; Stattin & Kerr, 2000; Weiss & Schwarz, 1996;), 

which is robustly related to EF abilities (Best, Miller, & Naglieri, 2011; Clark, Prior, & 

Kinsella, 2002). It is possible that the inconsistency in the literature is due to the relevance 

of parental influences on EF, which has been understudied. In addition, our findings suggest 
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that parental influences continue to play a crucial role in the development of EF beyond 

childhood, which is in line with developmental theories (Galambos, Barker, & Almeida, 

2003; Steinberg & Silk, 2002). Future studies should explore the association between EF 

development during adolescence and other aspects of parenting, including support, warmth, 

and involvement, given previous work showing that these factors are associated with 

socioemotional and brain development in young children (Conger, Ge, Elder, Lorenz, & 

Simons, 1994; Tucker-Drob & Harden, 2012).

Several study limitations should be noted. First, our investigation focused on a single aspect 

of parenting (i.e., parental supervision). Although the importance of parental supervision in 

relation to adolescent outcomes is well-established, other dimensions of parenting, such as 

parental warmth, support, and involvement, have also been shown to be associated with EF 

development in younger populations (Hughes & Ensor, 2009) and may be relevant to 

cognitive development in adolescents as well. Second, cultural factors may have played a 

role in the GxE. Although race-ethnicity was statistically controlled in our analyses, 5-

HTTLPR alleles may be nonrandomly distributed by race and ethnicity in much larger 

populations and may have affected the genetic associations in our study (Gelernter, Cubells, 

Kidd, Pakstis, & Kidd, 1999). Racial-ethnic differences may also have influenced the 

magnitude of the association between parental supervision and EF, as one study found that 

parental supervision was inversely related to academic achievement among Asian 

Americans students but not with Caucasian students (Mau, 1997). Thus, racial-ethnic issues 

may be important to address in larger samples. Third, like most candidate gene studies, our 

sample was underpowered to detect genetic main effects. Genome-wide association studies 

(GWAS) of psychiatric and behavioral phenotypes have established that individual SNPs 

convey very small effects individually and account for only a fraction of the overall variance 

in the phenotype (Plomin, Haworth, & Davis, 2009). Indeed, variation in 5-HTTLPR 

genotype may exert only a small effect on conceptual flexibility and EF in general; other 

genes may potentially be identified using GWAS, which have yet to be conducted for EF. 

We await future studies of EF that will use more powerful approaches for gene 

identification. Fourth, our study of EF was limited to measures assessed by the D-KEFS. 

This precluded us from investigating other salient aspects of EF, such as those that involve 

decision-making and risk-taking (i.e., “hot” EF; Kerr & Zelazo, 2004). These functions have 

been implicated in the orbitofrontal cortex (Kerr & Zelazo, 2004), a region in the brain that 

is also sensitive to variations in 5-HT and environmental stimuli (Kalin et al., 2008). 

Additionally, a wider array of measures for EF may potentially uncover a more 

heterogeneous factor structure for EF than we derived. Finally, the data presented in the 

current investigation were not assessed longitudinally. Previous longitudinal investigations 

of EF have established variability in the factor structure of EF as a function of age (Huizinga 

et al., 2006; Lee et al., 2013; Prencipe et al., 2011; Zelazo et al., 2004). Using longitudinal 

strategies, such as latent growth curve modeling or structural equation modeling, may allow 

researchers to examine how genetic influences predict phenotypic patterns over time, while 

taking into account individual differences in initial status and trajectories. Longitudinal 

approaches should be prioritized in future investigations of EF.
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The current study characterized the latent structure of EF in a typically developing 

adolescent population with evidence that 5-HTTLPR genotype interacted with parental 

supervision in the prediction of conceptual flexibility. Our findings illustrate the utility of 

using a latent variable framework in the study of complex phenotypes and suggest that the 

dimensions of EF may be characterized by different genetic and environment pathways. 

Furthermore, we anticipate that integrated models of EF that incorporate genetic and 

environmental influences may potentially facilitate the development and implementation of 

targeted interventions. There is emerging evidence that 5-HTTLPR genotype may confer 

differential sensitivity to parenting behaviors, such that genetically susceptible individuals 

may develop simultaneously better and worse outcomes in the context of positive and 

negative parenting conditions, respectively (Hankin et al., 2011; Li et al., 2013). Future 

studies that incorporate gene-environment models may potentially identify populations that 

are not only at greater risk for developing negative outcomes, but may also benefit the most 

from interventions (Jaffee & Price, 2007; Brody, Beach, Philibert, Chen, & Murry, 2009).
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Fig. 1. 
Bifactor model and factor loadings. Factor loadings above >.40 are shown. TRA = Trail 

Making; VFL = Verbal Fluency Letters; VFC = Verbal Fluency Category; VFS = Verbal 

Fluency Switching; VFA = Verbal Fluency Accuracy; DES = Design Fluency; CWI = 

Color-Word Inhibition; CWS = Color-Word Switching; SCO = Sorting Correct; SDE = 

Sorting Description; SRE = Sorting Recognition; TWQ = Twenty Questions; WOC = Word 

Context; TOW = Tower.
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Fig. 2. 
5-HTTLPR genotype × parental supervision interaction.
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