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Abstract

Seedlings of Cucumis sativus L. (cv. 'Zhongnong 16') were artificially inoculated with Cu-
cumber green mottle mosaic virus (CGMMV) at the three-true-leaf stage. Leaf and flower
samples were collected at different time points post-inoculation (10, 30 and 50 d), and pro-
cessed by high throughput sequencing analysis to identify candidate miRNA sequences.
Bioinformatic analysis using screening criteria, and secondary structure prediction, indicat-
ed that 8 novel and 23 known miRNAs (including 15 miRNAs described for the first time in
vivo) were produced by cucumber plants in response to CGMMYV infection. Moreover,

gene expression profiles (p-value <0.01) validated the expression of 3 of the novel miRNAs
and 3 of the putative candidate miRNAs and identified a further 82 conserved miRNAs in
CGMMV-infected cucumbers. Gene ontology (GO) analysis revealed that the predicted tar-
get genes of these 88 miRNAs, which were screened using the psRNATarget and miRanda
algorithms, were involved in three functional categories: 2265 in molecular function, 1362
as cellular components and 276 in biological process. The subsequent Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis revealed that the predicted target genes
were frequently involved in metabolic processes (166 pathways) and genetic information
processes (40 pathways) and to a lesser degree the biosynthesis of secondary metabolites
(12 pathways). These results could provide useful clues to help elucidate host-pathogen in-
teractions in CGMMV and cucumber, as well as for the screening of resistance genes.
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Introduction

MicroRNAs (miRNA) are evolutionarily conserved endogenous noncoding RNAs [1] that
were first discovered in the nematode Caenorhabditis elegans [2]. Subsequent studies have re-
vealed that miRNAs can be found in a broad range of species including plants, nematodes, fruit
flies, mice and humans. As of June 2014 as many as 30424 miRNAs from 206 species have been
deposited in the miRBase database (http://www.mirbase.org, Release 21, June 2014). Empirical
investigations have recently demonstrated that miRNAs play important regulatory roles in a
range of biological and metabolic processes including the development and differentiation of
plant organs, as well as in response to external biotic and abiotic stresses [3]. More specifically
miRNAs are known to affect processes such as protein degradation, signal transduction, and
responses to pathogen invasion as well as the regulation of their own biogenesis [1]. Their
mode of action appears to involve post-transcriptional gene regulation by the repression of
translation or cleavage of targeted mRNAs.

Like other species of RNAs, miRNAs are initially formed in the nucleus before being trans-
located to the cytoplasm. The primary miRNAs (pri-miRNA), which have a characteristic
stem-loop structure, are transcribed by RNA polymerase Il within the plant nucleus, then ex-
ported out of the nucleus by Hasty (HST) [4]. In the cytoplasm the pre-miRNAs are cleaved
into miRNA by the enzyme Dicer to form 22 nt miRNA* duplexes. The resulting miRNA du-
plexes are integrated into the RNA-induced silencing complex (RISC), which recognizes com-
plementary sites on the target mRNAs resulting in transcript cleavage of the regulated genes
[5]. To date, the main approaches to identifying miRNAs in plants have been direct cloning
and sequencing by forward genetics, and bioinformatics methods, which have been applied ex-
tensively to explore novel and conserved miRNAs in Arabidopsis thaliana and Oryza sativa [6,
7]. However, the development of high-throughput sequencing methods using a Solexa platform
has offers several advantages over conventional Sanger sequencing and can produce more
abundant readings as a result of its increased sensitivity to short nucleic acid fragments [8]. As
a consequence, it has been suggested that many novel and conserved plant miRNAs could be
discovered using the Solexa system [9].

Cucumber (Cucumis sativus L.), which originated in India, is an economically important
member of the gourd family (Cucurbitaceae) and is cultivated worldwide [10]. However, the
production of crops belong to the cucurbitaceae has recently become increasingly threatened
by the Cucumber green mottle mosaic virus (CGMMYV), which belong to the Tobamovirus
genus of the Virgaviridae family. Plants infected with CGMMYV produce several characteristic
symptoms, including mosaic patterning on the leaves, and fruit distortions [11, 12]. The re-
duced yield and lower market value of affected fruits causes substantial economic losses world-
wide [13]. More frequent trade between different geographic regions has led to the rapid
spread of CGMMYV via contaminated materials, which include propagation stock, seeds, soil
and pollen [12, 14-18].

In addition to being a high value crop, cucumber is also an important model system for
plants, and has been used as a subject in many areas of plant research including induced and
acquired resistance to disease [19], sex-determining mechanisms [20], and phloem biology [21,
22]. The commercial importance of cucumber has also resulted in it being selected as the sev-
enth plant genome to be completely sequenced, following Arabidopsis thaliana, Poplar tricho-
carpa, Grapevine (Vitis vinifera), Papaya (Carica papaya), and the field crops Oryza sativa and
Sorghum bicolor [23, 24]. Furthermore, genetic and genomic variation maps have also been
produced for cucumber [25, 26], all of which are useful resources to study the function of miR-
NAs in response to pathogen infection. Indeed a recent study using high-throughput sequenc-
ing isolated 19 conserved sequences, as well as 7 novel candidate miRNAs from cucumbers in
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response to infection with Hop stunt viroid [27]. Meanwhile a similar study identified 29 miR-
NAs produced by healthy cucumber plants that target mRNAs associated with a broad range of
physiological processes including development and signaling transduction as well as transcrip-
tional regulation [28]. However, to date there has been little investigation of the post-transcrip-
tional role of miRNAs in cucumber. The identification of a greater number of miRNAs is a
prerequisite to further our understanding of miRNA function, while miRNAs associated with
pathogenic infections are of particular interest as they are thought to have significant roles in
regulatory functions [29, 30].

Even though it is extremely likely that miRNAs have important roles in virus resistance, to
date there have been no reports regarding the role of miRNAs in cucumber plants infected by
viruses. The objective of the current study was therefore to characterize the developmental and
organ-specific miRNAs produced by cucumbers in response to CGMMYV infection using next
generation sequencing and gene expression profiles, and in conjunction with GO and KEGG
pathway analysis, to ascribe possible functions to the miRNAs identified.

Materials and Methods
Sample collection and total RNA isolation

Cucumber seeds (cv. Zhongnong 16 [31]) were obtained from the Institute of Vegetables and
Flowers at the Chinese Academy of Agricultural Sciences (Beijing, China) and confirmed to be
CGMMYV -negative by RT-PCR. The seeds were germinated and planted in accordance with a
previous study [11] and kept under insect-proof netting (Zhiguang wire mesh products, Hebei,
China) to ensure the plants remained virus free. The CGMMYV inoculum was prepared from
infected cucumber leaves obtained from the Chinese Academy of Inspection and Quarantine
(CAIQ), Beijing, China.

Cucumber seedlings were inoculated with CGMMYV at the three-true-leaf stage. Leaves were
collected at 10, 30 and 50 days post inoculation (dpi). The leaves from the inoculated plants
were confirmed to be infected with CGMMYV using SEM and RT-PCR before their RNA was
extracted and sequenced (Fig 1). At anthesis the flowers (both male and female) were also col-
lected. Non-inoculated cucumber leaves and flowers were used as negative controls. All the
samples were immediately snap-frozen in liquid nitrogen and stored at -80°C until required.
Total RNA was extracted from the leaf and flower samples (three leaves or flowers, which were
collected from different plants, were pooled as one leaf or flower sample) using the EASYspin
Kit (Biomed, Beijing, China) according to the protocol of the manufacturer. Genomic DNA
was removed from the samples by treatment with RNase-free DNase I (TaKaRa, Dalian,
China). The quality of the resulting RNA was assessed using the Agilent 2100 Bioanalyzer sys-
tem (Agilent Technologies, Inc., USA).

Construction and sequencing of small RNA library

Small RNA (sRNA) fragments (10-40 nt) were isolated from the total RNA samples (200 pg)
using 15% (w/v) denaturing polyacrylamide gel electrophoresis (PAGE), and purified using a
Small RNA Gel Extraction Kit (Life technologies, USA). After ligation of the 5' and 3' adaptors,
the short RNA fragments were reverse transcribed and amplified by PCR (RT-PCR kit, Invitro-
gen, USA). The resulting cDNA library was purified using the MinElute PCR Purification Kit
(Qiagen, Germany) and its quality assessed using an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Inc., USA). Finally the entire cDNA library from each sample set was processed using
the Cluster Station (Illumina, San Diego, USA), and deep sequenced using the Genome Analy-
zerllx (Illumina, San Diego, USA) according to the protocol of the manufacturer.
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Fig 1. Confirmation of CGMMV-infection in cucumber samples (cv. Zhongnong 16). A, CGMMV particles in infected cucumber leaves observed by
SEM. B. Gel electrophoresis of RT-PCR using CGMMV specific primers. M, DNA ladder; 1, Sample from uninfected plants; 2, Blank control; 3, Sample from
infected plant; 4, Infected leaves obtained from CAIQ used as a positive control.

doi:10.1371/journal.pone.0129002.g001

Sequencing data analysis

The raw sequence data were collected using Illumina’s Sequencing Control Studio software ver-
sion 2.8 (SCS v 2.8, LC-Bio, USA), and extracted from the image files generated using Illumina
Genome Analyzer Pipeline software (Illumina, San Diego, USA). The distribution 15-30 nt
sRNA fragments was evaluated, and the poor quality sequences, which included junk se-
quences, sequences of repetitive bases, as well as dimers and trimers were removed before the
sequences were mapped to mRNA (http://www.ncbinlm.nih.gov/), RepBase (http://www.
girinst.org/repbase), RFam (http://rfam janelia.org). The remaining data was used to find con-
served miRNAs produced by cucumbers in response to CGMMYV infection using a BLASTn
search of the pre-miRNA (mir) and mature miRNA (miR) sequences listed in the latest release
of the miRBase 21.0 (htt://mirbase.org). All of the cucumber sSRNA sequences were then used
to BLASTn search the cucumber genome database (http://cucumber.genomics.org.cn/). In ad-
dition, their secondary hairpin structure was assessed using RNAfold software (http://rna.tbi.
univie.ac.at/cgi-bin/RNAfold.cgi) to identify potential miRNA precursor sequences. Before
being assigned as miRNAs, each candidate sequence had to fulfill several criteria including
being an accurate match to genomic sequences obtained from cucumber. The mature miRNA
sequence should be located in arm of hairpin structure and its precursors should also accumu-
late to a higher level of expression in vivo. The minimal folding energy (MFE) and minimal
free folding energy indexes (MFEI) as well as other attributes of potential miRNA precursors
were then assessed according to the fifteen criteria listed in Table 1 [32-35].

Validation of cucumber miRNAs by chip expression profiling

The hybridization chip was prepared using the 349 putative miRNAs identified from the se-
quencing and screening analysis, including the 8 novel miRNAs and 23 known cucumber miR-
NAs, as well as 649 sequences from other plant species closely related to the Cucurbitaceae
(including Arabidopsis lyrata, Arabidopsis thaliana, Brassica napus, Brassica oleracea, Brassica
rapa, Carica papaya, Cucumis melo, Gossypium arboretum, Gossypium herbaceum, Gossypium
hirsutum, Gossypium raimondii, Theobroma cacao, Populus euphratica and Populus tricho-
carpa) in the NCBI database, which were used for comparison. All leaf and flower samples (10,
30, 50 dpi leaves and flowers) were collected in triplicate from three separate plants. Small
RNA (5.0 ng) extracted from each sample was used to probe the hybridization chip. The exper-
iment was conducted using a pParaflo microfluidic chip (LC Sciences, Houston, TX) at 34°C.
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Table 1. Criteria used to screen putative miRNAs.
Criterion No. Content

Not contain the adaptor/acceptor in sequencing sequences.

Sequences length between 17-25 nt.

No-exceed 80% base A, or G, or C, or T.

Not match the mRNAs, rRNA and tRNA.

Minimal Free energy (dG in kCal/mol) < -15.

Minimal folding free energy index (MEFI) > 0.7 *.

Number of allowed errors in one bulge in stem < 12.

Number of base pair in stem region > 16.

Length of hairpin which the up and down stem plus terminal region > 50 nt.

0o N O g W s WD =

9 Length of terminal loop < 350 base pair.

10 Number of allowed errors in one bulge in mature region < 8.

11 Number of allowed biased errors in one bulge in mature region < 4.
12 Number of allowed biased bulges in mature region < 2.

13 Number of base pair (nt) in mature or mature* region > 12.

14 Percentage of small RNA in stem region (pm) > 80%.

15 Number of allowed errors in mature region < 7.

*Combined with LC science screening criterion and the results of previous studies [27, 28, 32-34].

doi:10.1371/journal.pone.0129002.t001

The hybridization images were collected using a laser scanner (GenePix 4000B, Aoxn, USA)
and transformed to digital data using the Array-Pro image analysis software (Media Cybernet-
ics, Washington, USA). The signal detection threshold was set to 500 after the background sig-
nal had been eliminated. Finally, the hybridization signals were detected and quantified using a
cyclic LOWESS filter and subjected to data analysis (Locally-weighted Regression) [36]. Each
hybridization was performed twice and Fisher’s least significant difference test was used to de-
tect significant differences at p-value <0.01 (signal >500).

Prediction of target genes associated with conserved miRNAs using
gene ontology and Kyoto encyclopedia of genes and genomes analysis

The target gene predictions for the results of chip hybridization analysis were made using mi-
Randa [http://www.microrna.org] and psRNATarget [http://plantgrn.noble.org/
psRNATarget/] software. Putative miRNA sequences were then annotated using the cucumber
UniGene database hosted at the Cucurbit Genomics Database [http://www.icugi.org] and the
CGMMYV genome database [http://www.ncbinlm.nih.gov], as well as the GO and KEGG data-
bases for A. thaliana [http://www.arabidopsis.org].

Results
Solexa sequencing and analysis of C. sativus small RNAs

The cucumber cultivar Zhongnong 16 [31] is one of the most widely cultivated cucumber culti-
vars in the area around Beijing and was selected for the current study because preliminary inoc-
ulation experiments revealed that it was highly sensitive to CGMMYV. Leaf samples were
collected at three different time points (10, 30 and 50 dpi), which were representative of both
the progress of disease development and the lifecycle of the cucumber plants. When kept under
greenhouse conditions at 27-32°C with natural light the cucumber plants were found to display
typical symptoms of disease, including mottle and mosaic patterning as well as deformity of
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Fig 2. Length distribution of mapped sequence reads from cucumber plants infected with CGMMV.

doi:10.1371/journal.pone.0129002.9002

shape, at 15-30 dpi. The 10 dpi sample was selected to coincide with the asymptomatic period
post inoculation, while at 30 dpi and 50 dpi the samples were representative of the symptomat-
ic phase, but also corresponded to the period of vegetative growth at 30 dpi and the transition
to reproductive maturity at 50 dpi, at which point the male and female flowers were also col-
lected. The CGMMYV status of both the inoculated and non-inoculated samples was confirmed
to be CGMMV-positive by SEM and RT-PCR (Fig 1) before sSRNA extraction and sequencing.
A total of 16,668,516 raw reads were produced. However, after filtering out adapter sequences
and junk reads (length <15 nt) according to the criteria of Illuminas’s Genome Analyzer Pipe-
line software and ACGT101-miR program, this figure was reduced to 16,401,912 mappable
reads, which constituted 98.4% of the total sequence population. The mappable sequences were
compared with RNA databases including Repbase and RFam to eliminate other RNA species
and highlight candidate miRNAs. This process identified 71,154 mappable reads correspond-
ing to mRNA (0.4%), 742 reads of repetitive sequences (ca. 0%), and 50,799 reads correspond-
ing to rRNA, tRNA, snRNA, snoRNA (ca. 0.3%), as well as 1,216,061 no-hit un-mapped reads
(7.4%). The putative miRNA sequences were then filtered further according to the FE or MEFI
criteria listed in Table 1, which yielded a final total of 15,063,156 mappable reads within the
15-30 nt range, of which 95.3% were 23 nt in length (Fig 2). These results differed to those of a
previous study investigating cucumbers infected by Hop stunt viroid, in which only 10.40% of
the mappable reads were 23 nt in length [27].

Identification and Characterization of C. sativus miRNAs

The 15,063,156 mappable reads were compared with mirs (Pre-miRNA)/miRs (mature miR-
NAs) from the genome of cucumber and closely related cucurbitaceae species in the miRBase
(http://mirbase.org). The results revealed 23 known cucumber miRNAs that fulfilled the crite-
ria defining mature miRNAs (Tables 1 and 2). The length of their corresponding pre-miRNA
sequences ranged from 80-346 nt (Fig 3). The secondary stem-loop hairpin structures of the
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Table 2. Known miRNAs isolated from cucumber infected with CGMMV.

No. Name (csa) Sequence L (nt) A G C T PL (nt) La MFE (kcal mol™) MEFI
1 miR156b CTCTCTCTCTCTCTCTC 17 0 0 9 129 3 -61.3 1.2
2 miR164a TTCATCTTCATCTTCTT 17 2 0 5 10 156 5 -66.4 0.8
3 miR167h GAAAGAACAAGAACAATCTTCTAC 24 12 3 5 4 151 3 -53 0.8
4 miR171d CGCTCTCAAAATGAGCCCACTGCAC 25 7 4 10 4 103 3 -53.8 1

5 miR172c CTTGATGATCCTGCAGAT 18 4 4 4 6 133 3 -60.5 1.2
6 miR390 CTCATCTCTTTCTCTCTCAAACTCC 25 4 0 11 10 209 3 -78.8 0.8
7 miR395a CTTTATTGATATATAAT 17 6 1 1 9 110 5 -48.4 1

8 miR437a TTTTTTGTTGATCTTGCTGGTCG 23 1 6 3 13 190 3 -52.8 1

9 miR536a CGGAAAGATACCAGAAGATACC 22 10 5 5 2 199 3 -72 0.8
10 miR812f TCTTATTTAATGTTTTTT 18 3 1 1 13 179 5 -64.7 1.5
11 miR827 GCGAAAATGAACTTTTC 17 6 3 3 5 131 5 -75.5 1.2
12 miR838 CTTTTCTTCTACTTATGCTCATAC 24 4 1 7 12 207 3 -79.9 1
13 miR902a GTCAAGAGGAAGAAAATTA 19 10 5 1 3 223 3 -69.6 0.7
14 miR902¢c GTCAAGAGGAAGAAAATTA 19 10 5 1 3 134 3 -54.2 1
15 miR1082a CTTTCTCTCTCTCTCTCCT 19 0 0 9 10 160 3 -79.1 0.9
16 miR1310 CCTCGACCTATTCTCATGGAATTC 24 5 3 8 8 80 5 -35.4 0.8
17 miR2087 CATTTTAGTCATTTACTACCCA 22 6 1 6 9 265 3 -157.8 1.5
18 miR2585a TTCGACCAACTTAATCA 17 6 1 5 5 346 5 -168.8 1.3
19 miR2608 CTTTGTCTCTCTCTCTCTCTT 21 0 1 8 12 212 3 -58.8 0.9
20 miR2673a CTTCCTCCTCCTCTTCTCCTTCT 23 0 0 12 11 247 5 -71.6 0.7
21 miR3440b ACTAATACAAAATGTGCCGATT 22 9 3 4 6 125 3 -70.4 1.4
22 miR5015a CTGTTGTTGTTGCTGTTACTA 21 2 5 3 11 173 5 -88.7 1.6
23 miR5538 ATGAGGAACTACTGAACTCAATCAC 25 10 4 6 5 123 5 -42.9 0.8

*P, Precursor, L, Length, La, Location of arm, MFE, Minimal folding energy, MEFI, Minimal folding free energy index.

doi:10.1371/journal.pone.0129002.t002

miRNAs were located in both the 5"and 3' arms, with 9 miRNA sequences being located in the
5'arm and the other 14 in the 3" arm. The average MFEI and MFE values of the miRNAs,
which are considered important standards [32], were -2.5 kcal/mol and 1.07, respectively.
Given that the secondary structure of pre-miRNA is an important screening criterion to distin-
guish them from other small RNAs, further predictions regarding the secondary structures of
the known miRNAs were made based on existing cacumber miRNAs and genomic data. These
results confirmed that the 23 known miRNAs produced in response to CGMMYV infection cor-
responded to mature miRNA (Table 2). Although 8 of the 23 confirmed miRNAs have previ-
ously been reported in cucumber [27, 28], the current study represents the first example of the
remaining 15 being observed in vivo. Furthermore, according to the criteria of the previous
studies [27, 28] that were used to compile the strict screening criteria listed in Table 1, there
were as many as 120 other predicted candidate (PC) miRNAs (S1 Table, S1 Appendix, S2 Ap-
pendix) among the mappable reads that almost fulfill the screening criteria for pre-miRNAs.
Alignment of the unmapped sequences with cucumber genomic DNA and filtering according
to the screening criteria for miRNAs, indicated that 12 new miRNAs had been isolated. How-
ever, analysis of the secondary structure of their precursors, and their location in arm of the
stem-loop structure (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) indicated that only eight
of the 12 could be confirmed as novel miRNAs (S2 Table, Fig 4, S1 Appendix, S2 Appendix).
The MFE and MFEI of their pre-miRNAs averaged -32.214 kcal/mol and 0.738, respectively.
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Microarray analysis of miRNAs from cucumbers and closely related
plant species, and bioinformatic analysis of their associated target genes

Hybridization chips containing a total of 998 miRNA sequences were used to generate an ex-
pression profile to validate the target sequences of miRNAs associated with CGMMYV infection.
The hybridization chips were prepared using the 349 unique miRNA sequences including the
23 known miRNAs, 8 novel miRNAs, 120 PC cucumber miRNAs, as well as 649 miRNAs
(unique sequences) from the miRBase [http://www.mirbase.org/, Release 21, June 2014] corre-
sponding to miRNA sequences from a range of other angiosperm plants including Arabidopsis
thaliana and Populus trichocarpa as well as various other species belong to the orders Cappar-
ales, Violales, Malvales and Salicales, which all belong to the Dilleniidae, the same subclass as
cucumber. Of particular interest were four homologous miRNAs, 3 from C. sativus (Cucurbita-
ceae) and 1 from Carica papaya (Caricaceae), which had been identified in a previous study.
The chips were probed with sSRNA extracted from the leaves and flowers of cucumbers at dif-
ferent time points post inoculation with CGMMYV, as well as with the non-inoculated controls.
The analysis identified 82 conserved miRNAs, similar to the miRNAs produced in the close-
ly related plant species as described as above, 3 putative miRNAs and 3 novel miRNAs that
were expressed in CGMMYV-infected leaves and flowers (52 and S3 Tables). The target genes of
the conserved miRNAs were further investigated by cluster analysis using Cluster and Treeview
software (P-value of Fisher’s exact test < 0.01). The results indicated that the expression level
of 3867 related genes could be affected by the regulatory functions of the cucumber miRNAs.
Gene ontology annotation indicated that 2265 of these genes were involved in molecular func-
tion, 1326 as cellular components and 276 in biological process (Fig 5A, 5B and 5C). The subse-
quent KEGG analysis (P-value of Fisher’s exact test <0.1) showed that the annotated genes
were involved in 16 pathways, which could be classified into three groups including metabo-
lism, genetic information processing, and those with no definition comprising 63 related path-
ways, including glycolysis, gluconeogenesis and the tricarboxylic acid cycle (TCA cycle). More
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csa-miRn8-3p

Fig 4. Secondary structure of novel cucumber miRNAs predicted by bioinformatic analysis using RNAfold software (http://rna.tbi.univie.ac.at/cgi-
bin/RNAfold.cgi).

doi:10.1371/journal.pone.0129002.9004

than 80% of the predicted target genes were involved in metabolic pathways and ribosome bio-
genesis. The remaining genes were associated with the biosynthesis of secondary metabolites,
carbon fixation in photosynthetic organisms, the TCA cycle, lysine degradation, ubiquitin me-
diated proteolysis, pyruvate metabolism, purine metabolism, glycolysis/gluconeogenesis,
mRNA surveillance pathways, pentose and glucuronate interconversion, N-glycan biosynthe-
sis, the pentose phosphate pathway, glycerophospholipid metabolism and glutathione metabo-
lism (Fig 5D).
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The GO and KEGG pathway analysis also predicted many target genes associated with the
miRNAs that were produced by cucumbers in response to CGMMYV infection. Genes with
functions related to disease symptoms and resistance were of particular interest because they
provide clues relating to potential pathogenic mechanisms and resistance genes. Comparison
of the hybridization signals produced by the infected and non-infected samples at different
time points post-inoculation revealed that different miRNAs were typically expressed at differ-
ent developmental stages (S3 Table), with 22,27, 13, 14 and 1 individual miRNAs being ex-
pressed in the leaves at 10, 30, 50 dpi, and in the male (mfi) and female (ffi) flower samples,
respectively (p-value <0.01, hybrid signal >500). However, when the signal was <500, the
number of miRNAs for the five samples were 14, 19, 11, 3 and 1, respectively. When the results
produced under both sets of parameters were combined a total of 88 validated miRNAs had
been identified, which represented 47 different miRNAs families, including 16 already docu-
mented in cucumber [27, 28], as well as 3 putative miRNA families and 3 novel miRNAs not
previously confirmed in vivo. The remaining 25 families, previously characterized in closely re-
lated species, are described in cucumber for the first time in the current study. The precursor
sequences of the 88 cucumber miRNAs were subsequently used to blast search the cucumber
genome [http://www.icugi.org/cgi-bin/ICuGI/genome/index.cgi] in an attempt to identify
genes associated with pathogenicity.
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Discussion

The current study generated a total of 15,063,156 mappable reads. Unexpectedly, the vast ma-
jority of them (95.3%) were shorter in the case of cucumber and wheat studies at 23 nt rather
than 24 nt, but longer than the SRNAs of tomato which were 21-22 nt [9]. Moreover, only
1.1% of the sSRNAs recovered from cucumbers infected with CGMMYV were 24 nt, which is a
huge difference compared with previous studies. Both of healthy cucumber leaves and roots, in
which 24 nt sSRNAs were the most abundant (>40%) [28]. Although the anomalous results
could have resulted from differences in the sequencing procedures, it is also possible that the
high proportion of 23 nt sSRNA could have been influenced by CGMMYV infection itself. Varia-
tion in sSRNA length has also been observed in previous studies of cucumber including cucum-
ber leaves and phloem infected with Hop stunt viroid [27], healthy cucumber leaves and roots
[28], and leaves and roots from grafted cucumbers and pumpkins [39], and it is possible that
biotic factors such as CGMMYV infection as well as other abiotic factors could affect the propor-
tion of sSRNAs of different lengths.

Analysis of the mapped reads revealed there to be 23 known cucumber miRNAs as well as a
further 120 PC miRNAs. The 23 known cucumber miRNAs appeared to be produced at partic-
ular time points in the leaf samples, with 12, 8 and 3 miRNAs being identified at 10, 30 and
50 dpi, respectively, and none being recovered from the flower samples. The functions of many
plant miRNAs have been determined and released in the miRBase, which was a useful resource
for determining the predicated target genes of these miRNAs. One of the most interesting of
the miRNAs produced at 10 dpi was miR156, which was first isolated from Theobroma cacao
[40] and is conserved in Cucumis melo [41], a close relative of cucumber. Previous studies of
these homologues have shown miRNA156 to be associated with 11 members of the SQUA-
MOSA promoter binding protein like (SPL) family, which can cause altered carotenoid levels
in seeds via the suppression of SPL genes [42]. Previous research has also demonstrated that
SPL genes influence leaf morphogenesis in Arabidopsis thaliana [43]. The bioinformatics anal-
ysis in the current study predicted that miR156 regulates the target genes Csa6M091970.2 and
Csa6M091970.1 (http://www.icugi.org/cgi-bin/ICuGl/index.cgi), proteins that have been
shown to play a role in many metabolic processes including microbial defense, signal transduc-
tion, regulation of cell development, and pollen maturation [44-46]. In addition, miR156 can
also regulate Csa5M198140.1 and CsalM038340.1, which can affect the development of leaves,
flowers, fruit and lateral roots. It has proofed that miR156-mediated age pathway can regulate
flowering time in many species including Arabis alpina, Solanum tuberosum (cv. ssp. andigena
7540) and Panicum virgatum [47]. It is therefore possible that miR156 is responsible for the
deformation of leaves and fruits observed during CGMMYV infection as well as the delayed
blooming and reduced fruit production. Previous research identified that miR156 can notably
affect biomass production in Panicum virgatum and Medicago sativa, respectively [48, 49].
These results strongly suggest that miR156 can play roles with production of cucumber. Anoth-
er interesting miRNA active at 10 dpi was mi390. Previous studies in Physcomitrella paten have
shown that miR156 and miR390 can affect developmental timing. In particular it was found
that the over expression of miR390 resulted in the delayed formation of gametophores [50].

It is therefore possible that the expression of miR390 during CGMMYV-infection could delay
flowering and affect fruit production in cucumbers.

Two of the miRNAs active at 30 dpi, miR171c and miR172d, which have previously
been associated with plant development including the regulation of transcription and growth,
phloem transport and the differentiation and development of flower organs, were predicted
to target several genes including Csa6M109640.1, Csa3M020600.1, Csa6M296960.2 and
Csa6M296960.1. Previous research has indicated that these genes probably have a role in the
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transport of virus particles within infected cucumber plants [51]. Moreover, it has also been
demonstrated that these genes mainly regulate flower development and organ morphogenesis
[52]. For example, allelic mutation experiments have shown that the transcription factors
CsabM296960.2 and Csa6M296960.1 (APETALA1/2, AP1/2) can control the formation of se-
pals in Arabidopsis [53]. It is also interesting to note that CsalM605660.1, which revealed in
the cucurbit genomics database annotation (http://www.icugi.org/cgi-bin/ICuGl/tool/blast.
cgi), is a target gene for miR2673 at 30 dpi, and associated with the growth of the pollen tube.
Taken together these results indicate that the miRNAs highlighted by the current study could
be of great significance in elucidating the factors influencing the delayed flowering and reduced
fruit production observed in CGMMYV-infected cucumbers and that they therefore warrant
further study.

The target genes of the 8 novel miRNAs (S2 Table) were also assessed. Two of the novel
miRNAs, csa-miRn1-3p and csa-miRn2-3p, were found to affect the transcription factors
CsalM109320.1 and Csa6M056520.1, respectively. CsalM109320.1 is an example of a myelo-
blastosis (MYB) transcription factor, which contains a 52 amino acid region that binds se-
quence-specific regions of DNA and play a role in the regulation of many metabolic processes
in plants, including cellular morphogenesis and development, secondary metabolism and re-
sponses to biotic and abiotic stresses, meristem formation and the cell cycle [54, 55]. In con-
trast, Csa6M056520.1 is a transcription factor containing the basic leucine zipper domain
(bZIP). Evolutionary analysis has shown that bZIP transcription factors occur in all plants as a
consequence of sharing a common ancestor, and are important in light and stress signaling,
and flower development [56, 57]. In addition to their other functions, it is known that both
MYB and bZIP transcription factors have roles during pathogen infection. Previous studies
have shown that MYB genes are induced in tobacco plants in response to TMV infection, being
important in the hypersensitive response and systemic acquired resistance, while bZIP factors,
which bind to the G-Box of the soybean (cv. Glycine max) Chs15 promoter are also activated
during the plant defense response [58-62]. Experimental evidence has also shown that
Csa7M073450.1, which is regulated by csa-miRn1-3p, can induce UDP-glycosyltransferase and
scopoletin glucosyltransferase (S2 Table), both of which have been associated with pathogen
resistance. For example, UDP-glycosyltransferase is necessary for resistance to Pseudomonas
syringae pv tomato in Arabidopsis [63] while scopoletin glucosyltransferase can cause Nicotia-
na tabacum to generate precocious lesions during tobacco mosaic virus infection [64].

Two of the other novel miRNA were predicted to be involved in aspects of cell wall metabo-
lism. In this case csa-miRn3-3p was found to target Csa4M578870.1, which encodes a microfi-
bril-associated protein, consisting of glycoproteins. This protein is an essential component of
the cell wall and cytoskeleton [65]. The development of the plant cell wall plays crucial roles in
plant growth, cell differentiation as well as in response to invading microbes, and it has been
suggested that Csa4M578870.1 is associated with the dwarfed appearance of CGMMV-infected
cucumber plants [66]. In contrast, csa-miRn5-5p was found to target Csa4M056510.1 (pectin
acetylesterase, PAE), which can induce plant cell wall degradation [67], and another regulatory
gene Csa2M033380.1 (actin binding/cytoskeleton) associated with the regulation of cytoskele-
tal microfilaments [68]. Actually, the novel miRNAs csa-miRn6-3p, csa-miRn7-5p and csa-
miRn8-3p (S2 Table) has been identified by chip expression profiles, it has display as PC-3p-
73705, PC-5p-12288 and PC-3p-64329, respectively (S3 Table). Another of the novel miRNAs
csa-miRn6-3p, which was validated by the microarray experiment, was found to regulate many
genes including Csa2M033380.1, Csa7M219220.1, Csa3M683670.1, Csa3M117970.1,
Csa3M019980.1, Csa2M380020.2, Csa3M119700.1, Csa4M000700.1 and CsalM424880.1.
These genes appear to be involved in lipid biosynthetic/metabolic processes, acyltransferase ac-
tivity and zinc ion binding, as well as encoding constituents of the thylakoid membrane (http://
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www.icugi.org/cgi-bin/ICuGl/tool/blast.cgi). Thylakoids have been shown to be associated
with phosphorylation and photosynthetic electron transport [69], and as an integral compo-
nent of the chloroplast it is likely that changes that affect their function could contribute to the
symptoms of CGMMYV infection such as the mottling of leaves. Another of the novel miRNAs
csa-miRn8-3p, was predicted to effect five target genes including a nitrate transporter
(Csa7M257340.1), which has previously been associated with crop yield [70]. The target genes
of the other two novel miRNAs csa-miRn4-5p and csa-miRn7-5p (S2 Table) could not be de-
termined since the cucurbit genomics database has no description for them.

Previous research has demonstrated that viral infection can alter the molecular function, bi-
ological processes and cellular components of host plants [71]. The response of cucumber to
viral stress is complex and involves many genes and molecular mechanisms, operating at both
the transcriptional and post-transcriptional level. It is possible that miRNAs have important
roles in regulating the function of such target genes. The chip expression profiles produced in
the current study identified 82 conserved miRNAs, and validated 3 of the putative miRNAs
and 3 of the novel miRNAs identified in the initial screening. The microarray analysis also pro-
vided valuable data regarding the importance of the different miRNAs at different develop-
mental stages and in different organs (S3 Table). It was hoped that such data would increase
our understanding of the host-virus interaction with regard to both the pathogenic mechanism
of the virus and the resistance response of the host. It is possible that the changes that occur to
host miRNA are related to the life cycle of the virus [72], which regulates host metabolism and
its intracellular environment [73]. Bioinformatic analysis of the target genes for the 88 miRNAs
expressed in the microarray analysis indicated that a range of biochemical processes were af-
tected by CGMMYV infection including DNA or protein kinase binding, cell death and immune
responses, all of which can also interact with other miRNA-mediated regulatory networks. For
example, the signaling pathway of the transmembrane receptor protein tyrosine kinase (S3
Table, GO:0007169) produced at 10 dpi could influence the ontologically conserved family of
miRNAs that include miR156, miR172, miR408 and miR444 and thereby regulate a range of
target genes including Csa6M296960.2, Csa6M296960.1, Csa6M091970.2, Csa6M091970.1,
Csa6M324830.1, Csa3M168380.1, Csa5M198140.1, Csa3M119480.2, Csa3M119480.1,
Csa6M384060.1, Csa3M585890.1, Csa2M171930.1, and Csa5M173540.1. Similarly the hetero-
trimeric G-protein complex (GO: 0005834) could also play a role in signal transduction by
combining their cognate receptors and effectors [74]. Indeed, a recent study using Ga, Gp and
Gy subunits [75] has demonstrated that heterotrimeric G-protein can play a critical role in the
resistance of Arabidopsis to Pseudomonas syringae infection. The current study identified three
miRNAs, miR408, miR160 and miR169, which could affect the expression level of heterotri-
meric G-protein at 50 dpi. Furthermore, it was also noted that miR2936, which is known to be
specifically expressed in the mature pollen of A. thaliana [76, 77], targeting an F-box protein
encoding genes during floral transition and seed development [78], and miR3638, which was
isolated from Vitis vinifera [79] produced strong hybridization signals in the flowers of
CGMMV-infected plants (p-value <0.01, hybridization signal <500). It is therefore possible
that the over expression of both miR2936 and miR3638 in CGMMV-infected could account
for the altered flowering time and seed formation observed in diseased cucumber plants. It in-
dicated that the yields reduced of cucumber plants contaminated with CGMMYV probably indi-
rect to associate with those two miRNAs. Previous research has also demonstrated that over
expression of the F-box domain proteins MAIF1 can reduce abiotic stress tolerance and pro-
mote root growth in rice, regulating rice growth and development [80]. Despite the potential
importance of these kinds of miRNAs, none of the miRNAs typically associated with cucumber
flowers produced significant hybridization signals (>500, p-value <0.01) and it is possible that
CGMMYV infection could cause them to have reduced expression. MiR319 has been
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demonstrated to target TEOSINTE BRANCHED/CYCLOIDEA/PCEF (TCP) transcription fac-
tors involved in multiple development pathways, the activity of TCP can immediate impact on
leaf cell number and subsequent to suppress cell proliferation. Finally, affect morphological
and size of leaf. Actually, miR396 which represses Growth-Regulating Factor (GRF) transcrip-
tion factor also come with miR319 to play effects [81], and it also play a critical role for petal
growth and development in Arabidopsis [82]. Those results were shown that both miR319 and
miR396 were probably associated with leaf malformation and plants dwarf, then finally leading
to yield losses.

None of the miRNAs identified in the current study corresponded to previously reported
viral-responsive miRNAs, which is probably a consequence of the limited number of viral-re-
sponsive miRNAs that have been identified for CGMMYV. Despite this, it is interesting to note
that 10 families of miRNA that were typically expressed in the infected cucumbers were similar
to those found in previous studies of CGMMV-infected plants. Perhaps this is not surprising
given that miRNAs are evolutionarily highly conserved and affect the same target genes in dif-
ferent species [27]. Moreover, it is possible that all of the target genes associated with the twen-
ty-five conserved miRNA families, 3 putative miRNAs and 3 novel miRNAs validated by the
microarray analysis could be expressed in response to CGMMYV infection. It is well established
that when plants experience exogenous stress, either biotic or abiotic, their response-related
gene expression is significantly altered [83, 84]. The results of the microarray analysis con-
ducted in the current study showed that many of the genes affected by CGMMYV infection have
similar functions (S3 Table) including inositol pentaphosphate 2-kinase activity (Gene ID:
398771727), cell death (Gene ID: 398753331), transcription factors such as protein kinase
binding (Gene ID: 398759683), zinc/magnesium ion binding (Gene ID: 398756973/
398774069), resistance related genes such as peroxisome (Gene ID: 398753922) and methyl-
transferase activity (Gene ID: 398762381). The KEGG analysis showed that the altered expres-
sion of these genes in cucumber played important roles in genetic information processing, the
biosynthesis of secondary metabolites and metabolic pathways (Fig 5D). Among the 16 path-
ways highlighted by the KEGG analysis (S5 Table), were 5 genes associated with glutathione
metabolism (Pathway ID: 480). Glutathione is an important intracellular antioxidant having
roles combatting both abiotic and biotic stress and is known to be closely related to infection
by plant pathogens [85-87]. Furthermore, previous studies have demonstrated that alterations
in glutathione metabolism can cause the chlorophyll content of leaves to change, further dis-
rupting photosynthesis and it is therefore possible that this is the mechanism by which the
leaves and fruits of cucumber plants exhibit mosaic or mottle symptoms when infected with
CGMMYV [88]. Both the GO and KEGG analysis also showed that the target genes correspond-
ing to the miRNAs expressed in the microarray analysis could be associated with CGMMYV in-
fection (54 and S5 Tables). The GO annotation classified the target genes into 3 categories MF,
BP and CC, which had different levels of abundance (MF > CC > BP). Moreover, the results
obtained from the hybridization chips indicated that the typical expression of miRNAs varied
at different developmental stages and in different organs. The analyses indicated that the num-
ber of miRNAs typically expressed in cucumber in response to CGMMYV infection changed as
the infection progressed. It was particularly interesting to note that the GO analysis predicted
that the greatest variety of miRNAs were expressed in leaves at 30 dpi, but that the KEGG anal-
ysis indicated that the greatest effect on metabolic pathways occurred at 10 dpi, even though a
lower number of miRNAs were involved (S3 Table).

In summary, the current study identified a broad range of miRNAs associated with
CGMMYV infection of cucumbers including 8 novel miRNAs, 23 previously known Csa-miR-
NAs, 82 conserved miRNAs, 3 putative miRNAs and 120 PC miRNAs (Table 2, S1-S3 Tables,
S1 Appendix, S2 Appendix), many of which were validated by chip hybridization.
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Bioinformatic analysis and gene annotations were used to predicate the functions of their target
genes, which indicated that many were involved in or mediated the regulation of physiological
mechanism in cucumber including pathogenesis-related genes associated with the symptom
and characteristic growth and development of cucumber infected with CGMMYV. It is hoped
that further investigation of the miRNAs and target genes implicated in this study could lead to
the development of disease-resistant plants.
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