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The Minimum Redundancy Maximum Relevance (MRMR) approach to supervised variable selection represents a successful
methodology for dimensionality reduction, which is suitable for high-dimensional data observed in two or more different groups.
Various available versions of the MRMR approach have been designed to search for variables with the largest relevance for a
classification taskwhile controlling for redundancy of the selected set of variables.However, usual relevance and redundancy criteria
have the disadvantages of being too sensitive to the presence of outlyingmeasurements and/or being inefficient.We propose a novel
approach calledMinimumRegularizedRedundancyMaximumRobust Relevance (MRRMRR), suitable for noisy high-dimensional
data observed in two groups. It combines principles of regularization and robust statistics. Particularly, redundancy ismeasured by a
new regularized version of the coefficient ofmultiple correlation and relevance ismeasured by a highly robust correlation coefficient
based on the least weighted squares regression with data-adaptive weights. We compare various dimensionality reduction methods
on three real data sets. To investigate the influence of noise or outliers on the data, we perform the computations also for data
artificially contaminated by severe noise of various forms. The experimental results confirm the robustness of the method with
respect to outliers.

1. Introduction

Variable selection represents an important category of
dimensionality reduction methods frequently used in the
analysis of multivariate data within data mining and multi-
variate statistics. Variable selection with the aim of finding
a smaller number of key variables is an inevitable tool in
the analysis of high-dimensional data with the number of
variables 𝑝 largely exceeding the number of observations 𝑛

(i.e., 𝑛 ≪ 𝑝) [1, 2]. The requirement to analyze thousands of
highly correlated variables measured on tens or hundreds of
samples is very common, for example, in molecular genetics.
If the observed data come from several different groups and
the aim of the data analysis is learning a classification rule,
supervised dimensionality reduction methods are preferable

[3], because unsupervised methods such as principal compo-
nent analysis (PCA) cannot take the information about the
group membership into account [4].

While real data are typically contaminated by outly-
ing measurements (outliers) caused by various reasons [5],
numerous variable selection procedures suffer from the pres-
ence of outliers in the data. Robust dimensionality reduction
procedures resistant to outliers were proposed typically in the
form of modifications of PCA [6–9]. Still, the importance
of robust variable selection increases [10] as the amount of
digital information worldwide increases unimaginably.

Most of the available variable selection procedures tend
to select highly correlated variables [11]. This is also the
problem of various Maximum Relevance (MR) approaches
[12], which select variables inefficient for classification tasks
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because of the undesirable redundancy in the selected set
of variables [13]. As an improvement, the Minimum Redun-
dancyMaximumRelevance (MRMR) criterionwas proposed
[14] with various criteria for measuring the relevance of a
given variable and redundancy within the set of selected
key variables. Its ability to avoid selecting highly correlated
variables brings about benefits for a consequent analysis.
However, the methods remain too vulnerable to outlying
values and noise [15].

In this paper, we propose a newMRMRcriterion combin-
ing principles of regularization and robust statistics, together
with proposing a novel optimization algorithm for its com-
putation. It is called Minimum Regularized Redundancy
Maximum Robust Relevance (MRRMRR). For this purpose,
we recommend using a highly robust correlation coefficient
[16] based on the least weighted squares regression [17] as
a new measure of relevance of a given variable. Further,
we define a new regularized version of the coefficient of
multiple correlation and use it as a redundancy measure. The
regularization allows computing it in a numerically stableway
for 𝑛 ≪ 𝑝 and is advocated as a denoised method improving
robustness properties.

This paper has the following structure. Section 2
describes existing approaches to the MRMR criterion.
Sections 3.1 and 3.2 propose and investigate new methods
for measuring redundancy and relevance. The MRRMRR
method is proposed in Section 3.3. Section 4 illustrates
the new method on three real high-dimensional data sets.
There, we compare various approaches for finding 10 most
important genes and compare their ability to discriminate
between two groups of samples. The discussion follows in
Section 5.

2. MRMR Variable Selection

This section critically discusses existing approaches to the
MRMR criterion, overviews possible relevance and redun-
dancy measures, and introduces useful notation. The total
number 𝑛 of 𝑝-dimensional continuous data is assumed to be
observed in 𝐾 different groups, where 𝑝 is allowed to largely
exceed 𝑛. Let X denote the data matrix with𝑋

𝑖𝑗
denoting the

𝑗th variable observed on the 𝑖th sample, where 𝑖 = 1, . . . , 𝑛

and 𝑗 = 1, . . . , 𝑝. The 𝑗th variable observed across 𝑛 samples
will be denoted by X

𝑗
= (𝑋

1𝑗
, . . . , 𝑋

𝑛𝑗
)
𝑇 for 𝑗 = 1, . . . , 𝑝.

Let Y = (𝑌
1
, . . . , 𝑌

𝑛
)
𝑇 denote the vector of group labels (true

groupmembership), which are values from the set {1, . . . , 𝐾}.
The aim is to find a small number of variables, which allow
solving the classification task into the groups reliably.

In its habitually used form, the MRMR variable selection
can be described as a forward search. The set of selected
variables will be denoted by 𝑆, starting with 𝑆 = 0. At first, the
most relevant single variable is selected to be an element of 𝑆.
Then, such variable is added to 𝑆, which maximizes a certain
criterion combining relevance and redundancy. In such away,
one variable after another is added to 𝑆. Common criteria for
combining relevance and redundancy include their difference
or ratio [11, 14, 15] or in a more flexible way

Rel (𝑆) − 𝛾 ⋅ Red (𝑆) (1)

with a fixed 𝛾 ∈ [0, 1], while choosing a fixed 𝛾 ∈ [0.5, 1] was
recommended by [13].

Relevance of a set of variables 𝑆 is commonlymeasured as

Rel (𝑆) =
1

|𝑆|
∑

𝑘∈𝑆

𝑅1 (Y,X𝑘)
 , (2)

where 𝑅
1
is a specified measure of similarity (suitable for

measuring association between a continuous and a discrete
variable), |𝑆| is the number of variables in 𝑆, and the sum
is computed over all variables of 𝑆. Common examples
of 𝑅
1
include measures based on mutual information [13,

14] or other approaches requiring a discretization (or even
dichotomization) of the data [15], the𝐹 statistic of the analysis
of variance [11], or Spearman rank correlation coefficient.
Specific ad hocmeasureswere proposed for𝐾 = 2 and cannot
be easily generalized for𝐾 > 2.

Redundancy of a set of variables 𝑆 is commonlymeasured
only as a sum of contributions of individual variables

Red (𝑆) =
1

|𝑆|
2
∑

𝑘,𝑙∈𝑆

𝑅2 (X𝑘,X𝑙)
 , (3)

where 𝑅
2
is a specified measure of similarity (suitable for

measuring association between two continuous variables).
Common examples of 𝑅

2
include the mutual information

or other measures based on information theory [11, 13, 14],
test statistics or 𝑝 values of the Kolmogorov-Smirnov or
sign tests, or very simple ad hoc criteria [15]. To the best of
our knowledge, no measure able to capture the multivariate
structure of the data (e.g., coefficient of multiple correlation)
has been used in this context.

Disadvantages or limitations of the MRMR in the habitu-
ally used form include a high sensitivity of standard relevance
and redundancy measures to the presence of outliers in
the data. While nonparametric measures do not suffer from
such sensitivity, they remain inefficient for data without
contamination by severe noise. Moreover, the mutual infor-
mation (as well as some other measures) is unsuitable for
continuous data. Commonly, continuous data are discretized,
which is strongly depreciated due to an unnecessary loss
of information [18]. Besides, some authors performed the
discretization of continuous data without giving its sufficient
description [13], while the effect of discretization of the
data has not been systematically examined [15]. In the next
section, we propose a robust and efficient version of the
MRMR criterion, which uses a suitable regularization and
tools of robust statistics.

3. Methodology

3.1. Regularized Coefficient of Multiple Correlation. Redun-
dancy is a measure of association between a continuous
variableZ and the whole set 𝑆 of several continuous variables.
The coefficient of multiple correlation is suitable to evaluate
the linear association between Z and the variables in 𝑆 jointly
by finding the maximal linear combination of the variables
in 𝑆. In order to allow the method to be feasible also for
the number of variables in 𝑆 exceeding 𝑝, we resort to
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a regularized coefficient of multiple correlation, which can be
also interpreted as a regularized coefficient of determination
𝑅
2 in linear regression of Z against all variables included in

𝑆. While the regularized coefficient may be used as a self-
standing correlation measure, it will be used as a redundancy
measure within the MRMR criterion in Section 3.3.

Within the computation of theMRMR, the set of selected
variables 𝑆 is gradually constructed by including one variable
after another, starting with selecting the most relevant single
variable, which will be denoted by T

1
. In each step, it is

necessary to measure the redundancy of 𝑆 after adding a
candidate variable Z = (𝑍

1
, . . . , 𝑍

𝑛
)
𝑇 observed across 𝑛

samples to 𝑆. After a certain number of 𝑠 steps of the
algorithm, there will be exactly 𝑠 variables in 𝑆. These will be
denoted byT

1
, . . . ,T

𝑠
, where the 𝑗th variableT

𝑗
contains data

values T
𝑗
= (𝑇
1𝑗
, . . . , 𝑇

𝑛𝑗
)
𝑇. Let us now consider 𝑠 to be fixed

and the aim is tomeasure association betweenZ and variables
T
1
, . . . ,T

𝑠
jointly.The idea of Tikhonov regularization [19, 20]

will be used to obtain a formal definition of a regularized
coefficient of multiple correlation.

Definition 1. Let R̃ denote the empirical correlation matrix
computed for the data

(

𝑇
11

⋅ ⋅ ⋅ 𝑇
1𝑠

𝑍
1

.

.

. d
.
.
.

.

.

.

𝑇
𝑛1

⋅ ⋅ ⋅ 𝑇
𝑛𝑠

𝑍
𝑛

). (4)

We define its regularized counterpart R∗ as

R∗ = (1 − 𝜆) R̃ + 𝜆I
𝑠+1

, 𝜆 ∈ (0, 1) , (5)

whereI
𝑠+1

denotes a unit matrix of size (𝑠 + 1) × (𝑠 + 1).

The matrix R∗ is ensured to be regular even for 𝑛 ≪ 𝑝.
In the whole work, we will work only with the asymptotically
optimal value of 𝜆, whichminimizes themean square error of
R∗ over 𝜆 ∈ (0, 1). This will be denoted by 𝜆∗ and is obtained
by modifying the general result of [21] to our context. For the
sake of simplifying the notation, letT

𝑠+1
denote the candidate

variable Z. Then, assuming 𝑠 → ∞, the explicit expression
for 𝜆∗ is distribution-free and is equal to

𝜆
∗
=

2∑
𝑠+1

𝑖=2
∑
𝑖−1

𝑗=1
v̂ar (𝑆∗

𝑖𝑗
)

2∑
𝑠+1

𝑖=2
∑
𝑖−1

𝑗=1
(𝑆∗
𝑖𝑗
)
2

, (6)

where

𝑆
∗

𝑖𝑗
= cov (T

𝑖
,T
𝑗
) , 𝑖 = 1, . . . , 𝑠 + 1, 𝑗 = 1, . . . , 𝑠 + 1,

v̂ar (𝑆
∗

𝑖𝑗
) =

𝑛

(𝑛 − 1)
3

[

[

𝑠+1

∑

𝑘=1

(𝑇
𝑘𝑖
− 𝑇
𝑖
)
2

(𝑇
𝑘𝑗
− 𝑇
𝑗
)
2

−
𝑠 + 1

𝑛2
(

𝑠+1

∑

𝑘=1

(𝑇
𝑘𝑖
− 𝑇
𝑖
) (𝑇
𝑘𝑗
− 𝑇
𝑗
))

2

]

]

,

𝑇
𝑖
=

1

𝑛

𝑛

∑

𝑗=1

𝑋
𝑘𝑖
, 𝑖 = 1, . . . , 𝑠,

𝑇
𝑠+1

=
1

𝑛

𝑛

∑

𝑘=1

𝑍
𝑘
.

(7)

Let us denote elements of R∗ computed with 𝜆
∗ by

(

𝑟
∗
(T
1
,T
1
) ⋅ ⋅ ⋅ 𝑟

∗
(T
1
,T
𝑠
) 𝑟
∗
(T
1
,Z)

.

.

. d
.
.
.

.

.

.

𝑟
∗
(T
𝑠
,T
1
) ⋅ ⋅ ⋅ 𝑟

∗
(T
𝑠
,T
𝑠
) 𝑟
∗
(T
𝑠
,Z)

𝑟
∗
(Z,T
1
) ⋅ ⋅ ⋅ 𝑟

∗
(Z,T
𝑠
) 𝑟
∗
(Z,Z)

) , (8)

where diagonal elements are equal to 1. We will use the com-
ponents of (8) to define R∗TZ and R∗TT by

R∗ZT = (𝑟
∗
(T
1
,Z) , . . . , 𝑟∗ (T

𝑠
,Z))𝑇 ,

R∗TT = (

𝑟
∗
(T
1
,T
1
) ⋅ ⋅ ⋅ 𝑟

∗
(T
1
,T
𝑠
)

.

.

. d
.
.
.

𝑟
∗
(T
𝑠
,T
1
) ⋅ ⋅ ⋅ 𝑟

∗
(T
𝑠
,T
𝑠
)

) .

(9)

Definition 2. Let the regularized coefficient of multiple corre-
lation between the vector Z and the set of vectors {T

1
, . . . ,T

𝑠
}

be defined as

𝑟
∗
(Z,T) = √(R∗ZT)

𝑇
(R∗TT)

−1 R∗ZT. (10)

We stress that (9) can be computed only after computing
thewholematrixR∗. For example, 𝑟∗(T

1
,T
2
) depends also on

T
3
, . . . ,T

𝑠
and Z. In other words, variables with a large vari-

ability borrow information from more stable (less variable)
variables in a way analogous to [22] and 𝑟

∗ can be considered
to be a denoised version of its classical counterpart. Besides,
(5) can be interpreted also from other points of view:

(i) It can be motivated as an attempt to correct for
an excessive dispersion of sample eigenvalues of the
empirical correlationmatrix ofT

1
, . . . ,T

𝑠
, similarly to

[23].
(ii) Equation (5) is a regularized estimator of the corre-

lation matrix shrunken towards a unit matrix. This
biased estimator with the optimal value of 𝜆 has
a smaller quadratic risk compared to its classical
counterpart thanks to Stein’s paradox [24, 25]. This
explains why a regularized estimator brings about
benefits also if the set 𝑆 is chosen to be relatively small
(e.g., 10 variables).

(iii) From the point of view of robust optimization [26],
(5) can be interpreted as locally robust against small
departures in the observed data.

(iv) Equation (5) can be derived as a Bayesian estimator,
assuming the inverse of the population counterpart
of S∗ to follow a Wishart distribution with a diagonal
expectation (cf. [21]).
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Remark 3. ThematrixR∗TT is always regular. Denoting eigen-
values of the empirical correlation matrix computed from
data

(

𝑇
11

⋅ ⋅ ⋅ 𝑇
1𝑠

.

.

. d
.
.
.

𝑇
𝑛1

⋅ ⋅ ⋅ 𝑇
𝑛𝑠

) (11)

by 𝜃
1
, . . . , 𝜃

𝑠
, the fact follows from the explicit formula for the

eigenvalues ofR∗TT in the form (1−𝜆
∗
)𝜃
𝑖
+𝜆
∗ for 𝑖 = 1, . . . , 𝑝;

that is, they are positive.

Remark 4. An efficient computation of (10) can exploit the
singular value decomposition of R∗TT in the form R∗TT =

QΘQ𝑇, where Θ is diagonal and Q is an orthogonal matrix.
Particularly,

(R∗TT)
−1

= QΘ−1Q𝑇, (12)

where

Θ
−1

= diag {((1 − 𝜆
∗
) 𝜃
1
+ 𝜆
∗
)
−1

, . . . ,

((1 − 𝜆
∗
) 𝜃
𝑠
+ 𝜆
∗
)
−1
} .

(13)

3.2. Robust Correlation Coefficient. In this section, some
properties of the robust correlation coefficient 𝑟LWS [16] based
on the least weighted squares (LWS) regression are derived
and we recommend using 𝑟LWS as a relevance measure for the
MRMR criterion for samples coming from𝐾 = 2 groups.

The LWS estimator [17] is a robust estimator of regression
parameters in linear regression model with a high finite-
sample breakdown point [5, 27], that is, highly robust against
severe outliers in the data. If the quantile-based adaptive
(data-dependent) weights of [28] are used, the estimator
attains a full asymptotic efficiency of the least squares (i.e.,
for noncontaminated normal data). The LWS estimator can
be computed using a weighted version of the fast algorithm
of [29].

Based on the LWS estimator for the linear regression, a
robust correlation coefficient 𝑟LWS(U,V)was proposed by [16]
as a measure of linear association between two data vectors

U = (𝑈
1
, . . . , 𝑈

𝑛
)
𝑇
,

V = (𝑉
1
, . . . , 𝑉

𝑛
)
𝑇
,

(14)

in the linear regression model

𝑉
𝑖
= 𝛽
0
+ 𝛽
1
𝑈
𝑖
+ 𝑒
𝑖
, 𝑖 = 1, . . . , 𝑛. (15)

Assuming data (14) to follow a continuous distribution,
the appealing properties of 𝑟LWS are inherited from the
LWS estimator [16]. To avoid confusion, let us introduce a
special notation for various versions of the robust correlation
coefficient 𝑟LWS based on different choices of weights.

Definition 5. One uses the notation 𝑟
𝐴

LWS(U,V) to define
𝑟LWS(U,V) with the adaptive weights of [28]. The notation

𝑟
LD
LWS(U,V) is used for 𝑟LWS(U,V) computed with the linearly
decreasing weights and the notation 𝑟

Log
LWS(U,V) is used for

𝑟LWS(U,V) computed with weights defined by means of a
logistic decreasing function [16].

The value of 𝑟LWS is a measure of goodness of the linear
fit in (15). We will now derive some properties of 𝑟𝐴LWS, which
are inherited fromproperties of the LWS regression estimator.
The computation of 𝑟𝐴LWS requires computing an initial highly
robust estimator of 𝛽 = (𝛽

0
, 𝛽
1
)
𝑇 in (15); this can be, for

example, the least trimmed squares (LTS) estimator [30].

Theorem6. Let (𝑈
1
, 𝑉
1
)
𝑇
, . . . , (𝑈

𝑛
, 𝑉
𝑛
)
𝑇 be a sequence of inde-

pendent identically distributed random vectors with 𝑛 > 2. One
assumes any two observations to give a unique determination
of 𝛽 in the linear regression of V against U almost surely.
Let 𝜖0
𝑛
denote the finite-sample breakdown point of an initial

estimator of 𝛽 in (15). Then the finite-sample breakdown point
of 𝑟𝐴LWS is larger than or equal to

{𝜖
0

𝑛
,
{⌊(𝑛 + 1) /2⌋ − 2}

𝑛
} . (16)

Proof. The finite-sample breakdown point of 𝑟
𝐴

LWS corre-
sponds to the smallest percentage of data that may be arbi-
trarily contaminated causing 𝑟

𝐴

LWS to take an arbitrary large
aberrant value (to “break down”) [31]. The robust correlation
coefficient inherits the breakdown point of the LWS estima-
tor, which was derived by [28] for the linear regression with
𝑝 regressors to be

{𝜖
0

𝑛
,
{⌊(𝑛 + 1) /2⌋ − (𝑝 + 1)}

𝑛
} . (17)

Now we study the asymptotic distribution of the robust
correlation coefficient based on the LWS estimator under
technical (but very general) assumptions.

Theorem 7. One considers the data (𝑈
1
, 𝑉
1
)
𝑇
, . . . , (𝑈

𝑛
, 𝑉
𝑛
)
𝑇

as a random sample from a bivariate normal distribution
with correlation coefficient 𝜌. One assumes the assumptions
of Theorem 3 of [28] to be fulfilled. Then, for 𝑛 → ∞,
𝑟LWS converges in distribution to a random variable following
normal distribution. Specifically, the asymptotic distribution of
𝑟
𝐴

LWS can be approximated by

N(𝜌,
(1 − 𝜌)

2

𝑛
) (18)

under the assumption 𝜌 ∈ (−1, 1).

Proof. The convergence to the normal distribution for 𝑛 →

∞ follows from the asymptotic normality of bLWS with
adaptive weights [28] and from the expression

𝑟
𝐴

LWS = 𝑏
LWS
1

√
∑
𝑛

𝑖=1
𝑤
𝑖
(𝑈
𝑖
− 𝑈LWS)

2

∑
𝑛

𝑖=1
𝑤
𝑖
(𝑉
𝑖
− 𝑉LWS)

2
, (19)
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where 𝑤
1
, . . . , 𝑤

𝑛
are weights determined by the LWS regres-

sion in (15) and𝑈LWS and𝑉LWS areweightedmeans computed
with these weights. The asymptotic expectation and variance
of 𝑟LWS are equal to the expectation and variance of the sample
correlation coefficient, whichwere approximated by [32].

Pearson’s correlation coefficient 𝑟(U,V) is a valid rele-
vance measure also if V is binary. Indeed, robust correlation
measures have been used in the context of logistic regression
[33]. This makes 𝑟LWS suitable also within the MRMR crite-
rion for measuring association between a binary vector of
labels (group membership) and a continuous data vector for
𝐾 = 2. In this context, 𝑟LWS ensures a high robustness with
respect to outliers in the continuous variableX

𝑘
in (2), where

the vector of labels is considered to be its response.

3.3. MRRMRR Variable Selection. We introduce a new ver-
sion of the MRMR criterion using a regularized redundancy
measure of Section 3.1 and a robust relevance measure of
Section 3.2. It is denoted as Minimum Regularized Redun-
dancy Maximum Robust Relevance (MRRMRR) and can be
interpreted as insensitive to the presence of outliers in the
continuous measurements X.

We search for the optimal value of 𝛾 in (1), which allows
the best classification performance over all possible 𝛾 > 0.
Because the relevance and redundancy may not be directly
comparable or standardized to the same limits, we do not
require 𝛾 ≤ 1.

Algorithm 8. Put 𝑆 = 0. First, the most relevant variable is
selected using (2) and is included in the set of variables 𝑆.
Further, the following procedure is repeated. Let X

𝑘
denote

the expressions of the 𝑘th variable in 𝑆 across observations.
We add such variable Z = (𝑍

1
, . . . , 𝑍

𝑛
)
𝑇 not included in 𝑆 to

the set 𝑆, which maximizes the criterion

max[𝑟LWS (Y,Z)
 − 𝛾∑

𝑘∈𝑆

𝑟
∗
(X
𝑘
,Z)] , (20)

over all variables not included in 𝑆 and over all values of
𝛾 ≥ 0. Other variables are included step by step to 𝑆, until
𝑆 contains a fixed number of variables, determined before
the computations. This approach is repeatedly applied with
different fixed values of 𝛾 and such value of 𝛾 is found optimal,
which allows the best classification performance.

Concerning the optimal number of selected variables,
we refer to [11] for a discussion. Basically, a fixed number
of the top-ranked genes are commonly selected to yield the
classification error equal to a specified constant [14]. Other
works applied an intuitive trial and error approach for speci-
fying a fixed number of selected variables without supporting
the choice by rigorous arguments.

4. Results

We compare the performances of various MRMR criteria on
three real data sets.

4.1. Cardiovascular Genetic Study. We use gene expression
data set from a whole-genome study on 24 patients imme-
diately after a cerebrovascular stroke (CVS) and 24 control
persons. This study of the Center of Biomedical Informatics
in Prague (2006–2011) had the aim of finding a small set of
genes suitable for diagnostics and prognosis of cardiovascular
diseases. The data for 𝑝 = 38 614 gene transcripts were mea-
sured using HumanWG-6 Illumina BeadChip microarrays.
The study complies with the Declaration of Helsinki and was
approved by the local ethics committee.

We perform all computations in R software. Variable
selection (gene selection) is performed by means of various
MRMR criteria with a fixed 𝛾 with the requirement to find
10 most important genes. We use the following relevance
measures: mutual information, Pearson correlation coeffi-
cient 𝑟, Spearman rank correlation coefficient 𝑟

𝑆
, and robust

correlation coefficients 𝑟
𝐴

LWS, 𝑟
LD
LWS, and 𝑟

Log
LWS (Definition 5).

Redundancy is evaluated using (3), where 𝑅
2
has the form

of mutual information, 𝑟, 𝑟
𝑆
, 𝑝 value of the Kolmogorov-

Smirnov test, 𝑝 value of the sign test, and 𝑟
∗.

Classification performance on a reduced set of variables
obtained by various dimensionality reduction procedures is
evaluated by means of a leave-one-out cross validation. For
this purpose, the data are repeatedly divided into training
(47 individuals) and validation sets (1 individual). The clas-
sification rule of the linear discriminant analysis (LDA) is
learned over the training set and is applied to classify the
validation set. This is repeated 48 times over all possible
choices of the training set, computing the values of sensitivity
and specificity of the classification procedures for each case.
At the same time, we compute the classification accuracywith
the optimal 𝛾 ≥ 0. Classification accuracy is equal to half of
the sum of sensitivity and specificity, that is, the number of
correctly classified cases divided by the total number of cases,
obtained with the optimal 𝛾 (over 𝛾 ≥ 0).

Various other classification methods are used without a
prior dimensionality reduction, including Prediction Analy-
sis for Microarrays (PAM) [22], shrunken centroid regular-
ized discriminant analysis (SCRDA) [19], and support vector
machines (SVM). For comparison, we investigate also the
effect of dimensionality reduction by means of PCA.

Table 1 presents results for some fixed values of 𝛾 as well
as results obtained with the optimal value of 𝛾 according
to Algorithm 8, that is, that nonnegative 𝛾 maximizing the
classification accuracy over all its possible values. In all
versions of the MRMR approach, the optimal classification
was obtained with 𝛾 ≤ 0.9. The results in Table 1 reveal that
MRRMRR outperforms other approaches to MRMR variable
selection. The mutual information turns out to perform
even much worse than the correlation coefficient, which is
a consequence of discretizing continuous data. Besides, we
performed also additional computations, including a 12-fold
cross validation, which yields analogous results.

Further we investigate whether the new MRRMRR
method can be accompanied by a consequent classification by
tools other than LDA. The results are overviewed in Table 2.
Clearly, MRRMRR does not seem to be linked to any specific
classification tool. SVM as well as SCRDA seem to perform
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Table 1: Leave-one-out cross validation performance of various classification methods for the data of Section 4.1. MRMR is used in version
(1) or (20) to find 10 variables, while the optimal 𝛾 over all 𝛾 ≥ 0 is used. Sensitivity (SE) and specificity (SP) are given for selected fixed values
of 𝛾.

Dimensionality reduction Classif. method Classif. accuracy
MRMR variable selection

Measure of MRMR criterion Parameter 𝛾
relev. redund. 0 0.1 0.2 0.3 0.5 0.7 0.9

Mutual info. Mutual info. (1) LDA 0.92 SE 0.75 0.83 0.92 0.88 0.96 0.96 0.96
SP 0.67 0.92 0.88 0.92 0.96 0.92 0.92

|𝑟| |𝑟| (1) LDA 1.00 SE 0.92 0.92 0.83 0.88 0.96 0.96 0.96
SP 0.88 0.96 0.96 0.96 0.96 1.00 1.00

|𝑟
𝑆
| |𝑟

𝑆
| (1) LDA 0.96 SE 0.83 0.83 0.96 0.83 0.92 0.96 0.96

SP 0.88 0.88 0.83 0.96 1.00 0.96 1.00

|𝑟| K-S (1) LDA 0.82 SE 0.92 0.92 0.92 0.92 0.92 0.88 0.88
SP 0.88 0.88 0.88 0.88 0.88 0.96 0.96

|𝑟| Sign test (1) LDA 0.82 SE 0.92 0.92 0.92 0.92 0.92 0.88 0.88
SP 0.88 0.88 0.88 0.88 0.88 0.96 0.96

|𝑟|
𝑟
∗ (20) LDA 1.00 SE 0.92 0.92 0.88 0.88 0.92 0.96 1.00

SP 0.88 0.96 0.96 0.96 0.96 0.96 1.00

|𝑟
LD
LWS|

𝑟
∗ (20) LDA 1.00 SE 0.92 0.92 0.96 0.96 0.96 0.96 1.00

SP 0.88 0.88 0.88 0.88 0.92 0.96 1.00

|𝑟
log
LWS|

𝑟
∗ (20) LDA 1.00 SE 0.92 0.92 0.96 0.96 0.96 0.96 1.00

SP 0.88 0.88 0.92 0.92 0.92 0.96 1.00

|𝑟
𝐴

LWS|
𝑟
∗ (20) LDA 1.00 SE 0.92 0.92 0.96 0.96 0.96 0.96 1.00

SP 0.88 0.88 0.92 0.92 0.96 0.96 1.00

Table 2: Leave-one-out cross validation performance evaluated by classification accuracy for the data of Sections 4.1, 4.2, and 4.3. MRRMRR
uses |𝑟𝐴LWS| as the relevance measure and |𝑟

∗
| as the redundancy measure.

Dimensionality reduction Classification method Classification accuracy
Section 4.1 Section 4.2 Section 4.3

— SVM 1.00 1.00 0.93
— Classification tree 0.94 0.97 0.55
— LDA Infeasible Infeasible Infeasible
— PAM 0.85 0.98 0.75
— SCRDA 1.00 1.00 0.79

Number of principal components 10 20 4
PCA SVM 0.75 1.00 0.90
PCA Clas. tree 0.72 0.97 0.59
PCA LDA 0.57 0.90 0.79
PCA PAM 0.64 0.81 0.77
PCA SCRDA 0.71 0.92 0.79

Number of variables for MRRMRR 10 20 4
MRRMRR SVM 1.00 1.00 0.93
MRRMRR Clas. tree 0.76 0.97 0.55
MRRMRR LDA 0.95 1.00 0.79
MRRMRR PAM 0.82 0.97 0.75
MRRMRR SCRDA 1.00 1.00 0.79
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Table 3: Leave-one-out cross validation performance evaluated by classification accuracy for the data of Section 4.1 contaminated by noise
of three different types. MRMR is used in version (1) or (20) in the same way as in Table 1 to find 10 variables, while the optimal 𝛾 over all
𝛾 ≥ 0 is used.

Dimensionality reduction Classif. method Noise 1 (normal) Noise 2 (contam. normal) Noise 3 (Cauchy)
MRMR variable selection

Measure of Classification accuracy
relev. redund.
Mutual info. Mutual info. LDA 0.79 0.88 0.92
|𝑟| |𝑟| LDA 0.92 0.85 0.96
|𝑟
𝑆
| |𝑟

𝑆
| LDA 0.92 0.92 0.96

|𝑟| K-S LDA 0.92 0.83 0.89
|𝑟| Sign test LDA 0.84 0.91 0.87
|𝑟|

𝑟
∗

LDA 0.90 0.86 0.94
|𝑟

LD
LWS|

𝑟
∗

LDA 1.00 1.00 0.98
|𝑟

log
LWS|

𝑟
∗

LDA 1.00 1.00 0.98
|𝑟
𝐴

LWS|
𝑟
∗

LDA 1.00 1.00 1.00
Unsupervised dimensionality reduction

PCA (with 10 princ. components) LDA 0.79 0.74 0.78
No dimensionality reduction

— LDA Infeasible Infeasible Infeasible
— PAM 0.79 0.73 0.79
— SCRDA 1.00 1.00 1.00
— lasso-LR 1.00 1.00 1.00
— SVM 1.00 1.00 1.00

very reliably if accompanied by MRRMRR. An attempt for
explanation will follow in Section 5.

In addition, we perform a sensitivity study comparing
various versions of the MRMR criterion on the same data
artificially contaminated by noise, which was generated as a
random variable independently of variable and observation
and added to each of the observed data values. For each
of the following three distributional models, the noise was
generated 100 times:

(i) Noise 1: normal distribution N(0, 0.1).
(ii) Noise 2: contaminated normal distribution with

cumulative distribution function (c.d.f.)Δ𝐹+(1−Δ)𝐺,
where Δ = 0.85, 𝐹 is a c.d.f. of N(0, 0.01), and 𝐺 is a
c.d.f. of N(0, 1).

(iii) Noise 3: Cauchy distribution with probability density
function

𝑓 (𝑥) =
𝑐

𝜋 (𝑥2 + 𝑐2)
, 𝑥 ∈ R, 𝑐 = 0.002. (21)

We used again various MRMR criteria to find the 10 most
relevant genes. The classification accuracy of LDA and other
methods is compared in a leave-one-out cross validation
study.

Averaged results obtained with the optimal 𝛾 (requiring
𝛾 ≥ 0) are given in Table 3. They reveal a high vulner-
ability of available dimensionality reduction methods to

the presence of noise. Here, MRRMRR outperforms MRMR
with various classical relevance and redundancy measures.
Besides, MRRMRR followed by LDA performs comparably
to some other standard classification methods, although it
actually uses 10 genes, while the other methods (SCRDA,
lasso-LR, and SVM) are allowed to use all 𝑝 = 38 614

genes. This performance is verified for noise under all three
distributional assumptions and the selected 10 genes by the
MRRMRR method do not suffer from noise. The difference
between different weight selections for the robust correlation
coefficient seems to play only a marginal role and we can say
that 𝑟𝐴LWS is able to slightly outperform 𝑟

LD
LWS and 𝑟

Log
LWS.

4.2. Metabolomic Profiles Study. We analyze the prostate
cancer metabolomic data set of [34], which contains 𝑝 = 518

metabolites measured over two groups of patients, namely,
those with a benign prostate cancer (16 patients) and with
other cancer types (26 patients). The task in both examples is
to learn a classification rule allowing discrimination between
𝐾 = 2 classes of individuals.

Standard classification methods are used on raw data as
well as after performing a dimensionality reduction. We use
MRRMRR with |𝑟

𝐴

LWS| as the relevance measure and |𝑟
∗
| as

the redundancy measure, because such choice turned out
to provide the most reliable results for contaminated data
in the study on contaminated data in Section 4.1. Results of
classification performance in a leave-one-out cross validation
study are given in Table 2.
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Standard classification methods are able to perform
reliably in this data set [35] but do not allow a clear inter-
pretation. Classification performed on the 20 main principal
components loses its power, due to the unsupervised nature of
PCA.MRRMRRwith 20 selected variables allows performing
a reliable classification, without losing important information
for the classification task.

4.3. Keystroke Dynamics Study. Finally, we analyze our
keystroke dynamics data of [36] from a study aiming at
person authentication based on writing medical reports
within a hospital. We proposed and implemented a software
system based on keystroke dynamics measurements [37],
inspired by biometric authentication systems for medical
reports [38, 39].

The training data contain keystroke durations and
keystroke latenciesmeasured inmilliseconds on 32 probands,
who typed a short password (“kladruby”) 10 times in their
habitual speed. In spite of a small value of 𝑝 = 15 variables,
the data are high-dimensional because 𝑝 exceeds the number
of measurements for each individual and wemust expect that
learning the classification rule would suffer from the curse
of dimensionality. In the practical application, one of the 32
individuals identifies himself/herself (say as 𝑋𝑌) and types
the password. The aim of the analysis is to verify whether
the individual typing on the keyboard is or is not the person
𝑋𝑌. Thus, the authentication task is a classification problem
to assign the individual to one of the 𝐾 = 2 groups.

Results of classification performance in a leave-one-out
cross validation study are given in the last column of Table 2.
If the classification is performed with raw data, an SVM out-
performs other methods. However, its disadvantages include
the inability to find optimal values of their parameters as well
as a large number of support vectors [1]. If MRRMRR is used
to select 4 variables with |𝑟

𝐴

LWS| as the relevance measure and
|𝑟
∗
| as the redundancy measure, there seems to be no major

loss of important information for the classification task.

5. Discussion

Variable selection represents an irreplaceable tool in the
analysis of high-dimensional data, preventing numerous
approaches of multivariate statistics and data mining from
overfitting the data or even from being computationally
infeasible due to the curse of dimensionality. Various versions
of theMinimumRedundancyMaximumRelevance approach
have been described in references as a supervised variable
selection methodology tailor-made for classification pur-
poses, while its primary disadvantage has been explained as
its high sensitivity to the presence of outlying measurements
[15].

This paper proposes a new version of theMRMRcriterion
in the form (20) capturing the multivariate structure of the
data.The new criterion denoted as theMinimumRegularized
Redundancy Maximum Robust Relevance (MRRMRR) is
constructed from two essential tools and the robustness of the
criterion is given by robustness of both tools. One of them
is a relevance measure in the form of a robust correlation

coefficient 𝑟𝐴LWS, for which we investigate theoretical proper-
ties. The other is a redundancy measure in the form of a new
regularized version of the coefficient of multiple correlation
𝑟
∗, which can be interpreted as a regularized coefficient of
determination in linear regression. They are robust to the
presence of noise in the data, numerically stable, and also
statistically robust in terms of the breakdown point, that
is, to the presence of outliers. Our work is a first attempt
to investigate robust and regularized methods within the
MRMR criterion, which is limited only to two groups of
samples.

Section 4 of this paper illustrates the performance of
MRRMRR on three real high-dimensional data sets with
different values of 𝑝. Because the forward search of the
MRMR criterion with various choices of relevance and
redundancy depends on parameter 𝛾 in (1), the optimal
result is obtained by maximizing the classification accuracy
over different values of 𝛾. MRRMRR yields very reliable
results on the observed data, while there seems to be a
negligible difference among the three choices of weights for
the implicitly weighted relevance measure (|𝑟LDLWS|, |𝑟

Log
LWS|, and

|𝑟
𝐴

LWS|).
To show the robustness of MRRMRR, the data of

Section 4.1 are contaminated again after being contaminated
by severe noise. MRRMRR performs as the most robust
approach among other variable selection procedures, while
the choice of the weights for the robust relevance measure
seems to play a negligible role. On the other hand, the
vulnerability of some approaches (e.g., mutual information
within theMRMRvariable selection) has not been sufficiently
discussed in references.

In the numerical examples, we also inspected the ques-
tion:Which classificationmethods are themost recommend-
able to accompany the MRRMRR variable selection? Based
on the results, SVM, LDA, and SCRDA seem to be suitable
for this context, because they allow taking the covariance
structure of the data into account. They are reliable also for
highly correlated variables, while a prior using of MRRMRR
avoids their specific disadvantages characteristic for high-
dimensional data. On the other hand, MRRMRR does not
bring about benefit to classification methods which are based
on one-dimensional principles. These include classification
trees, PAM (i.e., diagonalized LDA), and others not used in
our computations (e.g., Näıve Bayes classifier).

The regularization used in (5) is a popular tool allow-
ing modifying statistical methods for the context of high-
dimensional data. As Section 4.3 reveals, regularization
brings about benefits for multivariate data also with a small
number of variables. Thus, the regularization of Section 3.1
turns out to be suitable also for high-dimensional data
with any 𝑝. Also in a general setting, regularization has
been described as a finite-sample (nonasymptotic) approach
for multivariate data, not limited to the context of high-
dimensional data [1, 24].

Every version of the MRMR method allows finding a set
containing a fixed number of genes, which must be chosen
before the computation. In the examples, we used an arbitrary
choice mainly for comparison purposes. In practice, a more
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flexible approach would be to use the optimal number of
variables according to a criterion evaluating the contribution
of the variables to the classification problem taking the total
number of variables into account [15].

Other possible relevance measures not studied in the
references includemeasures based on nonparametric analysis
of variance (e.g., Kruskal-Wallis, van der Waerden, and
median tests [40]), logistic regression (probability of belong-
ing to group 1 or deviance), or a coefficient of determination
corresponding to ridge regression or lasso estimators [1]. A
natural extension of our approach to several (𝐾 ≥ 2) groups
would be to replace the robust correlation coefficient with a
highly robust version of the analysis of variance.

As a limitation of the MRRMRR approach compared to
otherMRMR approaches, its higher computational complex-
ity compared to simple approaches of (1) with a fixed 𝛾 must
be mentioned. Besides, the idea of Tikhonov regularization
(5) is tailor-made for data with variables of the same type,
for example, variables measures in the same units and with
a similar level of variability. This may not be adequate
if the observed variables are very heterogeneous. Other
limitations ofMRRMRR include those common to allMRMR
approaches. Particularly, it does not possess a high stability
like other variable selection procedures [41] and a too small
number of selected variables in the MRRMRR approach may
be criticized for its limited classification ability [18, 42].

TheMRRMRRmethod is primarily designed as a variable
selection tool, tailor-made for data which are observed in
two different groups. Thus, if the very aim of the high-
dimensional data analysis is classification analysis without
an explicit need for a variable selection, the user may prefer
to use classification methods directly, that is, those which
are reliable for 𝑛 ≪ 𝑝. These direct classification methods
not requiring a prior dimensionality reduction (regularized
LDA of [19] or SVM) may yield comparable (or possibly
even better) results, but we stress their different primary
aim. On the other hand, if the very aim of the analysis is
comprehensibility of the classification approach, the usermay
want to avoid the classifiers in the form of a black box. In such
situations, the new MRRMRR variable selection represents
a suitable tool, which is robust to the presence of outlying
values.
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[38] M. K. Özdemir, A framework for authentication of medical
reports based on keystroke dynamics [M.S. thesis], Middle
East TechnicalUniversity, 2010, http://etd.lib.metu.edu.tr/upload/
12612081/index.pdf.

[39] S. Bhatt and T. Santhanam, “Keystroke dynamics for biometric
authentication-a survey,” in Proceedings of the International
Conference on Pattern Recognition, Informatics and Mobile
Engineering (PRIME ’13), pp. 17–23, IEEE, February 2013.
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