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Modifications of RNA sequences by nucleotide insertions, de-
letions, or substitutions can result in the expression of mul-

tiple proteins in overlapping open reading frames (ORFs). In the
case of viruses, polymerase slippage results in the alteration of
newly synthesized RNA. The mechanism has been well character-
ized in animal RNA viruses such as Ebolavirus (1) (EBOV) or
Hepatitis C virus (HCV) (2). For plant viruses of the Potyviridae
family, polymerase slippage has been proposed as a general pro-
cess of evolution (3), although a lack of experimental systems has
precluded confirmatory data, and most pieces of evidence are in-
direct (4).

Translation of a large ORF that results in a polyprotein, later
processed into mature factors, is the canonical strategy of po-
tyviral protein production. Along with this, in all members of
this family, an overlapping ORF named PIPO was identified in
the middle of the P3 coding region. The translation of PIPO
begins at a specific GA6 motif (5). Interestingly, GA6 and other
An motifs (n � �6) are misrepresented among members of the
Potyviridae family (1.2 A6 motifs in the coding region per viral
genome versus the expected 8.1 motifs). This additional ORF of
potyviruses produces a P3N-PIPO fusion protein, which was orig-
inally identified in Turnip mosaic virus (5) and was shown to be
essential for cell-to-cell movement during viral infection (6). Re-
cently, another extra ORF located downstream of a GA6 motif was
informatically identified inside the large P1 coding region of
sweet-potato-infecting potyviruses (7, 8). This new ORF, named
PISPO, harbors the possibility of producing a frameshifted P1N-
PISPO gene product, whose existence is still to be determined.

To explore the mechanism by which these additional poty-
viral proteins can be synthesized, we analyzed available RNA
sequencing (RNA-seq) data of two Plum pox virus (PPV) iso-
lates (9). After data filtering (10, 11), sequences were mapped
versus the references (12) allowing a maximum of three mis-
matches per read. The expected indel error was modeled as a
Poisson distribution calculating � from the Illumina indel call-
ing error rate, PCR error rate, and sample indel frequency. This
analysis revealed the presence of A residue additions in the
PIPO GA6 motif in 1.6% of the reads (Fig. 1A). Interestingly,
the presence of an additional A residue in this motif was also
detected in libraries of PPV-derived small RNAs (not shown).
Besides, published data on another potyvirus, Zucchini yellow
mosaic virus, showed a minor variant with an extra A in all samples
of a Cucurbita pepo vine studied by deep sequencing of long RNAs
(13), and our analysis located this modification in the PIPO GA6

motif as well.
To assess the scope among potyviruses of the extra A at the

PIPO junction, we subjected a sample of sweet potato (Ipomea
batatas) infected with the potyvirus Sweet potato feathery mottle
virus (SPFMV) to RNA-seq analysis. SPFMV reconstruction

(SRR1693230 and SRR1693363) showed that there were 1.8% se-
quence variants in this PIPO ORF, with the insertion of an A
residue as the most prominent modification (Fig. 1B).

Altogether, these data strongly suggest that P3N-PIPO is pro-
duced, at least partially, through polymerase slippage. This possi-
bility, previously considered by Chung et al. (5), could not be
demonstrated at that time, likely because of the low rate of nucle-
otide insertion into this site.

Reconstruction of the SPFMV genome confirmed the previ-
ously described PISPO ORF imbedded in the P1 coding sequence.
But more importantly, the RNA-seq data also revealed the pres-
ence of a high proportion of molecules (11.8%) with a single A
nucleotide addition in the upstream GA6 motif, which is indica-
tive of polymerase slippage (Fig. 1B). This change would result in
the production of the hypothetical P1N-PISPO, and these results
not only support the existence of this alternative product but also
suggest that this protein might play an important role during
sweet potato potyvirus infection.

Considering the evolutionary relatedness of polymerases of the
members of the families Picornaviridae and Potyviridae (14), it is
reasonable to envision similar behaviors in both viral families and,
consistent with that idea, the six-adenine repetition motif is un-
derrepresented in picornaviruses (0.67 motif in the coding region
per viral genome versus the expected 1.9 motifs), as was the case in
the family Potyviridae. There is no previous report of polymerase
slippage in the Picornaviridae family; nonetheless, when an A6

motif was present, as in the case of the enterovirus Human rhino-
virus C (SRR363436), there were 2.4% A residue insertions at this
location. These data suggest that polymerase slippage can occur in
both Picorna-like families but that Potyviridae take more frequent
advantage of this mechanism.

A common denominator in RNA slippage is the low fidelity
of viral RNA polymerases and their tendency to stutter when
encountering repetitive motifs. It is known that polymerases of
EBOV, HCV, Vaccinia virus, or T7 bacteriophage, given the ap-
propriate contexts, are prone to slippage (1, 2, 15). Repetitive
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motifs, however, are not the rule but the exception, probably be-
cause of selective negative pressure supported by nonsense-medi-
ated decay (16) or other mechanisms. Nonetheless, in certain sit-
uations, slippage of the polymerase would give rise to the
production of new protein variants that are used by the virus,
opening the door to new ways of adaptation and evolution.
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