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ABSTRACT
The advent of whole exome/genome sequencing and the
technology-driven reduction in the cost of next-generation se-
quencing as well as the introduction of diagnostic-targeted
sequencing chips have resulted in an unprecedented volume of data
directly linking patient genomic variability to disorders of the brain.
This information has the potential to transform our understanding of
neurologic disorders by improving diagnoses, illuminating the
molecular heterogeneity underlying diseases, and identifying new
targets for therapeutic treatment. There is a strong history of
mutations in GABA receptor genes being involved in neurologic
diseases, particularly the epilepsies. In addition, a substantial
number of variants and mutations have been found in GABA
receptor genes in patientswith autism, schizophrenia, and addiction,
suggesting potential links between the GABA receptors and these
conditions. A new and unexpected outcome from sequencing

efforts has been the surprising number of mutations found in
glutamate receptor subunits, with the GRIN2A gene encoding the
GluN2A N-methyl-D-aspartate receptor subunit being most often
affected. These mutations are associated with multiple neurologic
conditions, for which seizure disorders comprise the largest group.
The GluN2A subunit appears to be a locus for epilepsy, which holds
important therapeutic implications. Virtually all a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor mutations, most of
which occur within GRIA3, are from patients with intellectual
disabilities, suggesting a link to this condition. Similarly, the most
common phenotype for kainate receptor variants is intellectual
disability. Herein, we summarize the current understanding of
disease-associated mutations in ionotropic GABA and glutamate
receptor families, and discuss implications regarding the identifica-
tion of human mutations and treatment of neurologic diseases.

Introduction
The control of ion flow across the lipid membrane is

essential for many cellular functions, including hormone
secretion, volume regulation, motility, muscle contraction,

and neuronal excitability. Inherited and de novo mutations in
channels and transporters, the conduits that convey ions
through lipid bilayers, are associated with many diseases,
including diabetes, hypertension, cardiac arrhythmia, asthma,
cystic fibrosis, as well as multiple neurologic diseases, some of
which we will focus on here. The term channelopathy refers to
a disease that arises due to the defect in a particular ion
channel. Despite origins within a single molecular species (a
channel), channelopathy etiology is often defined by a complex
interaction between many processes, and thus similar symp-
toms can arise from mutations in different channels. To
understand the pathogenesis of channelopathies, we must
disentangle these effects, especially if we are to design targeted
therapeutics to mitigate the ramifications of the causative
mutation. For example, long QT syndrome, a delay in cardiac
ventricular repolarization, can be caused by mutations in
several different voltage-gated ion channel genes, including
potassium channel genes KCNQ1, KCNH2, KCNJ2, sodium
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channel gene SCN5A, and calcium channel gene CACNA1C
(Campuzano et al., 2010). Most instances of cystic fibrosis can
be attributed to one of five cystic fibrosis transmembrane
conductance regulator classes of mutations, yet a myriad of
disease-related mutations have been reported (De Boeck et al.,
2014). Mutations in another ABC transporter (ABCC8) can
cause three diseases: familial hyperinsulemic hypoglycemia
and two forms of neonatal diabetes (Aittoniemi et al., 2009).
The same three diseases can result from mutations in the
Kir6.2 inwardly rectifying potassium channel gene KCNJ11
(Aittoniemi et al., 2009). In the central nervous system (CNS),
mutations in both SCN1A and GABAA receptor gene GABRG2
are associated with Dravet syndrome (Huang et al., 2012).
Another epilepsy (early infantile epileptic encephalopathy) can
be categorized into multiple subtypes, many being associated
with a different channelopathy in a different gene (KCNQ2,
SCN2A, SCN8A, and KCNT1) (Kim 2014). Finally, mutations
in the nicotinic cholinergic receptor genes CHRNA2, CHRNA4,
and CHRNB2 result in autosomal dominant nocturnal frontal
lobe epilepsy, whereas mutations in CHRNA1, CHRNB1,
CHRND, and CHRNE result in congenital myasthenic syn-
drome (Steinlein andBertrand, 2010; Kim 2014). The examples
given above emphasize that these diseases are multifactorial
and that individual channel isoforms subserve many functions.
This is especially true for the complex disorders of the central
nervous system.
The brain is composed of networks of neurons interconnected

by excitatory and inhibitory synapses, which generate patterns
of activity that encode and convey information. Inhibitory
synaptic signaling in the brain is mediated primarily by the
vesicular release of the neurotransmitter GABA, which acts on
a large family of postsynaptic ligand-gated ion channels that are
pentameric assemblies of GABAA receptor subunits (Benarroch
2007; Brickley andMody, 2012; Kowalczyk andKulig, 2014; Lee
and Maguire, 2014). The vast majority of excitatory synaptic
transmission involves the vesicular release of the neurotrans-
mitter glutamate, which activates a group of tetrameric
receptors that can be divided into three subtypes [a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate,
and N-methyl-D-aspartate (NMDA)] on the basis of pharmacol-
ogy and structure (Traynelis et al., 2010; Paoletti et al., 2013). In
addition to fast synaptic signaling, slower neurotransmission
also occurs for both glutamate and GABA and can involve both
ionotropic andmetabotropic receptors. The balance of excitation
and inhibition in the CNS is controlled bymultiplemechanisms,
and aberrations in this balance can lead to abnormal neuronal
firing, altered network activity, and neuropathology. When
excitatory synaptic transmission proceeds unchecked due to
attenuation of GABAergic transmission, it can lead to hyper-
synchronous neuronal firing, abnormal burst generation, and
seizures (Macdonald et al., 2010; Hines et al., 2012). Over-
activation of Ca21-permeable glutamate receptors can be
neurotoxic and exacerbates neuronal death in brain injury
(Garthwaite and Garthwaite, 1991; Choi 1994). Excess in-
hibition can cause several different clinical conditions, including
absence seizures (Crunelli et al., 2011; Yalçın 2012), pathologic
sleepiness, and dysphoria (Rye et al., 2012).
Although the vast majority of known channelopathies

involve voltage-gated channels, manymissense GABA receptor
mutations have been reported over the past decade in patients
with various neurologic diseases, including epilepsy (Table 1).
Even more recently, a surprising number of disease-associated

glutamate receptormutations have been identified, with.80%
found within the NMDA receptor subfamily (Table 2; reviewed
by Soto et al., 2014; Burnashev and Szepetowski, 2015). In both
GABA and glutamate receptor families, mutations that disrupt
protein structure, conformation, abundance, or localization
have been described. Missense mutations encode a different
amino acid at a specific position; splice junctionmutations alter
alternative splicing or lead to protein truncation; and inser-
tions or deletions can lead to a frame shift and protein
truncation by a premature stop codon in the new reading
frame. In addition, some mutations alter protein trafficking or
RNA stability, leading to changes in the level and location
of receptors that reach the neuronal plasma membrane
(e.g., Macdonald and Kang, 2012; see below). By changing
critical channel properties, surface expression, or localization,
mutations can alter neuronal signaling, which leads to changes
in brain function that can underlie patient symptoms
(e.g., Macdonald et al., 2010; Pierson et al., 2014; Yuan et al.,
2014). Adaptive neurobiological consequences of perturbations
in neuronal function also occur secondary to the effects of the
mutations, and thus functionally relevant mutations can alter
circuitry to create neuropathological situations that subse-
quently persist and drive symptoms independent of the initial
insult (e.g., Jefferys and Whittington, 1996). Moreover,
molecularly distinct mutations can interact with adaptive
changes to produce, at times, common physiologic effects.
Recent advances in next-generation sequencing technologies

have led to a dramatic increase in the amount of exome
sequencing data available, which has accelerated our un-
derstanding of human mutations in neurologic disease, in-
cluding mutations in the channels that mediate inhibitory and
excitatory synaptic transmission. In this review, we summarize
the current state of knowledge for human disease-associated
mutations in ionotropic GABA and glutamate receptor fami-
lies, with a discussion of the implications for advancing the
understanding of these conditions. We focus here on de novo
mutations (newly acquired mutations in the patient that are
absent in the healthy parents) as well as inherited rare
variants that occur with a frequency of less than 1% in the

TABLE 1
Human GABAA receptor mutations in neurologic disorders
All missense mutations with a frequency of ,1% as well as stop codons and splice
junction mutations are included. Total indicates the number of published de novo or
inherited mutations in each subunit. Many mutations have more than one
phenotype.

Gene, Subunit Total RVISa AD ASD DD/MR Epi SZ ADD

%
GABRA1, a1 13 24 0 0 0 12 1 0
GABRA2, a2 11 34 0 1 1 0 0 9
GABRA6, a6 3 68 0 0 0 0 2 1
GABRB2, b2 7 15 0 2 0 0 5 0
GABRB3, b3 7 22 0 1 0 5 0 1
GABRG1, g1 4 12 0 0 0 0 0 4
GABRG2, g2 9 25 0 0 0 8 1 0
GABRG3, g3 2 46 1 1 0 0 0 0
GABRR2, r2 6 59 0 1 0 0 0 5
GABRD, d 2 59 0 0 0 2 0 0
Total 64 1 6 1 27 9 20

AD, Alzheimer’s disease; ADD, addiction; ASD, autism spectrum disorder; DD,
developmental delay; Epi, epilepsy; MR, mental retardation; SZ, schizophrenia.

aRVIS is the residual variation intolerance score in percentile, for which lower
numbers reflect genes less tolerant to mutation (see dataset S2 in Petrovski et al.,
2013; http://www.plosgenetics.org/article/fetchSingleRepresentation.action?uri=info:
doi/10.1371/journal.pgen.1003709.s002; see Supplemental Table S1 for references).
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general population and thus are potential disease-associated
mutations.

GABAA Receptors
GABAA receptors are cys-loop ligand-gated chloride/anion

channels that broadly dampen neuronal electrical excitability
as well as regulate spike timing, thereby controlling circuit
function. Functional pentameric GABAA receptors can be
homomeric or heteromeric assemblies of up to 3 of 19 GABR
gene products (GABRA1–GABRA6, GABRB1–GABRB3,
GABRG1–GABRG3, GABRR1–GABRR3, GABRD, GABRE,
GABRP, and GABRQ) (Olsen and Sieghart, 2009) (Fig. 1).
Receptors exhibit different spatial and temporal expression in
the mammalian CNS (Pirker et al., 2000), and the structural
differences in each subunit account for differences in receptor
pharmacology, subcellular localization, and intrinsic channel
kinetics (Lavoie et al., 1997). Receptors concentrated in the
synapse provide brief but strong inhibition, whereas those
located more diffusely in perisynaptic or extrasynaptic
locations can cause a long-lived inhibitory shunt in response
to ambient GABA, which is often amplified by neurosteroids
or the presence of alcohol (Jia et al., 2007; Belelli et al., 2009).
It is not surprising that the disorders associated with the

GABAA receptor are behaviorally complex and multifactorial
since GABAA receptors and GABAergic neurons are very
heterogeneous and widespread throughout the CNS. The
GABA receptor genes show a range of tolerances to mutations
that are predicted to damage the encoded protein in the
general population (Table 1), with genes that harbor fewer
than expected protein-disrupting mutations (GABRG1 and
GABRB2) considered less tolerant to mutations (see Petrovski
et al., 2013). The roles of most de novo or inherited mutations
in disease progression are not well understood, even though
the majority of these mutations have been associated with
autism, epilepsy, schizophrenia, or addiction disorders (see
Table 1). Although most of the rare variants (,1% of the
general population) are de novo mutations verified in trios,
early infantile epileptic encephalopathy, generalized epilepsy
with febrile seizures plus (GEFS1), idiopathic generalized
epilepsy, and febrile seizures (FSs) have been linked to
heritable mutations in GABR genes (Singh et al., 1999;
Baulac et al., 2001; Wallace et al., 2001; Kananura et al.,
2002; Dibbens et al., 2004; Lenzen et al., 2005; Audenaert
et al., 2006; Carvill et al., 2013a, 2014). In addition,
susceptibility to alcohol dependence, childhood absence
epilepsy, and juvenile myoclonic epilepsy are all strongly
associated with GABRmutations (Cossette et al., 2002; Radel
et al., 2005; Maljevic et al., 2006; Lachance-Touchette et al.,
2011). These heritable diseases are restricted to 5 of the 19
genes at four vulnerable chromosomal locations: 5q34, 4p12,
15q12, and 1p36 (http://www.ncbi.nlm.nih.gov/omim).
GABAA receptors had long been considered to play a central

role in epilepsy (Jasper, 1984), a view that was eventually
confirmed at the molecular level (Baulac et al., 2001; Wallace
et al., 2001; Cossette et al., 2002). In these human studies, an
inherited mutation in the GABAA receptor g2 subunit was
associated with the manifestation of the disease. Since these
important discoveries, many additional GABR mutations
have been described in the literature (Supplemental Table
S1). Of these, relatively few GABR missense mutations have
been studied functionally, limiting insight into how the

mutations might alter neuronal and circuit function and
ultimately impact neurologic disease. One exception to the
lack of functional understanding has come from a body of work
by Macdonald et al., who have documented the functional
effects of 15 mutations linked to inherited epilepsies in
GABRA1, GABRB3, GABRG1, and GABRD genes, advancing
our understanding of this complex family of diseases
(reviewed by Kang and Macdonald, 2009; Macdonald et al.,
2010). Interestingly, 11 of these 15 mutations occur in the
mature peptide, allowing the use of in vitro techniques to
assess changes in the functional and molecular properties.
The remaining four mutations are either intronic or reside in
regions encoding the promoter or signal peptide.
The results of these studies are fascinating yet complex,

and show that receptor dysfunction can occur via a wide array
of deficits. For example, the mutations g2(R82Q) and g2
(Q390X) (also referred to as R43Q and Q351X) are both
retained in the endoplasmic reticulum, resulting in childhood
absence epilepsy (CAE)/FSs and GEFS1/Dravet syndrome
(DS), respectively (Wallace et al., 2001; Harkin et al., 2002;
Kang and Macdonald 2004; Kang et al., 2009). Although
ab-heteromers lacking the g subunit are functional and
exhibit higher potency (e.g., lower EC50) for GABA than abg
assemblies, the loss of the g subunit impairs the targeting of
ab receptors to the synapse via the loss of interactions with
the GABARAP-gephyrin trafficking-scaffolding machinery.
In addition, b3(P11S), b3(S15F), and b3(G32R) all result in
N-linked glycosylation errors, impairing normal GABA
receptor–mediated inhibition, resulting in GEFS1 and/or
DS (Tanaka et al., 2008; Gurba et al., 2012). In addition to
those noted above, 10 more mutations in the most abundant a
subunit, a1, have been linked with idiopathic epilepsies,
Dravet syndrome, and epileptic encephalopathies. The muta-
tions include two gene deletions, five point mutations, an
intronic insertion, and a nonsense mutation. As with other
epilepsy-associated GABR mutations, functional deficits in-
clude reduced cell surface expression and impaired receptor
activation (see Supplemental Table S1) (Fisher, 2004; Krampfl
et al., 2005; Klassen et al., 2011; Lachance-Touchette et al.,
2011; Mefford et al., 2011; Epi4K and Epilepsy Phenome/
Genome Project, 2013; Carvill et al., 2014; Olson et al., 2014).
Premature termination codons can result in the production of
truncated proteins or truncated mRNAs that are degraded
prior to translation. These effects appear to occur with a1
(S326fs), g2(Q40X), g2(Q429X), as well as a splice sitemutation
in g2 at the boundary of intron6/exon6 (Kananura et al., 2002;
Hirose 2006;Maljevic et al., 2006; Sun et al., 2008; Huang et al.,
2012; Tian and Macdonald, 2012), resulting in seizure
disorders, including DS, GEFS1, FS, and CAE. Promoter
mutations (GABRB3 haplotype) result in CAE following
impairment of transcription, which might reduce surface
expression of this subunit (Urak et al., 2006). Finally, missense
mutations can result in unincorporated, misfolded subunits
[e.g., a1(A322D)] or intact pentameric receptors that harbor
mutant subunits, which alter channel kinetics [e.g., g2
(K328M), g2(R177G), d(E177A), and d(R220H)]. In all four
cases, impaired gating results in reduced inhibition and is
proposed to cause GEFS1 or FS (Baulac et al., 2001; Dibbens
et al., 2004; Audenaert et al., 2006). Thus, there are examples
within the GABA receptor family of mutations that alter
receptor function, cell surface density, and transcription and
RNA processing. This could change the optimal balance of
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synaptic excitation and inhibition, perturb subcellular signal-
ing in neurons, influence disease progression outright, or
constitute a risk factor working in concert with other processes
to contribute to neurologic disease. In addition, compartmental
changes in GABA receptor function associated with the various
mutations could have large-scale effects on circuit and brain
function, as mutations that impact where and when the GABA
receptor operates could be as important as changes in
biophysical properties. Thus, despite the functional evaluation
of biophysical and biochemical properties, additional work still
remains to fully understand the circuit level pathology and
potential drug targets.
Schizophrenia is a disease ofmultifactorial origin that affects

up to 1% of the population, with some cases showing a heritable
component (Tsuang et al., 2001). Perturbation in GABAergic
interneuron biology and function have been observed in
schizophrenic patients in addition to changes in glutamatergic,
serotonergic, and dopaminergic neurotransmission (Benes and
Berretta, 2001; Coyle, 2012). Although GABR mutations have
not been widely reported in schizophrenic patients, the
importance of GABAA receptor perturbations was emphasized
when five single nucleotide polymorphisms (SNPs) in the
GABAA receptor b2 gene were shown to be associated with
schizophrenia (Lo et al., 2004). In common with the majority of
the epilepsy mutations, many recently described SNPs lead to
protein changes that appear to impair the delivery of functional
receptors to the cell surface, compromising normal inhibition.
For example, hypermethylation occurs in the vicinity of one
schizophrenia-associated SNP, and two other SNPs introduce
a CpGmethylation site (Pun et al., 2011). In both cases, studies

of trios indicated that these SNPs, and hence aberrant
methylation, may play a role in GABRB2 imprinting and the
risk of developing schizophrenia. Also in common with
epilepsy-associated mutations (Baulac et al., 2001; Dibbens
et al., 2004; Audenaert et al., 2006), some mutations result in
an alteration of the channels delivered to the neuronal surface.
GABRB2 can be expressed as a long or short alternative RNA
splice variant. Notably, the short isoform lacks exon 10, which
encodes residues that form a consensus phosphorylation site
for calmodulin protein kinase II (Thr365), which might play
a role in receptor retention in the membrane (Pun et al., 2011).
Two schizophrenia-linked SNPs reduce the amount of the
longer isoform in favor of the shorter, less stable isoform. This
generates a population of surface GABAA receptors that are
more prone to receptor desensitization and rundown and
ultimately results in long-term disinhibition (Zhao et al., 2006,
2009).
Autism, a developmental disorder that is characterized by

deficits in reciprocal social interactions, impaired communi-
cation, and repetitive behaviors, is estimated to occur in 1 in
1000 children. However, the risk to siblings of autistic
children is as high as 3% (Bolton et al., 1994; Bailey et al.,
1995), with a male to female risk ratio of 4:1 (McLennan et al.,
1993). Genetic abnormalities have been described in the
Angelman critical region 15q11–13 in several individuals
with autism (Tager-Flusberg et al., 2001). This region of
chromosome 15 contains the GABAA receptor genes encoding
the a5, b3, and g3 subunits (Bass et al., 2000). Although rare
mutations have not been identified, two SNPs in the GABAA

receptor g3 gene are significantly associated with autism

Fig. 1. Architecture and domain organi-
zation of ionotropic GABAA receptor fam-
ily. (A) Top-down and (B) side view of
a homomeric b3 GABAA receptor (PDB ID
4COF). (C) Linear representation of mod-
ular ligand-binding domain (blue) and
TMD (yellow) within a subunit polypep-
tide chain. (D) Schematic illustration of
a GABAA receptor subunit topology with
the extracellular domain (blue) and mem-
brane-associated elements (yellow) color
coded to match the linear polypeptide
chain in (C). Short peptide linkers be-
tween domains are shown in black lines.
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(Menold et al., 2001), raising the idea that this gene or one
proximal to it contributes a significant risk in autistic disease
(e.g., b3) (Buxbaum et al., 2002). In addition, partial
tetrasomy of this region can result in autistic-like behavior
coupled with seizures and intellectual disability (Battaglia
et al., 2010). More recently, a significant risk for autism has
been hypothesized via complex gene-gene interactions in-
volvingGABRA4 andGABRB1, with otherGABRs potentially
playing an important role as well (Ma et al., 2005), although
how the changes in gene expression affect GABAergic
neurotransmission is not well understood.
Finally, many neuropsychiatric disorders, including addic-

tion, do not manifest symptoms until patients become adults.
More than half of the phenotypically linked SNPs and
mutations are associated with drug abuse (predominantly
alcohol) (http://www.ncbi.nlm.nih.gov/SNP/), which supports
a role for GABAA receptors in addiction risk (Anstee et al.,
2013; Li et al., 2014). In particular, GABRA6 has been
identified as an inheritable locus for developing alcohol
dependence (Radel et al., 2005). Little of the available data
point toward coding region mutations in critical alcohol
targets. Instead, untranslated region and intronic mutations
are commonly reported to lead to a reduction in human brain

GABR gene transcription and RNA processing (Haughey
et al., 2008). In a separate study, although no link between
alcohol dependence and GABRA2 SNPs was found, SNPs in
this gene were associated with an abnormal electroencephalo-
gram phenotype that might be rectified by self-administration
of ethanol (Lydall et al., 2011). However, as with the majority
of GABR SNPs, more data are needed to specifically un-
derstand how each SNP leads to a change in GABAergic
function. If the same approach taken in the evaluation of
epilepsy-linked mutations can be applied here (e.g., Gallagher
et al., 2007; Gurba et al., 2012), our understanding of
addiction could be substantially enhanced.

NMDA-Selective Glutamate Receptors
NMDA-selective glutamate receptors are tetrameric com-

plexes composed of two glycine-binding GluN1 subunits and
two glutamate-binding GluN2 subunits. GluN3 subunits are
thought to coassemble in some NMDA receptors, but there is
incomplete understanding of the nature of GluN3 stoichiom-
etry. Receptor activation requires binding of both glutamate
and glycine, which are often referred to as coagonists (Fig. 2).
The eight possible alternative mRNA splice variants of the

Fig. 2. Architecture and domain organization of the ionotropic glutamate receptor family. (A) Top-down and (B) side view of an NMDA receptor (PDB ID
4PE5) (Karakas and Furukawa, 2014). (C) Linear representation of modular amino-terminal domain (green), ligand-binding domain (blue), TMD
(yellow), and C-terminal domain (gray) within a subunit polypeptide chain. (D) Schematic illustration of a glutamate receptor subunit topology with the
extracellular domain (blue and green) andmembrane-associated elements (yellow) color coded tomatch the linear polypeptide chain in (C). Short peptide
linkers between domains are shown in black lines.
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single GluN1 gene (GRIN1), four genes encoding the GluN2
subunits (GRIN2A–GRIN2D), and two genes encoding GluN3
subunits (GRIN3A and GRIN3B) endow the receptor with
divergent single channel, pharmacological, and temporal
signaling properties (Traynelis et al., 2010; Paoletti et al.,
2013). Although the GluN1 subunit is broadly expressed
throughout the CNS, GluN2 subunits show different spatial
and temporal expression patterns (Monyer et al., 1994; Dunah
et al., 1998; Dunah and Standaert, 2003; Lopez de Armentia
and Sah, 2003; Salter and Fern, 2005). GluN2B and GluN2D
subunits are highly expressed prenatally and decline after
birth in most brain regions, whereas GluN2A and GluN2C
subunits are mainly expressed after birth (Akazawa et al.,
1994). NMDA receptors mediate a slow, Ca21-permeable
synaptic current that is voltage dependent due to channel
block by extracellular Mg21 (Traynelis et al., 2010). The
requirement for depolarization and synaptic release of gluta-
mate renders NMDA receptors a trigger for synaptic plasticity,
a cellular correlate of learning and memory (Lisman 2003;
Huganir and Nicoll, 2013). NMDA receptors participate in the
development of the CNS (Colonnese et al., 2005; Colonnese and
Constantine-Paton, 2006; Kelsch et al., 2012). In addition, over-
activation of NMDA receptors can promote seizures and cell
death (Choi, 1994; Rothman and Olney, 1995; Obrenovitch
et al., 1997; Dirnagl et al., 1999; Yurkewicz et al., 2005), and
NMDA receptor hypofunction is a leading hypothesis for
schizophrenia (Coyle, 2012; Menniti et al., 2013). Thus, there
is considerable interest in factors that control NMDA receptor
expression and function.
Early genome-wide associational studies suggested that

GRIN2A, but notGRIN2B, was a modifier gene for Parkinson’s
disease (Hamza et al., 2011; Lee et al., 2011; Yamada-Fowler
et al., 2014). Although a large genome-wide associational study
did not correlate epilepsy to any of the NMDA receptor genes
(International League Against against Epilepsy Consortium on
Complex Epilepsies, 2014), the first potential disease-causing
mutations in NMDA receptors were described by Endele et al.
(2010) in GRIN2A, the gene encoding the GluN2A subunit of
the NMDA receptor. One of the mutations, N615K, resided at
the tip of a re-entrant pore loop at a position known to control
voltage-dependent Mg21 block (Wollmuth et al., 1998). The
mutation removed voltage-dependent Mg21 block, thereby
increasing the amount of current flowing when NMDA

receptors were activated at normal resting membrane poten-
tials. The profound increase in the current produced by this
mutation seems likely to drive aberrant excitation and
potentially contribute to neuronal loss and consequently the
patients’ clinical symptoms. In subsequent years, a large
number of missense mutations and deletions/truncations
(.100) have been identified through whole exome and genome
sequencing (reviewed by Soto et al., 2014; Burnashev and
Szepetowski, 2015) and are scattered across all domains in
NMDA receptor subunits (Supplemental Table S2; Tables
2 and 3) (Hamdan et al., 2011;Myers et al., 2011; Tarabeux et al.,
2011; de Ligt et al., 2012; O’Roak et al., 2012; Carvill et al.,
2013b, DeVries and Patel, 2013; Epi4K and Epilepsy Phenome/
GenomeProject, 2013; Freunscht et al., 2013; Lemke et al., 2013,
2014; Lesca et al., 2013; Adams et al., 2014; Andreoli et al., 2014;
Fromer et al., 2014; Kenny et al., 2014; Pierson et al., 2014;
Redin et al., 2014; Venkateswaran et al., 2014; Yuan et al., 2014;
Burnashev and Szepetowski, 2015; Ohba et al., 2015; Turner
et al., 2015). More recently, several case-control studies have
isolated de novo and inheritedmutations in theGRIN2A gene in
patients diagnosed with different forms of epilepsy, including
continuous spike-and-waves during slow-wave sleep syndrome,
epileptic encephalopathy, Landau-Kleffner syndrome, and
Rolandic epilepsy (Endele et al., 2010; Carvill et al., 2013b;
Lemke et al., 2013; Lesca et al., 2013; reviewed by Burnashev
and Szepetowski, 2015). These studies suggest that GRIN2A
constitutes a locus for mutations in a subset of patients with
early-onset seizures (Fig. 3; Table 2). The exceptional number
of mutations in GRIN2A could reflect the postpartum expres-
sion of GluN2A, precluding catastrophic preterm neurologic
complications and enabling patients to survive full term but
with neurologic complications that later appear as GRIN2A
expression ramps up.
Surprisingly, the incidence of de novo and inherited NMDA

receptor mutations in all subunits in patients with early onset
neurologic problems was ∼6%, with 202 patients withGRIN1,
GRIN2A, GRIN2B, GRIN2C, or GRIN2D mutations identi-
fied in 3549 patients subjected to exome/genome sequencing
(see references in Supplemental Table S2). In addition,
variants in two genes (GRIN3A and GRIN3B) encoding the
poorly understood GluN3 NMDA receptor subunits have been
reported in patients with intellectual disability, schizophre-
nia, autism, and amyotrophic lateral sclerosis, although their

TABLE 2
Human NMDA receptor mutations in neurologic disorders
All missense mutations with a frequency of ,1% as well as stop codons and splice junction mutations are included. Total
indicates the number of published de novo or inherited mutations in each subunit. Many mutations have more than one
phenotype.

Gene, Subunit Total RVISa AD ADHD ASD DD/MR Epi ID SZ

%
GRIN1, GluN1 11 7 0 0 1 0 6 8 2
GRIN2A, GluN2A 67 4 0 8 5 32 54 16 8
GRIN2B, GluN2B 34 1 1 2 9 2 5 16 8
GRIN2C, GluN2C 24 NA 0 0 6 0 0 12 9
GRIN2D, GluN2D 11 NA 0 0 3 0 0 0 9
Total 147 1 10 24 34 65 52 36

AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; DD,
developmental delay; Epi, epilepsy; ID, intellectual disability; MR, mental retardation; NA, not available; SZ,
schizophrenia.

aRVIS is the residual variation intolerance score in percentile, for which lower numbers reflect genes less tolerant to
functional mutation in the population (see dataset S2 in Petrovski et al., 2013; http://www.plosgenetics.org/article/
fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1003709.s002; see Supplemental Table S2 for
references).
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relation to these diseases is uncertain (Niemann et al., 2008;
Hamdan et al., 2011; Tarabeux et al., 2011; Matsuno et al.,
2015).The frequency of NMDA receptor mutations found in
epilepsy patients with slow wave sleep syndrome and benign
epilepsy with centrotemporal spikes (Carvill et al., 2013b;
Lemke et al., 2013), together with the rates of incidence of
these conditions (from the Centers for Disease Control, http://
www.cdc.gov/epilepsy/basics/fast_facts.html; Pavlou et al.,
2012; Singhal and Sullivan, 2014), suggests that thousands
of North American pediatric epilepsy patients have un-
diagnosed NMDA receptor mutations. In addition to seizure
disorders, NMDA receptor mutations have been identified in
patients with Alzheimer’s disease, attention deficit hyperac-
tivity disorder, autism spectrum disorder, developmental
delay, schizophrenia, and intellectual disability (Table 2).
The number of mutations in NMDA receptor subunits is an
important new development in pediatric neurology and presents
an opportunity to better understand a subset of previously
undiagnosed developmental diseases in children (Burnashev
and Szepetowski, 2015). Moreover, the identification of muta-
tions in all domains (amino-terminal domain, ligand-binding
domain, transmembrane domain, and C-terminal domain) and
all subunits (Table 3) provides an opportunity to gain new insight
into the structural basis underlying NMDA receptor function.
Despite the increasing identification of newNMDA receptor

mutations, there is only minimal functional analysis of
missense mutations and evaluation of the effects of mutations
on complex processes that govern receptor trafficking (Horak
et al., 2014). For example, of more than 100 published
mutations in NMDA receptor subunits, functional data are
reported for only 12 (Endele et al., 2010; Hamdan et al., 2011;
Carvill et al., 2013b; Lemke et al., 2013, 2014; Lesca et al.,
2013; Adams et al., 2014; Pierson et al., 2014; Yuan et al.,

2014). The lack of functional information for de novo
mutations in genes with a strong genetic link to disease
underscores a pressing need. Within GluN2A, functional data
exist for the previously mentioned mutation that alters Mg21

sensitivity (Endele et al., 2010). In addition, a mutation in the
Zn21-binding amino-terminal domain, GluN2A(A243V), im-
paired the negative allosteric modulation by nanomolar
concentrations of Zn21 (Lemke et al., 2013). Two more
GluN2A mutations in the ligand-binding domain (T531M
and R518H) and a mutation in the transmembrane domain
(F652V) are proposed to increase the mean channel open time
(Carvill et al., 2013b; Lesca et al., 2013). Another mutation,
GluN2A(L812M), lies adjacent to known gating elements at
a conserved position in the linker preceding the M4 trans-
membrane helix/domain (Fig. 4A). This mutation was iden-
tified in a pediatric patient suffering from intractable
seizures, early-onset epileptic encephalopathy, cortical pa-
renchymal cell loss, thinning of the corpus callosum, retinal
degeneration, and other neurologic problems, including

Fig. 3. Published human GRIN2A mutations in the coding
sequence identified in neurologic disorders. S1 and S2
comprise the ligand-binding domain and M1–M4 comprise
the transmembrane domains; see Fig. 2 for domain
organization. fs* denotes a mutation leading to a frame
shift. ATD, amino-terminal domain; CTD, carboxyl-termi-
nal domain.

TABLE 3
Locations of human NMDA receptor mutations in various domains of
GluN1 and GluN2 subunits
See Fig. 2 for domains.

Domain GluN1 GluN2A GluN2B GluN2C GluN2D Total

ATD 2 19 7 6 1 35
LBD (S1/S2) 1 20 10 2 2 35
TMs + linker 8 11 8 2 1 30
CTD 0 17 9 14 7 47
Total 11 67 34 24 11 147

ATD, amino-terminal domain; LBD, ligand-binding domain; S1 and S2 are
portions of the polypeptide chain comprising the LBD; TMs, membrane-associated
elements; linkers are short regions of the polypeptide chain between the various
domains; CTD, carboxy-terminal domain.
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developmental delay. Functional studies in NMDA receptors,
for which stoichiometry was controlled so that receptors
contained a single copy of GluN2A(L812M) (Yuan et al., 2014),
were hyperactive as a result of increased agonist potency (Fig.
4B), decreased sensitivity to negative modulators (Mg21, Zn21,
and protons), prolonged deactivation time course (Fig. 4C),
and increased single channel open time and open probability
(Fig. 4D). This profound increase in receptor function likely
contributes to seizure activity and has the potential to trigger
excitotoxicity, which may have contributed to parenchymal
cell loss.
Since this patient’s seizures were resistant to all of the

antiepileptic regimens tested, several U.S. Food and Drug

Administration (FDA)–approved drugs known to inhibit
NMDA receptors (even weakly) were screened in an effort to
identify those with the potential to inhibit the overactive
mutant NMDA receptors in this patient with similar potency
and efficacy compared with the wild-type receptors. Among
them, memantine (Namenda) (Fig. 4E), previously well
tolerated in a pediatric population, was selected for off-label
use as a potentially effective antagonist of the mutant NMDA
receptors (Owley et al., 2006; Chez et al., 2007; Erickson et al.,
2007). Although only a single patient was examined, the
addition of memantine to valproate treatment (see also
Urbanska et al., 1992) nevertheless decreased the frequency
of seizures from .11 per week to approximately three per

Fig. 4. Functional analysis of GluN2A mutation (L812M) and personalized therapy. (A) Location of mutant L812M (green space fill) and possible van
der Waals interaction with the adjacent GluN1 subunit pre-M1 helix (purple) and SYTANLAAF (yellow) of the NMDA receptor gate as predicted from
the homomeric GluA2 structure. The GluN2A(L812M) mutation changes the pharmacology and channel properties of NMDA receptors and shows
increased glutamate potency (B), prolonged deactivation time course (C), and increased open probability (D) with triheteromeric NMDA receptors, with
0, 1, or 2 copies of the L812Mmutation in each complex (B–D reproduced from Yuan et al., 2014). (E) GluN2A(L812M) modestly reduces the sensitivity to
the FDA-approved drug memantine. (F) Adjunct antiepileptic drug treatment with memantine reduced seizure frequency after progressive weaning off
of lacosamide and rufinamide between weeks 40–60, whereas valproate dosing remained unchanged (E and F reproduced from Pierson et al., 2014;
http://creativecommons.org/licenses/by/4.0/).
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week, with associated improvement of electroencephalogram
and abnormal motor function, suggesting that the seizures
involve excessive NMDA receptor excitatory drive (Fig. 4F)
(Pierson et al., 2014). This example illustrates the potential
utility of comprehensive functional and pharmacological data
in the context of understanding and treating disease-
associated highly penetrant or de novo mutations, and
suggests that further studies and carefully controlled clinical
trials should be informative. These results emphasize the
need to fill the large gap in our functional understanding of
the rapidly expanding list of ion channel mutations revealed
by gene sequencing programs for patients with refractory
epilepsy, developmental delay, autism spectrum disorders,
and other neurologic conditions. Gain-of-function mutations
that increase NMDA receptor function raise the possibility
that each individual mutation could be tested for sensitivity to
a host of FDA-approved low affinity channel blockers that can
inhibit NMDA receptor function, some of which appear to be
safe in a pediatric population. These drugs may allow an
attenuation of NMDA receptor overactivation, which could
slow excitotoxic damage to preserve gray matter in pediatric
patients, and perhaps partially rectify circuit imbalances that
develop from NMDA receptor dysfunction.
In addition to GRIN2A, de novo mutations have been

described in all other NMDA receptor subunits (Table 2). A
functional analysis has been performed on twoGRIN1mutations
(Ser560dup reduces current amplitude and Glu662Lys has no
effect on glycine potency and Mg21sensitivity) (Hamdan et al.,
2011) (see Supplemental Table S2) and threeGRIN2Bmutations
that reduce Mg21 sensitivity [GluN2B(R540H), GluN2B(N615I),
and GluN2B(V618G] (Lemke et al., 2014) (see Supplemental
Table S2). A fourth mutation [GluN2B(E413G)] that caused a
50-fold reduction in glutamate potency was recently described,
which should diminish current responses to GluN2B-containing
NMDA receptors (Adams et al., 2014). No functional information
is available yet for missense mutations in other NMDA receptor
subunits (see Supplemental Table S2).

AMPA-Selective Glutamate Receptors
AMPA-selective glutamate receptors are tetrameric assem-

blies of GluA1–GluA4 subunits encoded by GRIA1–GRIA4
genes. AMPA receptors interact with multiple accessory
proteins (e.g., TARP and cornichon) (Straub and Tomita,
2012) and are localized to the postsynaptic density, where
they interact with scaffolding and other proteins (Specht and
Triller, 2008; Huganir andNicoll, 2013). AMPA receptors bind
to and are activated by synaptically released glutamate,
which triggers the rapid opening of a cation conductance. The
GRIA2 mRNA is often edited in a region encoding the apex of
a reentrant pore loop, which confers Ca21 impermeability to
mature receptors containing the edited GluA2 subunit
(Traynelis et al., 2010). Modification of adenosine deaminase
and RNA editing of GluA2 subunits could be relevant in
epileptic foci (Grigorenko et al., 1998). The AMPA receptor–
mediated conductance underlies the majority of excitatory
synaptic signaling in the central nervous system, and is
typically brief (on the order of a few milliseconds) because
glutamate rapidly unbinds from AMPA receptors and is
removed from the synaptic cleft by diffusion and active
transport. The AMPA receptor–mediated current during
synaptic transmission leads to a brief depolarization, which

is critical for virtually all circuits, and thus is an indispensable
aspect of normal brain function. Therefore, it is not surprising
that this gene family is predicted to be largely intolerant to
mutagenesis that disrupts protein function (Table 4).
Intellectual disability is a neurodevelopmental disorder

affecting 2–3% of the general population (Chelly and Mandel,
2001) that has been explored for potential links to gene families
involved in synaptic transmission. It has traditionally been
characterized by lower intelligence test scores and deficits in at
least two behaviors related to adaptive functioning. For the
GRIA gene family, there have been reports of a fusion
transcript in GRIA2, a de novo interstitial deletion of
chromosome 4q32 that contains the GRIA2 loci, missense
mutations in the ligand binding and transmembrane domains
of the GluA3 subunit (GRIA3), partial tandem duplication that
reduced GRIA3 transcript levels, as well as frameshift in the
GRIA3 gene (Fig. 5; Supplemental Table S3) (Chiyonobu et al.,
2007; Wu et al., 2007; Bonnet et al., 2009, 2012; Poot et al.,
2010; Tzschach et al., 2010; Hackmann et al., 2013; Philips
et al., 2014). These data suggest that mutations within the
GRIA gene family participate in a small subset of patients with
intellectual disability; however, few cellular or mechanistic
studies of these modifications have been reported.

Kainate-Selective Glutamate Receptors
Kainate receptors are tetrameric assemblies of GluK1–

GluK5 subunits encoded by GRIK1–GRIK5. Kainate receptors
mediate a rapidly activating inward current, which can persist
longer than AMPA receptor signaling following removal of
glutamate from the synaptic cleft (Traynelis et al., 2010). RNA
editing of certain kainate receptor subunits can render kainate
receptors Ca21 impermeable in a similar fashion to editing of
the AMPA receptor subunit GluA2, and editing of GluK2 may
be regulated at epileptic foci (Grigorenko et al., 1998).
A number of publications report that genetic variants in GRIK
genes influence kainate receptor ion channel function in
humans. An early genome scan highlighted chromosome
6q21, which contains GRIK2, as a candidate region for autism
(Jamain et al., 2002). One missense mutation, GluK2(M867I),
in a highly conserved domain of the C-terminal region, was
identified in theGRIK2 gene (Fig. 5; Table 4). Characterization
of the M867I missense mutation revealed no detectable effect
on GluK2 receptor gating (Han et al., 2010), but revealed
a modest ∼1.6-fold slowing of the desensitization time course.
Additional SNP association studies on various populations
support a role of GRIK2 in autism (Shuang et al., 2004; Dutta
et al., 2007; Kim et al., 2007; Holt et al., 2010; Casey et al.,
2012; Griswold et al., 2012).
An insertion/deletion variant located at the 39 untranslated

region just downstream of theGRIK4 stop codon (Pickard et al.,
2008) (Supplemental Table S4) was suggested to result in
a higher cellular transcript level of GRIK4, which may confer
a genetic protective effect against bipolar disorder. Further-
more, there was an overrepresentation of the deletion-carrying
transcript in the hippocampus and cerebral cortical regions of
diagnostically unaffected heterozygous individuals from a brain
tissue repository. Further follow-up studies showed positive
correlation between this deletion variant and increased
hippocampal activities in humans via magnetic resonance
imaging as well as significantly higher GluK4 protein distri-
bution in the frontal cortex and hippocampus of the postmortem
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human brain tissue in the deletion group (Whalley et al., 2009;
Knight et al., 2012). SNPs in GRIK5 have also shown an
association with bipolar disorder (Gratacòs et al., 2009).
A mutation in GRIK2 causing a partial deletion of the amino-

terminal domain and transmembrane domain and resulting in
loss of function was reported in patients with intellectual
disability (Motazacker et al., 2007). Similarly, a reported micro-
deletion involving the GRIK3 gene was detected in a patient
diagnosed with severe developmental delay (Takenouchi et al.,
2014). As GRIK32/2 mice exhibit impaired synaptic trans-
mission, the functional deletion of the GRIK3 gene may lead to
development delay (Pinheiro et al., 2007).
The glutamatergic dysfunction hypothesis suggests genes

involved in glutamatergic transmission are candidates for
schizophrenia susceptibility genes. The GRIK3 variant that
encodes GluK3(S310A) showed a significant association with
schizophrenia (Begni et al., 2002; Ahmad et al., 2009; Djurovic
et al., 2009; Minelli et al., 2009; Dai et al., 2014; see also Lai
et al., 2005). GRIK1 and GRIK4 gene variants have also been
studied as schizophrenia susceptibility genes; however, no
consistent association has been identified (Shibata et al.,
2001; Pickard et al., 2006; Li et al., 2008).

d Receptors
Two poorly understood subunits in the glutamate receptor

family, d-1 (d1, GluD1) and d-2 (d2, GluD2), bear distant
resemblance to ionotropic glutamate receptors through
sequence homology (Araki et al., 1993; Lomeli et al., 1993).
When expressed alone or with other glutamate receptors,
d2 does not form functional glutamate-gated ion channels,
although d2 does bind the glycine-site ligand D-serine (Naur
et al., 2007). Although the physiologic function of both gene
products in humans has not been well defined, a number of
case-control association studies on SNPs and CNVs in GRID1
encoding d1 focused on schizophrenia, cognition deficits, and
depression (Fallin et al., 2005; Guo et al., 2007, Griswold
et al., 2012; see also Treutlein et al., 2009; Nenadic et al.,
2012). In addition, mice expressing the d2 Lurcher mutation

altered cerebellum development, which resulted in the
animals displaying ataxia and jerky movement of the
hindlimbs (Kashiwabuchi et al., 1995; Zuo et al., 1997;
Lalouette et al., 1998). Recently, exon deletions in the GRID2
gene encoding d2 were reported in patients with cerebellar
ataxia and autism spectrum disorder (Hills et al., 2013; Utine
et al., 2013; see also Huang et al., 2014) (Fig. 5). Immunohis-
tochemical evidence suggests that the exclusive expression of
GRID2 at parallel fiber-Purkinje cell synapses observed in
mice is preserved in the human cerebellum (Hills et al., 2013).
The phenotypic resemblance and similarity in protein

Fig. 5. Published humanGRIA,GRIK, andGRIDmutations in the coding
sequence identified in neurologic disorders. Refer to Fig. 2 for domain
organization. ATD, amino-terminal domain; CTD, carboxyl-terminal domain.

TABLE 4
Human AMPA receptor, kainate receptor, and d receptor mutations in neurologic disorders
All missense mutations with a frequency of ,1% as well as stop codons and splice junction mutations are included. Total
indicates the number of published de novo or inherited mutations in each subunit.

Gene, Subunit Totala RVISb AD ADHD ASD DD/MR Epi ID SZ ATX

%
GRIA1, GluA1 0 6 0 0 0 0 0 0 0 0
GRIA2, GluA2 1 12 0 0 0 0 0 1 0 0
GRIA3, GluA3 10 45 0 0 0 8 0 2 0 0
GRIA4, GluA4 0 7 0 0 0 0 0 0 0 0
GRIK1, GluK1 0 3 0 0 0 0 0 0 0 0
GRIK2, GluK2 2 6 0 0 1 1 0 0 0 0
GRIK3, GluK3 1 3 0 0 0 1 0 0 0 0
GRIK4, GluK4 0 20 0 0 0 0 0 0 0 0
GRIK5, GluK5 0 7 0 0 0 0 0 0 0 0
GRID1, GluD1 0 2 0 0 0 0 0 0 0 0
GRID2, GluD2 2 11 0 0 0 0 0 0 0 2
Total 16 0 0 1 10 0 3 0 2

AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; ATX, ataxia;
DD, developmental delay; Epi, epilepsy; ID, intellectual disability; MR, mental retardation; SZ, schizophrenia.

aMany mutations have more than one phenotype.
bRVIS is the residual variation intolerance score in percentile, for which lower numbers reflect reduced tolerance to

functional mutation in the population (see dataset S2 in Petrovski et al., 2013; http://www.plosgenetics.org/article/
fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1003709.s002; see Supplemental Tables S3–S5 for
references).

212 Yuan et al.

http://www.plosgenetics.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1003709.s002
http://www.plosgenetics.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1003709.s002
http://molpharm.aspetjournals.org/lookup/suppl/doi:10.1124/mol.115.097998/-/DC1


expression pattern between humans and mice suggest loss of
function mutations in GRID2 could contribute to cerebellar
ataxia.

Functional Genomics and Future Directions
Tremendous advances in our understanding of the genetic

basis of neurologic disease have occurred over the last
20 years. In addition, there has been a virtual tsunami of
genetic data from accelerating sequencing studies designed to
help with the diagnosis of complex neurologic diseases (Heinzen
et al., 2015). For the ionotropic glutamate and GABA receptor
families, many rare de novo and inherited mutations appear
to be associated with multiple diseases and, in some cases,
clearly define a phenotype via an identifiable pathway or
mechanism. Although individual mutations are rare, some
genes appear to harbor many mutations (e.g., GABRA1,
GABRA2, GABRB2, GABRB3, GRIA3, and GRIN2A), sug-
gesting these genes may be a locus for disease-associated
mutations. These advances herald the entry into a new era of
personalized medicine, in which specific genes or mutations
will allow precision diagnostics of neurologic disease in an
ever growing number of patients. The advent of this
information will improve clinical care by reducing unneces-
sary and costly tests, thereby allowing physicians to focus on
treatment rather than identification of the underlying
condition. Identification of growing numbers of mutations
will allow consideration of new therapeutic strategies that
take advantage of genetic and functional knowledge of
variants and rule out ineffective therapies. In addition, the
increasing understanding of how modified genes contribute to
disease will advance our understanding of the disease and
catalyze development and testing of new preclinical disease
models and therapeutic strategies. For complex receptors, we
expect mutations in different regions to have a myriad of
effects on circuits. For example, within the NMDA receptor
family, one would predict distinct changes in circuit function
to result from mutation-linked alterations in Zn21 inhibition,
glutamate potency, glycine potency, receptor surface expres-
sion, or channel opening frequency. Each of these actions
could alter the synaptic and nonsynaptic response time course
and consequent signaling as well as spike timing in subtle and
potentially different ways.
Although there has been a tremendous increase in in-

formation relating neurologic disease to specific genes,
variants, or mutations, the ability to generate genomic data
has not been matched by complementary advances in the
understanding of the functional effects of mutations. Indeed,
data on disease-linked mutations appear to be orders of
magnitude more plentiful than functional data on these
mutations, and this ratio is increasing. For ion channels, one
reason for this mismatch is that functional studies have not
seen the cost reduction or increases in efficiency witnessed by
DNA sequencing technology. Thus, a large chasm currently
exists between the volume of information known about
mutations in the coding region of specific proteins and our
understanding of how individual mutations impact protein
function. This chasm is widening with the accelerating pace of
sequencing and is poised to eclipse the scientific community’s
ability to functionally investigate the enormous volumes of
newly generated sequence data. Although computational
methods have provided some guidance as to which mutations

might be harmful, these algorithms are a poor substitute for
functional evaluation. For example, an algorithm suggesting
a mutation is deleterious cannot predict whether the mutation
enhances or reduces protein function, making these predictions
of dubious value in terms of guiding the development of
treatment options and understanding of the underlying disease
mechanisms. Thus, there is a strong need for resources by
which clinically oriented laboratories can obtain functional
insight into the effects of mutations uncovered in candidate
genes.
The promise of precision medicine and the lack of functional

data highlight the need for future development of technical
means to efficiently explore the functional effect of mutations
identified in patients. For ion channels, this is relatively
straightforward in concept yet slow and tedious in practice,
with cell-by-cell patch clamp studies still being the gold
standard for determining how a mutation alters receptor
function. Improving this throughput is essential to provide an
efficient means for clinical investigators to obtain high quality
functional data on mutant receptors. This will enable the
community to capitalize on the opportunity for deeper
understanding of neurologic disease brought about by
a technical revolution that has accompanied DNA sequencing.
It is also critical to enhance the ability to broadly screen the
library of FDA-approved medications against in vitro assays
of altered receptor function, looking for safe, approved
compounds that might rectify functional problems associated
with specific mutations. Development of a means to obtain
these data quickly and at low cost could enable clinical
investigators to understand the mechanisms underlying
disease caused by mutant receptors. This will assist in
advancing understanding of the disease and new therapeutic
strategies, which, in some cases, involve the repurposing of
a drug. For glutamate and GABA receptors, there appears to
be a clear path forward to understanding functional effects
given that ion channels are amenable to functional studies.
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