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Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole
antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole
antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic
combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to
reverse the resistance conferred by efflux pump overexpression.

Candida invasive infections represent an increasing challenge
for clinicians, with an assigned mortality rate of around 40%

(1–3). The extensive use of fluconazole in both prophylaxis and
therapy has resulted in the emergence of resistance (4–6).

Knowledge of the mechanisms underlying resistance is of cru-
cial importance, since it might support approaches to achieve re-
version, leading to the development of new therapeutic strategies.
Alterations in the Candida albicans transcriptome induced by az-
ole exposure have been extensively reported (5, 7, 8). However,
few studies have tackled antifungal resistance reversion.

Previously, we showed that the antifungal resistance conferred
by increased efflux activity, due to overexpression of the CDR1
and CDR2 genes, in Candida clinical strains can be reversed by
ibuprofen (9, 10). This effect is also observed with other drugs,
such as pyrazinamide (11) and amphotericin B (12). Ibuprofen is
a nonsteroidal anti-inflammatory drug used for its antipyretic,
analgesic, and anti-inflammatory effects.

In this study, we aimed to examine the in vivo reversion of
fluconazole resistance by ibuprofen using a C. albicans systemic
model of infection.

A C. albicans blood culture strain (CaS) susceptible to flucona-
zole, voriconazole, and posaconazole was used to induce an azole-
resistant phenotype. For 60 days, a yeast suspension containing 106

cells in 10 ml of RPMI 1640 medium (Sigma) was incubated daily
with fluconazole (Pfizer) at a final concentration of 16 �g/ml (the
therapeutic serum level achieved during antifungal therapy) (13, 14).
The MICs to azoles, fluconazole, voriconazole (Pfizer), and
posaconazole (Schering-Plough) were determined for the parent
strain and the successive fluconazole-exposed isolates, and the sus-
ceptibility profile was determined according to the CLSI M27-A3
protocol (15). For posaconazole, strains with an MIC of �0.06 �g/ml
were considered susceptible (16). The repeated exposure of C. albi-
cans to fluconazole resulted in the acquisition of an azole-cross-
resistant phenotype (Table 1), achieved due to overexpression of
efflux pump-encoding genes and the ERG11 gene (data not
shown) displayed by the C. albicans resistant (CaR) strain.

The azole-resistant phenotype of the CaR strain turned suscep-
tible when the MICs to azoles were redetermined in the presence
of 100 �g/ml ibuprofen, a concentration previously described to
impair azole efflux (9, 10). These in vitro results demonstrate that
ibuprofen potentiates azole fungistatic activity.

The pursuit of knowledge regarding the efflux pump mecha-
nism in Candida arises from the homology between yeasts and
human cells. In eukaryotic neoplasic cells, ATP-dependent drug
efflux pumps, such as P-glycoprotein (P-gp), which is encoded by
the MDR1 gene, are important mediators of resistance, contribut-
ing to the failure of cancer therapy. In the human kidney, ibupro-
fen can inhibit methotrexate efflux transporters (17). A similar
effect has been described for FK506 (tacrolimus), a potent immu-
nosuppressive agent that shows a synergistic effect when com-
bined with antineoplasic agents on tumor cells, decreasing or even
suppressing multidrug resistance by competing with cytotoxic
drugs for the P-glycoprotein (18–20). Thus, a similar approach
could be applied to C. albicans cells.

To investigate the potential clinical application of fluconazole and
ibuprofen, in vivo experiments were conducted in a murine candido-
sis model approved by the Directorate General of Food and Veteri-
nary Medicine of the European Union (authorization no. 6411).

Female specific-pathogen-free BALB/c mice (age, 6 to 8 weeks;
weight, 17 to 20 g; Charles River Laboratories) were injected with
5 � 105 cells of the CaS or the CaR strain in 0.1 ml of sterile saline
via the lateral tail vein (21). The fluconazole effective dose that
reduced by 50% the pathological effects of intravenous (i.v.) C.
albicans challenge relative to untreated mice (control) was defined
as the 50% effective dose (ED50) (8). Therapy was initiated 3 h
after the yeast challenge and was administered daily for a total of 3
days (8, 21). The mice were treated intraperitoneally with flucona-
zole (8 to 60 mg/kg of body weight/day) (8, 21), ibuprofen (10 or
20 mg/kg/day) (11, 22), or fluconazole (8 to 60 mg/kg of body
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weight/day) plus ibuprofen (10 or 20 mg/kg/day). The weight of
each mouse was registered daily, and at day 4 postinfection, the
mice were euthanized and the kidneys aseptically removed. The
fungal burden was calculated as the number of CFU per gram of
tissue, and the isolates were preserved for later MIC determina-
tion. For histological studies, the kidneys were processed for peri-
odic acid-Schiff (PAS) staining.

In mice infected with the CaS strain and treated with 30 mg/kg of
body weight/day (ED50) of fluconazole, a significant reduction (P �
0.001) in yeast colonization in the kidney was found compared with
that in the untreated mice (Fig. 1). In mice infected with the CaR
strain, no significant reduction in fungal burden was achieved, even
when treated with 60 mg/kg of fluconazole (data not shown). Mice
infected with the CaS and CaR strains and treated with 10 or 20
mg/kg/day of ibuprofen did not show a reduction in fungal burden.
However, when fluconazole was administered with ibuprofen, even
at the lower concentration, a significant reduction in CaR fungal bur-
den (P � 0.001) was observed (Fig. 1).

Mice infected with the CaR strain and treated with fluconazole
plus ibuprofen showed the lowest weight loss (Fig. 2).

Interestingly, yeasts recovered from mouse kidneys retained
their susceptibility profile, i.e., susceptible or resistant for the CaS
or CaR strain, respectively.

Histopathological sections of mouse kidneys confirmed the
fungal burden quantitative analysis. Infection caused by CaR was
evident in untreated and fluconazole-treated mice (Fig. 3A to E).
At day four postinfection, untreated mice infected with the CaR
strain revealed a dramatic increase in fungal colonization by dif-
ferent types of cells, yeasts and hypha, extensive tissue damage,
and necrosis (Fig. 3A). An identical scenario was found in kidneys
collected from mice treated with 30 mg/kg of fluconazole (Fig. 3B

to E). In Fig. 3E, fungal cells were predominantly in the hyphal
form and were apparently intact, forming a clear barrier to the
progression of inflammatory leukocytes. Notably, in mice treated
with fluconazole plus ibuprofen, the kidney tissue architecture
was preserved, and the fungal cells were rare, all displaying a yeast
form (Fig. 3F and G).

The phenotypic switching between yeast and hypha in C. albi-
cans is often described as the major virulence factor, as hyphal
formation is associated with elevated secretion of hydrolytic en-
zymes, direct tissue invasion, and adherence to host surfaces (23).
Hyphal morphotypes are more invasive, and their extension is
essential for dissemination and the subsequent events responsible
for the gross damage of tissues, which are commonly observed in
the kidneys of infected mice (24, 25).

Mice treated with fluconazole and ibuprofen experienced
clearance of infection, recovery of body weight, and the conserva-
tion of tissue architecture, having scarce fungal cells in the kid-
neys, being predominantly yeast forms. The hypothesis that the
presence of ibuprofen may target the regulation of the morpho-
logical switch from yeast to hypha thus deserves more attention
and should be a subject of future in-depth research.

C. albicans cells recovered from mice treated with fluconazole
plus ibuprofen still displayed a fluconazole-resistant phenotype.
Consequently, we can conclude that the presence of ibuprofen is
crucial and mandatory for the reversion of azole resistance. The in
vivo assays clearly demonstrate that ibuprofen potentiates the
antifungal activity of fluconazole and reduces the virulence of C.
albicans. Since it is not immunosuppressive, its anti-inflammatory
activity has advantages over FK506 (26). Further studies are being
addressed to uncover the mechanism of ibuprofen on yeast cell
physiology and to assess its influence on the dynamics of antifun-

TABLE 1 In vitro development of azole resistance and its reversion by ibuprofen

Strain

MIC (�g/ml)/phenotype fora:

FLC FLC � Ibu VRC VRC � Ibu PSC PSC � Ibu

CaS 1/S 1/S 0.06/S 0.06/S 0.03/S 0.06/S
CaR �64/R 2/S �8/R 0.06/S �8/R 0.125/R
a MICs to azoles, namely, fluconazole (FLC), voriconazole (VRC), and posaconazole (PSC), alone and in combination with subinhibitory concentration of ibuprofen (Ibu) (100
�g/ml). S, susceptible; R, resistant.

FIG 1 In vivo antifungal potentiating effect between fluconazole and ibupro-
fen against C. albicans systemic infection. The log CFU per gram of kidney
values are plotted as the mean and standard error. CaS, susceptible strain; CaR,
resistant strain; FLC, fluconazole; Ibu, ibuprofen.

FIG 2 Effect of the combined therapeutic fluconazole plus ibuprofen on
mouse weight during systemic infection. Doses of drug are in milligrams per
kilogram of body weight per day. Differences in weight loss between the first
and the fourth day of infection are plotted as the mean values plus the respec-
tive standard errors. CaS, susceptible strain; CaR, resistant strain; FLC, flu-
conazole; Ibu, ibuprofen.
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gal resistance induction and reversion. Ibuprofen in combination
with fluconazole might play a relevant role in a therapeutic strat-
egy for severe fungal infections.
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