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PURPOSE. We minimized the influence of image quality variability, as measured by signal
strength (SS), on optical coherence tomography (OCT) thickness measurements using the
histogram matching (HM) method.

METHODS. We scanned 12 eyes from 12 healthy subjects with the Cirrus HD-OCT device to
obtain a series of OCT images with a wide range of SS (maximal range, 1–10) at the same visit.
For each eye, the histogram of an image with the highest SS (best image quality) was set as the
reference. We applied HM to the images with lower SS by shaping the input histogram into
the reference histogram. Retinal nerve fiber layer (RNFL) thickness was automatically
measured before and after HM processing (defined as original and HM measurements), and
compared to the device output (device measurements). Nonlinear mixed effects models were
used to analyze the relationship between RNFL thickness and SS. In addition, the lowest
tolerable SSs, which gave the RNFL thickness within the variability margin of manufacturer
recommended SS range (6–10), were determined for device, original, and HM measurements.

RESULTS. The HM measurements showed less variability across a wide range of image quality
than the original and device measurements (slope ¼ 1.17 vs. 4.89 and 1.72 lm/SS,
respectively). The lowest tolerable SS was successfully reduced to 4.5 after HM processing.

CONCLUSIONS. The HM method successfully extended the acceptable SS range on OCT images.
This would qualify more OCT images with low SS for clinical assessment, broadening the OCT
application to a wider range of subjects.
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Retinal nerve fiber layer (RNFL) thickness measurements
obtained by optical coherence tomography (OCT) have

been widely acknowledged as one of the essential clinical
parameters for glaucoma assessment.1–4 However, many studies
have shown that signal quality of OCT images is associated
strongly with RNFL thickness measurements as well as the
reliability of segmentation.5–7 This limits the range of accept-
able OCT signal quality and usable OCT image data, thereby
limiting the applicability of OCT measurements, especially to
older or diseased subjects, whose images tend to show lower
best-achievable signal quality than young and healthy sub-
jects.8,9

Histogram matching (HM) is an image processing technique
to calibrate the differences in intensity contrast when capturing
with different cameras, image acquisition equipment, settings,
and different light sources.10–12 By shaping an input image
histogram to a reference histogram, HM is able to compensate
the differences in intensity and image contrast, and even
enhances the image quality. The HM technique has been used
widely as a preprocessing step in cellular imaging and many
medical imaging modalities, such as positron emission tomog-
raphy (PET), single photon emission computed tomography
(SPECT), and magnetic resonance imaging (MRI), to correct the

difference in background intensity, improve registration, and
reduce analysis variability.13–16

We hypothesized that applying HM on OCT image data
enhances image quality of images with lower signal quality that
would reduce RNFL thickness measurement variability related
to image quality variations. The purpose of this study was to
develop a method for minimizing the influence of signal
quality–related OCT RNFL thickness measurement variability
using a novel OCT image processing method based on HM
technique.

METHODS

Subjects and Image Acquisition

This was an observational cross-sectional study. Healthy
volunteers were recruited at the University of Pittsburgh
Medical Center Eye Center. The University of Pittsburgh Review
Board and ethics committee approval was obtained for the
study, and informed consent was obtained from all subjects.
This study followed the tenets of the Declaration of Helsinki
and was conducted in compliance with the Health Insurance
Portability and Accountability Act.
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The circumpapillary region from all eyes was scanned using
Cirrus HD-OCT (software version 6.5; Carl Zeiss Meditec,
Dublin, CA, USA) with Optic Disc Cube 200 3 200 scan pattern
to acquire the three-dimensional (3D) cube data. The scanning
protocol collected 200 3 200 sampling points from a 6 3 6
mm2 area centered on the optic disc with 1024 data points
along the 2.0 mm axial scan depth. A series of OCT scans with
various signal strengths (SSs) were acquired from each eye at
the same visit by intentionally defocusing and changing the
refraction settings. The SS is a proprietary metric of OCT image
quality provided by the device manufacturer. The SS can range
from 0 (no signal) to 10 (very strong signal) with an arbitrary
unit. It appears on the standard output of the Cirrus device and
has been used widely for evaluating OCT image quality in a
clinical setting.7,9,17 Due to the limitations of practical
scanning, such as the eye condition of subjects, images with
full SS range (SS¼1–10) are not always available. Multiple OCT

scans (at least 10 scans) were acquired from each eye to

achieve a wide range of SS (at least ranging from SS ¼ 3–9).

Images with apparent eye movement during scanning were

discarded. Eye movement was defined subjectively as image

artifacts on OCT en face (or OCT fundus) images showing a

horizontal frame shift larger than a diameter of a major retinal

blood vessel (approximately 125 lm or 4 pixels)18 or a major

distortion of the optic disc (disruption of the natural oval

shape). Raw OCT image data were exported to a standalone

computer for further processing and analysis.

Histogram Matching Processing

The overall flow of HM processing is presented in Figure 1.

The processing is divided into three parts: circular B-scan

resampling and speckle noise reduction, followed by either

FIGURE 1. Flow chart of the histogram matching (HM) method. (1) Circular B-scan was resampled along the 3.4-mm diameter circle (the red circle

on the en face image, left column) centered to the optic nerve head for each image. After speckle noise reduction, the circular scans were
partitioned into two halves: inner and outer retina. (2) Histograms of inner and outer retina from the image with highest signal strength were set as
the reference histograms. (3) The HM was applied to inner and outer retina respectively, and finally combined together to generate the histogram
matched image (final output). The ranges of vertical and horizontal axes were adjusted in the figure for better visualization of the histogram and the
effect of the processing. After HM, the processed histograms almost overlapped with the reference histograms, which are presented as the gray

shadow in the histograms in (3).
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reference histogram construction or HM processing, depend-
ing on the SS. The details of each step are described below:

Circular B-Scan Resampling. For each 3D cube image
data, the geometric center of the optic nerve head was
determined automatically based on the manually delineated
disc margin. We sampled 512 equally spaced A-scans along the
3.4-mm diameter circle to generate a virtual circular B-scan
(Fig. 1.1).

Speckle Noise Reduction. A custom speckle noise
reduction method was applied to the resampled circular B-
scan to reduce the speckle noise. The details of the noise
reduction method have been described previously.19 In brief,
the custom speckle noise reduction method was a localized
high amplitude signal removing method based on a selective
smoothing method, where only spiky OCT signal is suppressed
to the level of its heavily smoothed counterpart. In this way,
high frequency components with relatively high amplitude,
considered as speckle noise, were removed, while high
frequency components with low amplitude, recognized as
retinal tissue signals, were preserved so that more details of the
tissue structures remained in the OCT signals after noise
reduction.19

Reference Histogram Construction (Applied Only for
an Image With the Highest SS for Each Eye). After circular
B-scan resampling and speckle noise reduction, the pixel
intensity histogram of the resampled image with the highest SS
(best available image quality) of each image series was set as
the reference histogram (Fig. 1.2). Images with lower SS were
processed with the HM method (see below) so that their
histograms had matching shapes with the reference histogram.

To take the clinical reality into account, where for some
elder or diseased eye, images with good SS (SS > 6) cannot be

achieved, reference histograms were constructed in two ways
(Figs. 2, 3).

Individual Reference Histogram. With our observations
that histogram statistics differed among retinal layers, we
partitioned the circular B-scan image into top and bottom
halves along the ‘‘valley,’’ where the OCT signal amplitude was
the lowest between the outer plexiform layer (OPL) and
external limiting membrane (ELM; the yellow dash curve in Fig.
2, or as the yellow arrow indicates in the A-scan profile in Fig.
2). The valley was automatically detected by our own
segmentation software, which is based on the algorithm
described previously.2 The top half contained the vitreous
body, RNFL, ganglion cell layer, inner plexiform layer, inner
nuclear layer, and OPL, and, therefore, also was called the inner
retina. The bottom half included the outer nuclear layer, inner
and outer segments of the photoreceptors, RPE, and the region
below the RPE, and, therefore, also was noted as the outer
retina (Fig. 2). The total pixel numbers of the inner and outer
retina were matched to half of the entire circular B-scan by
padding (with the lowest signal of a given image) or cropping
signals from the region in the vitreous or below the RPE so that
the proportion of actual retinal signal was consistent across all
the subjects. For each image series, the histograms of inner and
outer retina of a resampled image with the highest SS were set
as the reference histograms for inner and outer retina,
respectively. In other words, each image series of a given case
had its own inner and outer retina reference histograms.

Group Reference Histogram. To reflect the clinical reality,
where images with good SS simply cannot be obtained on
some elder or diseased eyes, mean histogram patterns of the
recruited 12 subjects were generated and used as the group
reference histograms for all the images (Fig. 3). Group

FIGURE 2. The schematic figures of how the individual reference histograms were constructed. The blue and red borders surrounding the circular
B-scan indicate the region where the reference histograms were calculated.
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reference histograms were generated for inner and outer retina
separately.

Histogram Matching (Applied to the Rest of the
Images). The HM has been known as an image processing
technique, where a series of histogram equalization and
inverse equalization steps are used to match the statistical
information, or histogram shape, of two images.10,11 For each
image series on each individual subject, all images except the
one with the highest SS (best image quality) were processed
with HM (Fig. 1.3). Images, which were the subjects of HM
processing, were preprocessed and partitioned in the same
way as the reference histogram.

First, the percentile information at each intensity on a given
histogram was calculated by Equation 1 (Fig. 4).20

P i½ � ¼

Xi

x¼0
nx

N
; 0 � i � 255; ð1Þ

where P[i] indicates the percentile information at intensity i ,
while nx shows the number of pixel having intensity x, and N

is the total pixel number within the region. For Cirrus data, the
full intensity dynamic range is from 0 to 255.

Based on the percentile information, a mapping matrix used
to convert the shape of input histogram to the shape of
reference histogram then was generated by matching or
minimizing the distance in percentile at each intensity on the
histograms between reference and input histograms, as shown
in Equation 2.

T i½ � ¼ j; if jPin i½ � � Pref j½ �j ¼ minkjPin i½ � � Pref k½ �j; ð2Þ

where T[i] is the resulted mapping matrix, Pin[i] and Pref[j] are
the percentile information on the input and reference
histograms at intensities i and j, respectively. For each intensity
i in the input histogram, we found a corresponding intensity j

in the reference histogram, so that the percentile Pin[i] and
Pref[j] had minimal difference. All the sample points in the
input image data with intensity i then were mapped to
intensity j to generate the output image data.

Conventional HM procedure views the sampling points
with the same intensity as a group and, thus, cannot
distinguish pixels with the same intensity but having different
characteristics, and should not be classified into the same
group. This generates the approximation errors due to
quantization and rounding-off, which can be observed as the
spiky shape of the outcome histogram as Figure 5 shows. To
solve the approximation errors and be able to separate pixels
with the same intensity, we introduced a subfeature besides
the intensity to each sampling points.12,21,22 The subfeature
virtually made the histogram bin finer than the minimal
intensity unit and allowed us to have more flexibility to model
the histogram shape.

To select a suitable subfeature, it was necessary to consider
what information can help distinguish two pixels with the
same intensity but different characteristics. Any feature that is
able to differentiate such pixels can be used as a subfeature,

FIGURE 3. The schematic figures of how the group reference histograms were constructed. The blue and red borders surrounding the circular B-
scan indicate the region where the reference histograms were calculated.
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such as the location of the pixel in the retina, the mean
neighbor intensity (which can be calculated from various
neighboring regions, such as 3 3 3, 5 3 5, or 1 3 3 neighboring
pixels within the same A-scan), or the intensity variance among
neighboring pixels.21 The more distinguishable the subfeature
is, the more flexibility we have, and, thus, the finer HM we can
achieve. However, simply applying the most distinct subfea-
ture, for example the axial position of each pixel, did not
improve the results because the axial location of a specific
retinal layer varies within a frame. An ideal subfeature is
expected to reflect the underlying differences between pixels
with the same intensity. The most important pixel character-
istic here was whether the target pixel belonged to the same
tissue structure or not, which can be assessed by looking at the
neighboring pixel information. To add this information, we
used the mean and variance of intensity within a pixel’s 3 3 3
neighborhood as the subfeature. Our preliminary results
showed that using the variance as the subfeature did not
reduce the quantization and rounding-off errors. Variance of
neighboring pixels represents the homogeneity of the neigh-
borhood. However, as the variance does not vary from layer to
layer, it does not provide additional information. On the other
hand, using the mean intensity successfully reduced the
quantization and rounding-off errors from our preliminary
results. By using mean intensity as the subfeature, the
contextual information (surrounding tissue information) can

be included in the HM process to improve the outcome. As a
consequence, we chose to use the mean intensity of a pixel’s 3
3 3 neighborhood as the subfeature.

To integrate the subfeature (the mean intensity of a pixel’s 3
3 3 neighbors) to the original pixel intensity, each sampling
point had a new value, Inew, as presented in Equation 3:

Inew ¼ Iori 3 256þ Imean; ð3Þ

where 256 is the full intensity dynamic range for Cirrus data,
while Iori and Imean stand for the original intensity of the
sampling point and the mean intensity of its 3 3 3 neighbors.
We upsampled the original pixel intensity, Iori, by multiplying
by the full intensity dynamic range and put the subfeature,
Imean (also with a dynamic range of 256), in the gap to increase
the intensity resolution.

The HM and mapping matrices were performed and
generated based on the new intensity and corresponded
histogram. The effects of the individual and group reference
histograms were tested separately.

RNFL Thickness Measurements

To test if the HM processing reduces the RNFL thickness
measurement variability related to SS variation, the circum-
papillary RNFL thicknesses were measured using our custom
segmentation software before and after HM (original and HM

FIGURE 4. An illustration of the reference histogram and corresponding percentile information on the histogram.
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measurements). The thickness measurements reported from
the native segmentation analysis of Cirrus (device measure-
ment) also were collected for comparison. The relationships
between device, original, and HM measurements and SS were
investigated further.

Statistical Analysis

Nonlinear mixed effects models were constructed to analyze
the relationship between RNFL thickness and SS for device,
original, and HM measurements. To minimize the systematic
differences in RNFL thickness measurements between our
custom segmentation algorithm and the segmentation algo-
rithm used in the commercial device, the mean RNFL
thicknesses of various SSs for each eye was calculated for each
method, and then the RNFL thickness at each SS was
normalized by dividing by the mean RNFL thickness value.
The maximum RNFL thickness difference, defined as the
thickest RNFL minus the thinnest RNFL (both from device
measurements) within the manufacturer recommended ac-
ceptable SS range (SS from 6–10) (yellow band in Fig. 6), was
calculated on each case, and set as a comparison reference.
The lowest tolerable SS that achieved the same RNFL thickness
difference on original, HM, as well as on device measurements
was detected on each case based on quadratic regression
model to compare the acceptable SS range and test if the
acceptable SS range could be extended with HM processing.
Paired t-tests were used to compare the lowest SS achieving the
same RNFL thickness differences among device, original, and
HM measurements. In addition, Wilcoxon tests were used to
compare the total measurement variability (the largest RNFL
thickness measurement differences with SS range from 1–10)
among device, original, and HM measurements. A value of P <
0.05 was considered as statistically significant.

RESULTS

A total of 12 right eyes from 12 healthy volunteers (4 males and
8 females) was recruited at the University of Pittsburgh Medical
Center Eye Center. The average age was 31.7 6 11.1 years.

Notable image quality improvements in terms of retinal
layer visibility and signal strength were subjectively observed,
as shown in Figure 7. The top left figure in Figure 7 shows an
original cross-section with low SS (SS ¼ 4). The bottom left
figure shows the same cross-section after HM processing with
individual reference histogram. In the original low SS cross-
sectional image, weak signals were observed at superior (blue
arrowhead), nasal (yellow arrowhead), and temporal (red
arrowhead) quadrants, and the retinal layers were hard to
differentiate. The signals at the same region were significantly
enhanced after HM processing and became comparable to the
cross-sectional image with the highest available SS (SS ¼ 9)
from the same eye same subject (top right). A cross-section of
the highest available SS (SS ¼ 9) after HM processing also is
shown on the bottom right, indicating that HM processing
maintained the signal quality for images with qualified signal
strength and does not generate additional artifacts or noise.

For the relationships between RNFL thickness and SS, two
segments of linear relationship were fitted on device, original,
and HM measurements (Fig. 6). Table 1 summarizes the slopes
and intercepts of both segments, and the breaking points of all
the measurements. The slope in the first segment (b1) presents
the linear relationship in the lower SS range (range from 1 to
the breaking point), while the slope in the second segment
(b2) presents the linear relationship in the higher SS range
(range from the breaking point to 10). The original measure-
ments had statistically significantly larger slope in the second
segment (b2) than the device measurements (4.89 vs. 1.72 lm/
SS), indicating that original measurements were more sensitive
to SS in the higher SS segment. However, with HM processing,

FIGURE 5. Histogram matching with and without a subfeature. Top left: The reference histogram. Top right: The input histogram. Bottom left: The
histogram using conventional HM. Bottom right: The histogram after HM with subfeature. Conventional HM has to move the pixels with the same
intensity as a group and, therefore, results in the quantization and rounding-off errors, which can be observed as the spiky artifacts on the processed
histogram as indicated by the green arrows in the bottom left figure. The errors can be reduced with the subfeature, which enables us to separate
pixels with the same intensity but in different retinal layers, as shown in the bottom right figure. The red curve in the bottom left and bottom right

figures presents the shape of the reference histogram.
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FIGURE 6. Relationships between thickness measurements and SS. Circumpapillary RNFL thicknesses from one subject were plotted against SS with
two segments of the linear relationships on the device (top), original (middle), and HM (bottom) measurements. The original measurements show
larger absolute measurement difference in the higher SS segment. While with HM, the same maximum absolute difference (yellow band) within the
manufacturer recommended acceptable SS range on the device (top, SS 6–10) was achieved at a lower SS (SS¼ 2). Red vertical dash lines in the
original and HM plots indicate the lowest SS that has the same RNFL measurement variability as the standard SS range in device measurements. The
RNFL thicknesses were normalized to mean thickness value for each method.
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the slope in the higher SS segment was statistically significantly
smaller than both original measurements regardless of using
individual or group reference histograms (1.17 and 1.06 lm/SS,
Table 1).

For the breaking point, the original measurements had
statistically significantly higher breaking point than the device
measurements (5.94 vs. 2.75 SS), while it became similar after
applying HM (3.26 with individual and 3.32 with group
reference), suggesting that HM stabilized the measurement
variability in wider SS range.

The lowest SS that maintained the maximum RNFL
thickness differences was detected for each subject (Table 2).
For device measurement, the lowest SS that achieved the same
maximum difference was 5.1, while original measurement
showed statistically significantly higher lowest SS, which was
8.5 (P < 0.0001, paired t-test). The lowest SS was statistically
significantly reduced from the device measurements to 4.5
after HM processing for individual and group reference
histograms (P < 0.03, paired t-test), indicating that HM
processing successfully extended the acceptable SS range.
The trend also can be observed in Figure 6.

No statistically significant differences in total measurement
variability (SS range, 1–10) were found between device and
original measurements (64.8 vs. 69.1 lm, P ¼ 0.86, Wilcoxon
tests; Table 2). However, HM measurements showed statisti-
cally significantly smaller total measurement variability than
the device measurements on individual and group references
(64.8 vs. 33.4 and 33.6 lm, both P < 0.038, respectively,
Wilcoxon tests).

DISCUSSION

A novel HM-based OCT image enhancement method was
developed in this study. The proposed method successfully
enhanced OCT images with lower image quality and reduced
the RNFL thickness measurement variability related to image
quality variation. The HM extended the acceptable signal
quality range and further reduced the thickness measurement
variability, which would broaden the application of OCT to
elder or diseased subjects who tend to have lower best-
achievable image quality.

Compared to other histogram manipulation methods, such
as contrast and brightness adjustment, histogram matching is
more effective in reducing the RNFL thickness measurement
variability. Contrast/brightness adjustment is applying linear/
nonlinear transformation to pixel values, sometimes with
thresholds. While it is possible to optimize such adjustments
mathematically, it is difficult to standardize the output
contrast/brightness systematically, especially on images with
specific intensity levels that need to be clarified, like OCT
images. Within the OCT image intensity level, the range of
meaningful signals that represent retinal tissues is relatively
small. As contrast/brightness adjustment is applied more or
less uniformly across the entire intensity level (even with
nonlinear transformation), it often generates unwanted side
effects (e.g., boosted noise level in the vitreous cavity).
Histogram matching takes a reference histogram, which has a
well-balanced histogram shape optimized for the best tissue
visualization on OCT images. This type of signal modification
cannot be achieved with contrast/brightness adjustment.

FIGURE 7. HM processing enhances image quality. Top row: Original cross-sectional images from the same eye and same subject with low and the
highest available SS (SS¼ 4 [left] and SS¼ 9 [right]). Bottom row: Cross-sectional images after HM processing for low (left) and high (right) SS. The
HM processing significantly enhanced the image quality in terms of signal strength and retinal layer visibility (arrowheads).

TABLE 1. Summarization of the Relationships Between Measurements and SS

a1 b1 a2 b2 Breaking Point

Device �28.91 42.57 88.16 1.66 (1.17, 2.16) 2.75 (2.49, 3.00)

Original 35.86 11.77 105.77 5.17 (4.11, 6.23) 5.94 (4.93, 6.95)

Histogram matching

Individual reference 71.73 14.62 119.39 1.00 (0.54, 1.46) 3.26 (2.70, 3.82)

Group reference 70.84 14.89 120.27 0.92 (0.45, 1.39) 3.32 (2.81, 3.83)

The slopes of first and second segment (b1 and b2), intercepts at SS ¼ 0 (a1), intercepts at breaking point (a2), and breaking point for the
relationships between RNFL thickness and SS of device, original, and HM measurements. The 95% confidence interval is shown in parentheses.
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Separating the retina into two parts and applying individual
HM on each part improved the image enhancement perfor-
mance. We observed that the OCT signal from the outer retina
generally was stronger than the signal from the inner retina
along all the SS variation. In other words, the signal from the
inner retina degraded more than the signal from the outer
retina as SS decreased. Therefore, if simply applying HM to the
entire image, the signal from the inner retina remained weak
even after enhancement. This affected the segmentation
performance as the inner retina is supposed to have relatively
high reflectivity. When only the inner retinal section was used
as a reference to adjust the entire image, unwanted clipping
artifacts (over saturation) were observed in the outer retinal
section. Only when histogram matching was applied separately
to the inner and outer retina sections was the signal level
normalized between the inner and outer retinal sections, so
that the segmentation performance was more stable and
reliable, leading to the reduced measurement variability.

No statistically significant differences were detected in the
slope of the higher SS segment and the breaking point when
using individual and group reference histograms. This indicates
that the specific reference histogram for each subject can be
replaced by a group reference histogram and reach similar
results or that we did not have enough power to detect a
difference.

A potential limitation of this method is our assumption that
the disease does not change the histogram characteristics of
the scan. If the histogram characteristics are different from the
group reference histogram, then the outcomes may not reflect
the actual disease status. In that case, an individual reference
histogram or a separated group reference histogram with
similar histogram characteristics (pathology) is required.
Further investigation for the validation of such references with
a larger number of subjects is warranted.

Another limitation of this study is that the group reference
histogram was constructed from all of the recruited eyes.
Further investigation with a larger number of subjects is
required.

With HM processing, similar RNFL thickness measurements
were generated across a wider SS range, suggesting less
measurement variability expected even with lower SS image
than the current manufacturer’s recommendation. In addition,
the measurement variability was also reduced across the
recommended SS range (SS, 6–10). The reduced measurement
variability may help reduce the false-positive reading due to
acceptable, but low SS, and may further improve the ability to
detect smaller changes over time.

In this study, we used our custom segmentation algorithm
to test the proposed HM method rather than the native
segmentation software of the device. This inevitable limitation
is because the device software does not accept modified OCT
image files for processing. Our custom segmentation algorithm

tends to report thicker RNFL thickness value compare to the
native segmentation software of the device. This variation was
minimized by normalizing RNFL thickness to the mean value of
each method when performing the statistical analyses. Strictly
speaking, the observed improvement is limited to the custom
algorithm. However, overall trend of correlation between
segmented thickness measurements and image quality is
observed regardless of the difference in algorithm approach.
Therefore, it is reasonable to speculate that the HM method
may expand the acceptable SS range without affecting the OCT
measurement variability.

In conclusion, the proposed HM method successfully
extended the acceptable SS range on OCT images, while
maintaining the similar measurement variability within the
manufacturer recommended SS range. With the potential to
achieve wider acceptable SS range, HM would qualify more
OCT images with relatively low SS for clinical assessment and
further broaden the OCT application to a wider range of
subjects.
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