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Abstract

In macromolecular design, conformational energies are sensitive to small changes in atom 

coordinates, so modeling the small, continuous motions of atoms around low-energy wells confers 

a substantial advantage in structural accuracy; however, modeling these motions comes at the cost 

of a very large number of energy function calls, which form the bottleneck in the design 

calculation. In this work, we remove this bottleneck by consolidating all conformational energy 

evaluations into the precomputation of a local polynomial expansion of the energy about the 

“ideal” conformation for each low-energy, “rotameric” state of each residue pair. This expansion 

is called Energy as Polynomials in Internal Coordinates (EPIC), where the internal coordinates can 

be sidechain dihedrals, backrub angles, and/or any other continuous degrees of freedom of a 

macromolecule, and any energy function can be used without adding any asymptotic complexity 

to the design. We demonstrate that EPIC efficiently represents the energy surface for both 

molecular-mechanics and quantum-mechanical energy functions, and apply it specifically to 

protein design to model both sidechain and backbone degrees of freedom.

2 Introduction

Computational design algorithms are an effective approach to engineer proteins and discover 

new drugs for many biomedically relevant challenges, such as drug resistance prediction,1 

peptide-inhibitor design,2 and enzyme design.3 Protein design algorithms search through 

large sequence and conformational spaces for sequences that will fold to a desired structure 

and perform a specific function. One of the key challenges in protein design is modeling and 

searching the many continuous conformational degrees of freedom inherent in proteins and 

other molecules. Protein design algorithms must estimate optimal values for all these 

degrees of freedom in order to optimize the sequence of the protein, or to optimize the 

chemical structure of the ligand if used for drug design. Molecular dynamics simulations can 

be used for this purpose if the protein sequence and ligand are known, because they can 

move all of the molecule’s degrees of freedom,4 but these simulations are computationally 

expensive and must be run separately for each sequence or ligand chemical structure. Hence, 

this direct simulation approach is unsuitable for searching large combinatorial design spaces. 
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For example, many protein design problems require searching over trillions of sequences—

far too many for individual molecular dynamics runs.

To address the combinatorially large sequence spaces inherent to protein design, dedicated 

protein design algorithms efficiently choose an amino-acid type and conformation for each 

residue in a protein that, together, minimize some energy function.5 Since the sidechain 

conformations of each amino-acid type are generally found in clusters, known as rotamers,6 

the protein design problem has often been treated as a discrete optimization problem. In this 

case, the output is a set of rotamer assignments (a rotamer, including amino-acid type, is 

assigned to each residue). The objective function is an energy function, which maps 

conformations to their energies. However, because proteins are continuously flexible and 

have backbone as well as sidechain flexibility, some of the protein’s internal coordinates 

will likely have functionally significant variations from the rotamer’s “ideal” value (at the 

center of the cluster). Clashing ideal rotamers can often be converted to favorable 

conformations by relatively small adjustments in the sidechain conformations.7,8 Small 

adjustments in the backbone conformation away from the wild-type backbone can also be 

functionally significant.9–11 As a result, modeling of continuous flexibility has been shown 

to dramatically improve the accuracy of structural modeling in designs,8,11 even using a 

limited set of degrees of freedom, and has led to designs that perform well 

experimentally.1–3,5,7,12 Furthermore, attempts to mimic this effect by discrete sampling at a 

finer resolution have been shown to either poorly approximate the continuous solutions, or 

to be computationally prohibitive.8 Modeling additional continuous degrees of freedom, 

with the goal of modeling all conformational variations that significantly impact protein 

function, is expected to increase the accuracy of designs further.

Modeling of continuous flexibility in protein design can still exploit our knowledge of 

rotamers, because rotamers provide an excellent prior estimate of where “energy wells” in 

the conformational space of the protein are likely to be. Residues’ sidechains will usually be 

found in the region of conformational space fairly close (e.g., within 10–20° for sidechain 

dihedrals) to an ideal rotamer, even with a relatively small rotamer library.13 As a result, if 

by using a “minimization-aware” search process one can find the nearest ideal rotameric 

conformation to the true Global Minimum-Energy Conformation (GMEC) of a protein, the 

GMEC itself can generally be found by local minimization initialized to that ideal rotameric 

conformation. Thus, protein design can fully account for continuous sidechain flexibility 

while still functioning as a “minimization-aware” search7 over discrete rotamer space. This 

same paradigm can be extended to continuous backbone flexibility if ideal conformations 

that include backbone motions—”residue conformations” or RCs11—are included in the 

search.

Such “minimization-aware” search can take multiple forms. For example, the iMinDEE 

algorithm8 produces a gap-free, provably accurate list of rotamer assignments in order of 

lower bound on minimized energy. iMinDEE performs energy minimization on each of 

these rotamer assignments in that gap-free order until the lower bound exceeds the best 

minimized energy Eb enumerated so far. At this point, any subsequently enumerated 

assignments would be guaranteed to have higher minimized energies than Eb, so Eb is 

provably the global minimum energy. iMinDEE enumerates rotamer assignments efficiently 
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using the A* search algorithm.14,15 Monte Carlo search over rotamer space can also 

incorporate minimization,16,17 but without any provable guarantees. A Monte Carlo search 

will be minimization-aware if continuous minimization is performed for sequences and 

conformations during (rather than after) the search and the minimized energy is used in the 

calculation of acceptance probabilities for new rotamer assignments, as in16 and the final 

phase of.17 Nevertheless, a method without provable guarantees will likely require more 

conformations and sequences to be minimized to obtain the same gain in accuracy as 

iMinDEE, because unlike in iMinDEE, the conformations being minimized are not 

guaranteed to be the most promising ones. Furthermore, there is no finite number n for a 

given protein design problem such that enumerating n conformations by Monte Carlo is 

guaranteed to yield the GMEC.

Any minimization-aware method, however, will require a large number of subroutine calls 

to local minimization. Continuous energy minimization is computationally expensive, even 

with molecular mechanics-type energy functions that prioritize speed over accuracy. This 

causes the minimization of the energy function to be the bottleneck in protein design with 

continuous flexibility.

This bottleneck becomes more severe when more sophisticated energy functions are 

introduced. Computational protein design is typically performed with energy functions that 

prioritize speed over accuracy. For example, they typically use simplified implicit solvation 

models, such as EEF1.18 Vizcarra et al. 19 have investigated the use of the Poisson-

Boltzmann model, a much more accurate implicit solvation model, in protein design. They 

found it to be amenable to representation as a sum of residue-pair interactions—the form 

required for most protein design algorithms— but orders of magnitude more expensive than 

EEF1. Other methods to improve energy function accuracy are likely to face the same 

problem. For example, quantitatively accurate descriptions of most molecular interactions 

require computation of the electronic structure using quantum chemistry, but methods to do 

this are very computationally intensive.20 Methods to reduce the number of calls to an 

energy function needed in protein design could allow more accurate energy functions to be 

used, and thus yield more accurate results.

In protein design with only discrete flexibility, precomputation methods are typically used to 

reduce the number of energy function calls needed—that is, the number of conformations 

for which the energy must be evaluated. Before the design is started, the interaction energy 

of each pair of ideal, rigid rotamers at different residue positions is precomputed and stored 

in an energy matrix. Then, an ideal rotamer is chosen for each residue based on the energies 

in this matrix, and no further calls to the energy function are needed during the actual design 

calculation. The number of energy function calls required is thus quadratic in the number of 

residues in the system (that is, it scales as the number of pairs of residues). A precomputed 

energy matrix is, however, of limited use if we want to model continuous flexibility. No 

benefit in design is gained by performing post-hoc minimization on the best conformation 

found using ideal rotamers.8 This is true even if a high degree of flexibility is used for 

minimization, e.g., if molecular dynamics techniques are used, because the designed 

sequence is already determined before minimization is performed. In contrast, a 
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minimization-aware search performs local continuous minimization for all rotamer 

assignments that might be optimal, in order to find the true GMEC.7

Thus, an analogous energy matrix precomputation method for continuous flexibility would 

be very useful. It would ensure a polynomial number of energy function calls for 

minimization-aware protein design, in contrast to the exponential number of calls that may 

arise in minimization of all possibly optimal rotamer assignments (since the number of such 

assignments may be exponential with respect to the number of residues modeled). The 

search for rotamer assignments itself is unlikely to admit a polynomial-time algorithm, 

because it is NP-hard even to approximate.21,22 But a method to precompute pairwise 

energies for continuously flexible design would change the overall time cost from

(a large rotamer search cost) times (the energy function cost)

to

(a large rotamer search cost) plus (the energy function cost).

The rotamer search cost will necessarily be exponential in the worst case, if one wants to 

obtain the GMEC or an approximation to the GMEC within a fixed error threshold. But the 

energy function cost will be merely quadratic in the number of residues, indicating that the 

pairwise energy precomputation shifts the bottleneck away from the energy function calls. 

This brings the same improvement to minimization-aware design that energy matrix 

precomputation brought to non-continuously-flexible design.

We now present a pairwise energy precomputation method that admits continuous 

flexibility: EPIC (Energy as Polynomials in Internal Coordinates). EPIC computes a 

representation of the pairwise energy for each rotamer pair, not just at the rotamers’ ideal 

values of the internal coordinates, but for values within specified ranges around the ideal 

ones (Fig. 1). This computation is performed before the rotamer search computation is 

begun. This allows the rotamer search to substitute the new quickly evaluable representation 

for the original energy function. EPIC is implemented in the OSPREY7,23,24 open-source 

protein design package, which has yielded many designs that performed well experimentally

—in vitro 1–3,25–28 and in vivo 1,2,25,26 as well as in non-human primates.25 EPIC provides a 

significant speedup when used with OSPREY’s default AMBER29,30- and EEF118-based 

energy function, but is also shown to be suitable for representing quantum-mechanical 

energies.

This paper makes the following contributions:

1. A compact, closed-form representation of energy as a function of continuous 

internal coordinates of a protein system.

2. A modified least-squares method to compute this representation.

3. A modified implementation of the iMinDEE 8 and DEEPer11 protein design 

algorithms, integrated into the OSPREY1,3,7,23,24 open-source protein design 

package, that makes use of this representation to achieve substantial speedups. It is 

available online24 as free software.
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4. Computational experiments showing that compact and accurate EPIC 

representations are possible both for the standard energy function in OSPREY and 

for energies obtained by quantum chemistry at the SCF and MP2 levels of theory.

5. Computational experiments showing that EPIC greatly speeds up minimization-

aware protein design calculations, thus allowing designs to include not only more 

flexible residues, but also more conformational flexibility at those residues.

3 Methods

3.1 Preliminaries

EPIC, like most previous protein design algorithms, is designed for pairwise energy 

functions. Pairwise energy functions are sums of intra+shell and pairwise terms. Intra+shell 

terms are functions of the amino-acid type and conformation of one residue, and pairwise 

terms are functions of the amino-acid types and conformations of two residues. Each 

pairwise term represents the interaction between a pair of flexible residues, while each intra

+shell term represents the internal energy of a residue plus its interactions with non-flexible 

“shell” residues (those that are frozen in a single, fixed conformation throughout the entire 

calculation). EPIC could be easily modified to include some higher-order terms for defined 

combinations of more than two residues: these terms can also be represented as polynomials 

in their residues’ degrees of freedom.

To find the GMEC, we must find an amino-acid type and conformation for each flexible 

residue such that the sum of intra+shell terms for all flexible residues, plus the sum of 

pairwise terms for all pairs of flexible residues, is minimized. This problem is referred to as 

conformational search. Conformational search can also comprise sequence search, by 

searching for the best conformation across many sequences’ conformational spaces. Many 

algorithms are available for this problem, including iMinDEE8 and DEEPer,11 which solve 

it with provable accuracy. EPIC can be used in any conformational search algorithm that 

models continuous flexibility, because it provides polynomials that can be directly 

substituted for intra+shell and pairwise terms of the energy function.

The essence of EPIC is to exploit the fact that for each pairwise or intra+shell energy, the 

energy in the vicinity of the minimum can be described well by a relatively low-degree 

polynomial (usually quadratic total degree, sometimes higher; see Fig. 5B). This description 

is computed using a modified least-squares method. We will refer to the states to which a 

residue may be assigned as residue conformations (RCs; cf. DEEPer11). In the absence of 

backbone flexibility, each RC will correspond to a sidechain rotamer. Within a residue 

conformation, the residue’s continuous energy variations can be described by a set of 

internal coordinates, which are subject to box constraints (i.e., bounds on each internal 

coordinate).

Herein, the word “polynomial” will be used in two very different senses in the description of 

EPIC below. First, EPIC is a polynomial representation of the energy, namely, a polynomial 

function with respect to the internal coordinates that is explicitly constructed by the EPIC 

algorithm. Second, a measure m of the computational complexity of an algorithm can be 

described as “polynomial”5,31 if, for input size n, m grows no faster than nd for a fixed 
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exponent d. In this case, one can construct a polynomial with respect to the size of the input 

that will be an upper bound on the computational cost, no matter how large the input is (n). 

For this purpose, we will consider either the time or the number of energy function calls as 

m—these two measures of computational complexity are related to each other by a constant 

factor in current protein design algorithms with continuous flexibility, since energy function 

calls generally dominate the cost of these algorithms. For example, precomputation of an 

EPIC representation must be performed only once for every pair of RCs at different 

residues, and thus the number of polynomial fits (and thus the total time for precomputation 

of EPIC fits) does not grow faster than the square of the number of residues being modeled. 

On the other hand, protein design itself has been shown to be NP-hard,21,22 which means no 

polynomial-time algorithm is likely to exist for it. In other words, for every polynomial p(nr) 

in the number nr of residues, there are protein design problems of nr residues that are not 

expected to be solvable in time p(nr). A problem only solvable by exponential-time 

algorithms—those that take time scaling as bn, where b is a constant and n is the size of the 

input—would typically be considered NP-hard.

Energy function calls are typically the bottleneck in protein design algorithms that model 

continuous flexibility. EPIC, however, ensures that the number of energy function calls in a 

protein design calculation is linear in the number of RC pairs, and thus polynomial in the 

size of the input (Fig. 2).

3.2 Basic least-squares method

Consider two interacting residues i and j. Let us start with the “well-behaved” case where 

there exists a low-degree polynomial representation of a pairwise energy throughout the 

allowed ranges of both residues’ internal coordinates (of the form in Eq. 1).

We employ the notation introduced in the DEEPer algorithm.11 Suppose we have RCs ir and 

js with pairwise energy E(ir, js, x), where x is the vector of internal coordinates (for example, 

dihedrals) affecting residues i and j when they have the amino-acid types corresponding to ir 

and js. Let , where the minimum is taken 

with respect to the internal coordinates over their allowed ranges for the current RCs. This 

definition of E⊝ is consistent with iMinDEE8 and DEEPer.11 x0(ir, js) is the set of internal 

coordinates that minimizes the pairwise energy.

We seek a multivariate polynomial pir,js(x) such that

(1)

is a good approximation to E(ir, js, x). This multivariate polynomial is approximately a 

finite, low-degree Taylor expansion about the minimum. However, we use least-squares fits 

because we have found that they perform much better than Taylor expansions that are based 

on numerical derivatives. The fits are performed using a training set with ten times as many 

samples as there are parameters (polynomial coefficients) in the fit; the sampling procedure 

is described in Section 3.7. The fits are cross-validated with an independent set of samples 

(Section 3.6). The constraint p(0) = 0 is applied, so the real energy and the polynomial will 
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agree exactly at the minimum-energy point. This constraint is easily implemented by not 

including a constant term in the polynomial, and reflects the need for the highest accuracy to 

be attained for the lowest-energy, and thus most biophysically reasonable, conformations. 

As a result of this constraint, all values of the polynomial on its domain will be nonnegative. 

Fitting begins with a multivariate quadratic fit and then moves up to higher degrees as 

needed (see Section 3.6). Since polynomials are linear with respect to their coefficients, the 

fitting is a linear least-squares problem.

This method can be generalized without modification to intra+shell energies as well as to 

any continuous degrees of freedom, such as newly modeled backbone perturbations11 or 

rigid-body motions of ligands. In every case, the number of variables for the polynomial will 

be the number of continuous degrees of freedom that define the conformation of the residue 

or residue pair of interest. For example, in a pairwise energy computation for a rotamer of 

lysine and a rotamer of valine with only sidechain flexibility, the polynomial will be in five 

variables (the four dihedrals of lysine and one dihedral of valine). The polynomial 

coefficients are real numbers.

Let r be an RC assignment, represented as a tuple of RCs with one RC for each residue. Let 

ir be the rotamer in r at residue i. To approximate the minimized energy of an enumerated 

conformation r, instead of minimizing the full energy

(2)

with respect to the system’s continuous degrees of freedom x, we simply minimize the 

polynomial approximation

(3)

with respect to x. These least-squares approximations achieve high accuracy for the low-

energy wells of rotamers and local backbone motions, i.e., the portions of conformational 

space where both the continuous degrees of freedom and the energy are relatively close to 

the local minimum of the pairwise energy. Higher energies may also be found close in 

conformational space to the local minimum, but these energies indicate strained 

conformations unlikely to be seen in nature. Thus, for a “well-behaved” energy term whose 

energy is unstrained throughout the bounds on continuous degrees of freedom that define 

our current RCs, EPIC simply performs a least-squares fit of the energy, to represent it as a 

multivariate polynomial with respect to the continuous degrees of freedom.

Many RCs do however contain both regions with feasible energies and regions with higher 

energies that represent biophysically inaccessible conformations such as steric clashes. 

These RCs present difficulties for the basic least-squares fit, but the following algorithmic 

modification avoids this problem.
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3.3 Modified least-squares method

To handle RCs with high-energy regions, we note that we do not necessarily need the 

polynomial to be a good approximation for the energy throughout the entire region allowed 

by the box constraints. We merely require that Eq. (2) be a good approximation for Eq. (3) 

when used with biophysically feasible, minimized values of x. In particular, we can expect 

that the optimal, minimized structure has no clashes or other particularly large local strains. 

We have the advantage that while interaction energies in proteins can rise steeply towards 

infinity in the case of steric clashes, there is no physical phenomenon that will cause 

interaction energies to decrease steeply towards negative infinity. So energies are relatively 

well-behaved in low-energy regions. We can thus effectively partition the conformational 

space into relatively smooth, low-energy regions that we approximate accurately, and high-

energy regions that we can rule out.

Let us denote the energy relative to the minimum as E′(ir, js, x − x0(ir, js)) = E(ir, js,, x) − 

E⊝(ir, js) in the pairwise case, or E′(ir, x − x0(ir)) = E(ir, x) − E⊝(ir) in the intra+shell case. 

Our requirements for a “good approximation” of the energy can be defined rigorously in 

terms of two upper bounds b1 and b2 that we place on E′. For each intra+shell or pairwise 

energy term, we estimate an upper bound b1 on E′ that we expect to hold for all minimized 

conformations that we want to output (the GMEC, or the lowest-energy c conformations if 

we are computing a c-conformation ensemble). The algorithm will be able to check if b1 is 

valid or not, so we can try again with a higher b1 if needed. Additionally, we need a second, 

possibly looser upper bound b2 on E′ that we are confident will be valid for all minimized 

conformations that we compute during our search, whether they turn out to be the GMEC or 

not. The value of b2 must be the same for all intra+shell and pairwise terms (b1 can be term-

specific, though in practice a single value for b1 is convenient).

If EPIC is being used with the iMinDEE algorithm for conformational search,8 we can 

provably obtain the GMEC without considering any conformations whose energies E′ 

exceed the pruning interval, 8 an upper bound computed by iMinDEE for the difference 

between the lowest conformational energy lower bound (based on pairwise minimum 

energies) and the GMEC. Thus, when running iMinDEE, we can set b2 equal to the 

iMinDEE pruning interval. When b2 is set equal to the pruning interval, we know it is a 

valid upper bound on E′ for all minimized conformations computed during the search, and 

thus our GMEC calculation is provable. We can also do this when running DEEPer,11 which 

is essentially a backbone-flexible version of iMinDEE. For other algorithms we may want to 

set b2 based on knowledge of the system being designed—setting b2 = 2b1 is likely to be an 

acceptable heuristic.

Our polynomial only needs to be a good fit to E′ for values of the internal coordinates where 

E′ ≤ b1. For E′ > b1, we will require that the polynomial lie above b1. This will ensure that 

when we enumerate conformations in order of minimized energy computed using 

polynomials, as long as the thresholds b1 are chosen correctly, we will obtain non-clashing 

conformations before conformations with clashes, and these non-clashing conformations’ 

energies will be accurately represented by the polynomial fits. Furthermore, we will require 

that for b1 < E′ < b2, the polynomial should be a lower bound on E′ (Fig. 3). This will ensure 
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that regardless of what thresholds b1 were used, we never overestimate a conformational 

energy that is below the threshold b2, and thus never exclude it from the enumerated list of 

conformations. The requirement to be a lower bound is easy to satisfy, because clashing van 

der Waals interactions are very steep and thus will tend to rise much more quickly than the 

polynomial fits. Thus, when we perform polynomial fits using thresholds, we know we will 

be getting a gap-free list of conformations in order of energy. If the thresholds b1 were 

chosen to be too low, some higher-energy conformations with underestimated energy might 

be included as well, but these will be limited to minimized conformations containing energy 

terms with E′ > b1. This condition can be checked easily. If desired, the run can be redone 

with increased b1 thresholds to eliminate this error. Thus, the choice of b1 affects the 

ultimate speed of the algorithm but not its correctness.

For our experiments in this work (Section 4), we have set b1 to 10 kcal/mol. This threshold 

was found to be sufficient for all experiments described in this work, and most other EPIC 

designs that we have tried. Physically, any pair of residues whose interaction energy is 10 

kcal/mol worse than the optimal interaction for its current RC pair is likely in a highly 

strained conformation such as a steric clash. Thus a design requiring b1 greater than 10 

kcal/mol is likely to be biologically infeasible. For example, the protein is likely to unfold or 

undergo a large and unexpected structural change rather than suffer this local strain.

Let us use z to denote a vector in the domain of our polynomial fit p. p is considered a good 

representation of the energy if, for some small ε > 0, the following conditions are satisfied:

1. For z such that E′(ir, js, z) ≤ b1, |pir,js(z) − E′(ir, js, z)| < ε.

2. For z such that b1 < E′(ir, js, z) < b2, b1 − ε < pir,js(z) < E′(ir, js, z) + ε.

3. For z such that b2 ≤ E′(ir, js, z), b1 − ε < pir,js(z).

These conditions are illustrated in Fig. 3. They can be achieved using a modified least-

squares fit, using special “one-sided” penalties to enforce the inequalities in conditions 2 and 

3, along with usual (two-sided) least-squares penalties to enforce condition 1. The objective 

function is the sum of terms from each sample in the training set. For a sample z such that E′

(ir, js, z) ≤ b1, the objective function term is (pir,js(z) − E′(ir, js, z))2 (as is typical for least 

squares). A term of this form is also used if the lower-bounding condition is violated, i.e., if 

E′ < b2 but p > E′. Otherwise, the objective function term for z is (pir,js(z) − b1)2 for pir,js(z) 

< b1, and 0 for pir,js
(z) ≥ b1.

If the modified least-squares method is applied to a set of samples that mostly have E′ > b1, 

then overfitting to the few points with E′ < b1 may occur no matter how many samples there 

are. As an extreme case, if all samples have E′ > b2, then almost any polynomial with very 

large values throughout its domain will give a 0 value for the objective function, but this 

may still provide a very poor description of the energy landscape. To avoid this situation, 

when a test set of n samples is being drawn and n/2 samples with E′ > b1 have been drawn 

already, then if more samples come up with E′ > b1, they are redrawn to ensure that a 

sufficient number of samples with E′ ≤ b1 is available (Section 3.7). Minimization-aware 

dead-end elimination pruning8 (both singles and pairs pruning) is performed before 

computation of the polynomial fits, since the pruned rotamers and pairs won’t be needed 
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during enumeration. This pruning usually eliminates the clashing rotamers and pairs, leaving 

rotamers and pairs that are well suited for simple polynomial representations.

This objective function can be optimized efficiently because it is convex with respect to the 

polynomial coefficients (see Section 3.4). But we found general-purpose convex minimizers 

to be rather time-consuming for the higher-order fits. To address this, the algorithm 

described in Section 3.4 was developed. It exploits specific properties of the objective 

function to obtain a more efficient and reliable fit than a general-purpose convex minimizer 

would be likely to obtain.

3.4 A fast algorithm for modified least-squares fitting

The following algorithm performs a modified least-squares fit, providing a useful 

polynomial for energy terms that include both low-energy regions, where an accurate 

polynomial representation of the energy surface is required, and high-energy regions that we 

must exclude from our search.

Let us represent our polynomial fit p(z) as p · y(z), where p is the polynomial’s vector of 

coefficients, y(z) is the corresponding vector of monomials built from the degree-of-freedom 

values z, and · is the standard inner product. For example, if z consists of the two dihedrals 

z1 and z2 and we are performing a quadratic fit, then y(z) will have the elements 1, z1, z2, 

, and z1z2. For each sample s in our training set of samples (see Section 3.7), let zs be 

the vector of degree-of-freedom values, and let ys = y(zs) be the corresponding vector of 

monomials. Let  be the energy for the sample, where the minimum-energy point is 

defined to have zero energy. Then, a modified least squares fit consists of minimizing the 

objective function f to obtain best-fit polynomial coefficients pb:

(4)

where { } denotes the set of samples whose energies are less than or equal to b1. If 

we define P1 to be the set of sample points such that either

(5)

or

(6)

and we define P2 to be the set of sample points such that

(7)
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then our objective function f becomes

(8)

Thus, if we know P1 and P2, minimizing the objective function is a basic least squares 

problem and can be solved analytically. Like basic least squares, this algorithm operates on 

a single “training” set of samples and provably minimizes the objective function (i.e., the 

error) for that training set.

We can show the objective function is convex with respect to p by noting that the 

contribution from each sample s is a function of the single linear combination u = p · ys of 

the elements of p. This contribution depends on , but it is always convex (and piecewise 

quadratic). If , the contribution is just the parabola . If , it’s the 

“truncated” or “flat-bottomed” parabola given by (b1 − u)2 for u ≤ b1, 0 for , 

and  for . Otherwise (if ), the contribution is the “one-sided” 

parabola given by (b1 − u)2 for u < b1 and 0 otherwise. Hence, the objective function is a 

sum of convex functions, making it convex itself. Thus, minimizing the objective function to 

find p is tractable, with any local minimum being the global minimum. As a result, we know 

that if for any sets of samples P1 and P2 we have coefficients p that minimize Eq. (8) and 

satisfy the conditions Eq. (5–7), then the coefficients p are globally optimal.

The algorithm finds P1 and P2 iteratively. As an initial guess, P1 can be initialized to s such 

that , and P2 to be empty. (This corresponds to assuming that the one-sided restraints 

can all be satisfied perfectly.) This is followed by performing the basic least-squares 

computation of minimizing Eq. (8), which returns coefficients p, and recalculating P1 and 

P2 from p using the conditions Eq. (5–7). This procedure is then repeated using the new P1 

and P2 until a self-consistent solution is found. Generally, only a small minority of the 

samples will be moved in and out of the least-squares problem at each iteration, so the least-

squares matrix can be updated quickly at each step—this is useful because forming this 

matrix is the bottleneck. Typically, only a few iterations are needed.

This algorithm is actually a special case of Newton’s method, because its estimate for the 

objective-function minimum at each iteration is the minimum of the local quadratic Taylor 

expansion of the objective function. This minimum can be found analytically because the 

local expansion is convex.

In our implementation of this algorithm, by far the bulk of its time cost is spent in forming 

the matrix for the first basic least-squares fit (with initial P1 and P2). The subsequent fits are 

much faster because they are only sparse updates. Thus, the modified least-squares fitting is 

only negligibly more expensive than the first basic least-squares fitting.
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3.5 Sparse atom-pair energies (SAPE)

SAPE is a method to reduce the degrees of polynomials needed by EPIC by including some 

non-polynomial terms in the representation of the energy.

The need for higher-order polynomial fits is driven by large values of higher derivatives. 

These values are contributed primarily by a small number of van der Waals (vdW) terms 

between pairs of atoms that are very near each other. It is possible to obtain substantial time 

and memory savings by evaluating these terms explicitly and fitting the rest of the energy 

function to a polynomial. To select atom pairs whose vdW terms are to be evaluated 

explicitly, a cutoff distance (3 or 4 Å; see Section 3.6) is chosen. Then, an atom pair’s vdW 

terms are evaluated explicitly if and only if the atoms can be found within that distance of 

each other within the bounds on internal coordinates for the given residue conformations. 

These terms are not polynomials in the degrees of freedom because they are inverse powers 

of distances between atoms, and the atom coordinates themselves are in general not 

polynomial functions of the degrees of freedom. For example, the expressions for atom 

coordinates in a sidechain in terms of the sidechain dihedral angles will include sines and 

cosines of those angles.

Once we decide to evaluate vdW terms for a given pair of atoms, it costs negligible extra 

time and memory to also calculate the electrostatic interaction between these atoms (since 

we already have the distance between the atoms).

3.6 Attaining the required accuracy

We will now describe the methods used to choose polynomial degrees for EPIC fits and 

ensure that fits of sufficient accuracy are obtained.

Fit accuracy is checked and controlled using cross-validation. For cross-validation purposes, 

a mean-square error is computed, with absolute error used below E′ =1 kcal/mol and relative 

error above. This can be seen as a weighting of the error terms: the weight is 1 for E′ ≤ 1 and 

1/min(E′, b1) for E′ ≥ 1 (this levels off at b1 to avoid excessive underweighting of the one-

sided constraints). These weights, which are continuous with respect to E′, are also used 

during the least-squares fitting.

Cross-validation is used to select the degree of the polynomial that is fit. Low-degree 

polynomials save time and memory both during the A*/enumeration step and during the 

precomputation step, but may not provide a sufficiently good representation. Hence, we 

proceed through a sequence of increasingly expensive fits (Fig. 1A), and each time a fit is 

completed, it is cross-validated with an independently drawn set of samples. Like the 

training set, this cross-validation sample set has ten times as many samples as fit parameters. 

If the mean-square error is below a specified threshold, the fit is stored, and if it is above, we 

proceed to the next method. The default threshold value is set to 10−4. However, limited 

investigation suggests larger thresholds still tend to keep the errors in conformations’ 

minimized energies small compared to thermal energy, and thus are likely acceptable as 

well. It is also useful to avoid doing fits with very large number of parameters, as these have 

enormous time and memory costs both in the enumeration and precomputation steps. Thus, 

OSPREY is currently set to refuse to do fits with over 2000 parameters—this way, 
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computations that would have prohibitive time costs may still be satisfactorily completed 

with a slightly higher error threshold than usual.

Some of the fits use lower-degree terms for all degrees of freedom and higher-order terms 

for selected degrees of freedom. These selected degrees of freedom are eigenvectors vk of 

the Hessian from a modified least-squares quadratic fit (step 1 in the list of steps below). 

Letting λk be the eigenvalue corresponding to vk, we define

(9)

for q > 0. Let us define fn to be a polynomial fit of total degree d (e.g., f2 is a quadratic fit); 

fd(Dq) to be a fit to a polynomial of total degree d in all degrees of freedom plus terms of 

total degree d + 1 and d + 2 in the degrees of freedom in Dq; and s(n, c) to be a polynomial 

fit of total degree d plus SAPE with a cutoff of c Å. Fits were tried in the following order: f2, 

s(2, 3), f2(D10), f2(D100), f4, s(4, 4), f4(D10), f4(D100), f6, and s(6, 4).

The Stone-Weierstrass theorem32 guarantees that a sufficiently high-degree polynomial can 

approximate any function on any closed and bounded portion of Cartesian space to any 

desired accuracy. In other words, it guarantees that any energy function can be represented 

by EPIC to arbitrary accuracy if we allow sufficiently high-degree polynomials. The basis of 

Bernstein polynomials can be used to construct such approximations with guaranteed 

convergence to any function.33 However, for the purpose of energy representation for 

protein design, modified least squares is likely to provide good approximations using much 

lower-degree polynomials than we would obtain using the Bernstein basis, because we do 

not need close approximations of the high energy in clashing regions. In these regions, we 

only need a reasonable lower bound that is much higher than the rotameric wells. This 

strategy keeps the polynomial degrees low enough to be practical.

3.7 Sampling to train and validate least-squares fits

Training and validation sets for EPIC fits consist of sample conformations of the residue(s) 

involved, specified as vectors of internal coordinates, drawn from throughout the allowed 

region of conformational space.

By default, samples for both training and validation sets were sampled uniformly (i.e., each 

degree of freedom was sampled uniformly and independently from the interval 

corresponding to the current rotamer or RC). Ten samples were always used in each of these 

training and validation sets for each parameter in a fit. However, if most of the samples 

corresponded to energies above the threshold b1 (see Section 3.3), then overfitting could 

result, because for such samples there are infinitely many polynomial values that yield zero 

error. To avoid this, we need sufficient samples from the set B of conformations with 

energies below b1; B is the set of conformations where the polynomial needs to be 

quantitatively accurate. We ensure sufficient samples from B by rejecting samples outside B 

whenever we desire n samples in total and we already have n/2 samples outside B, and thus 

drawing the rest of our samples uniformly from B by rejection sampling. If 10,000 samples 
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are rejected consecutively, indicating that B is too small for efficient rejection sampling, 

then the Metropolis algorithm34 is used to sample from B.

We have confidence in the parameters obtained by fitting to the training samples for three 

reasons. First, a useful measure of the accuracy of a polynomial approximation to the energy 

surface is that there is a low probability that any region of the energy surface deviates 

significantly from the polynomial approximation (except for high-energy regions 

approximated by similarly high values of the polynomial). Since our cross-validation of each 

polynomial fit uses a large number of independent samples—ten times the number of 

parameters—we are left with a very low chance that our cross-validation samples will miss 

any such regions. Thus an insufficiently accurate polynomial surface will be detected upon 

cross-validation and remedied by an increase in polynomial degree. Second, errors in the 

minimized energies obtained using polynomial approximations are consistently low, as 

shown in our computational experiments (Table 1). Third, we expect the energy function to 

be relatively smooth in the vicinity of a minimum, since the gradient must be zero at the 

minimum, and thus we expect a polynomial of relatively low order (e.g., the Taylor series of 

the energy) to yield a good approximation in the vicinity of a minimum.

3.8 Application in proteins design algorithms

Once the polynomials are computed, they can be used in protein design algorithms wherever 

the energy function would ordinarily be called. The GMEC will simply be the set of 

rotamers for which the minimized value of Eq. (3) with respect to x has the lowest possible 

value.

The simplest method to provably find the GMEC using EPIC is to use a protein design 

algorithm that enumerates conformations in order of a lower bound, and then instead of 

minimizing the full energy (Eq. 2), merely minimizing the polynomial-based energy (Eq. 3) 

to compute the energy for each enumerated conformation (Fig. 2). For example, 

iMinDEE/A*8 can be used for this enumeration process, and we use this algorithm in our 

computational experiments (Section 3.10).

EPIC can also be applied in free energy calculations using the K* algorithm,7,12 which 

approximates binding constants as ratios of partition functions computed from low-energy 

conformations enumerated by A*. During these calculations, one can simply use the 

polynomials instead of the energy function to compute the partition function, given the 

enumerated RC assignments. This method gives a constant-time speedup, determined by the 

ratio of time to evaluate the energy function versus the EPIC energy.

An additional speedup is possible for branch-and-bound protein design algorithms (e.g., 

A*14,15) that use a tree structure for conformational search. These algorithms build nodes 

that each represent a subset of conformational space and are scored using a lower bound on 

the conformational energies in that space. In each node’s conformational space, some 

residues are restricted to a single RC; these RCs are referred to as assigned to their 

respective residues. At each level of the tree, an RC is assigned to one more residue. One 

can use the EPIC polynomials to improve the lower-bound energy for each of these nodes. 
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At each node, we need to compute a lower bound L for the conformational energy qr, which 

is defined in Eq. (3): that is, we compute L such that

(10)

for all RC assignments r and all degree-of-freedom values x that are part of the node’s 

conformational space. If r is known (i.e., if RCs are fully assigned at all residue positions), 

then a tight lower bound can be computed trivially by local minimization with respect to x. 

Otherwise, we let qr(x) = E⊝(r) + Ep(r, x), where Ep consists only of EPIC polynomials:

(11)

(12)

Now, if we compute lower bounds L⊝ and Lp such that L⊝ ≤ E⊝(r) and Lp ≤ Ep for all r, x in 

our conformational space, then L = L⊝ + Lp will satisfy Eq. (10), giving us a valid lower 

bound. Computation of L⊝ has been described previously, because lower bounds of this 

form are computed in iMinDEE8 and DEEPer.11 To compute Lp, we use the fact that EPIC 

polynomials are always nonnegative; thus, for any r and x and any subset S of the residues 

we are modeling,

(13)

If we let S be the set of residues with fully assigned RCs, then there is only one possible RC 

ir for each residue i ∈ S, and so we can find the minimum of Eq. (13),

(14)

exactly by local minimization with respect to x. Eq. (14) is a lower bound on Ep(r, x), and 

thus we set Lp equal to it, giving us a score for our node. We note that Lp is strictly 

nonnegative, because Eq. (13) and thus Eq. (14) are always nonnegative.

Because this continuous minimization with respect to x is more expensive and has to be 

performed separately at each node, it is evaluated in a lazy31 fashion in our A* 

implementation. Nodes are assigned the traditional, discrete lower bound L⊝ when they are 

generated; this bound is fast to compute. The A* priority queue contains nodes both with 

and without the polynomial contribution Lp included. When a new node is popped from the 

queue, we check if Lp is present or not. If it is, we expand the node, and if it is not, we 

compute Lp and insert the node back in the priority queue. This ensures that nodes come off 
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the priority queue in order of their complete lower bound L⊝ + Lp, as is necessary for A* to 

function correctly. However, it also ensures that we do not waste time computing Lp for 

nodes whose L⊝ is high enough to preclude expansion. This method gives a combinatorial 

speedup, since a high polynomial contribution for a partial conformation can effectively 

prune an entire branch of the A* tree. In practice, though, the large constant speedup from 

EPIC minimization of fully assigned conformations tends to be more significant (Section 

4.1, Table 2).

3.9 Complexity of energy evaluations

The speedup due to EPIC can be explained in terms of the asymptotic costs of EPIC 

polynomial evaluations compared to direct energy function calls. The cost of evaluating an 

EPIC polynomial scales as the number of terms in the polynomial. This cost is itself a 

polynomial (usually quadratic) in the number of internal coordinates of the residue pair (or 

single residue, in the intra+shell case) of interest. By contrast, the cost of evaluating a 

molecular mechanics-based energy function is generally quadratic in the number of atoms 

involved, since distances between all pairs of atoms need to be considered. EPIC achieves a 

marked speedup because most residues have far more atoms than significantly flexible 

internal coordinates. For example, most protein residues have two or fewer sidechain 

dihedrals, but over ten atoms. The remaining internal coordinates—bond length, angles, etc.

—are relatively inflexible. Polynomial evaluations are also performed entirely by addition 

and multiplication, which are much faster than the more complicated elementary operations 

(trigonometric functions, square roots, etc.) needed to evaluate molecular mechanics energy 

terms.

When quantum-mechanical energy functions are introduced, all the electrons must be 

accounted for explicitly, and even fairly approximate quantum-chemical methods have time 

costs that are higher-order polynomials with respect to the number of electrons. For 

example, any method that accounts for repulsions between all atomic orbitals (e.g., Hartree-

Fock and all post-Hartree-Fock methods) must calculate repulsion integrals for all 

quadruples of atomic orbitals, and there are at least as many atomic orbitals as electrons. 

And there are far more electrons than there are atoms, and far more atoms than internal 

coordinates, giving EPIC an extreme performance advantage. Yet EPIC can represent the 

same energy surface to a high degree of accuracy, once the EPIC polynomials have been 

precomputed.

Whether EPIC is used or not, these types of pairwise energy evaluations must be performed 

for every pair of residues in a design system. In general, this means the number of pairwise 

energy evaluations needed is quadratic with respect to the number of residues in the system. 

This number can be reduced if a cutoff is applied to remove interactions between distant 

residues. However, this speedup applies equally for EPIC and non-EPIC calculations.

3.10 Computational Experiments

Protein design calculations were performed in OSPREY1,3,7,23,24 with and without EPIC to 

investigate (a) what previously intractable systems become newly tractable with EPIC, (b) 

what speedups EPIC brings to conformational enumeration for previously tractable systems, 

Hallen et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2015 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and (c) what types of polynomial representations are needed for these purposes. EPIC runs 

were performed with SAPE and with conformational minimization for partially assigned 

conformations during A* search, and for comparison, runs with either one of these features 

omitted were also performed.

Times were compared for the A* search, including conformation enumeration and 

minimization, because this is the portion of the design that is not guaranteed to complete in 

polynomial time and thus is the bottleneck. As part of the EPIC runs, GMEC energies were 

also computed using the regular energy function to compare to the EPIC results, and the 

ratio of minimization times with and without EPIC was computed. For runs with multiple 

conformations very close in energy to each other (within the error range of EPIC, typically 

<0.1 kcal/mol), the time ratios were averaged.

All minimizations were performed using a cyclic coordinate descent minimizer, which is 

now included in OSPREY. Default OSPREY energy function settings were used where 

applicable: AMBER with EEF1 solvation and a distance-dependent dielectric constant of 6. 

Rotamers were determined using the Penultimate rotamer library.13

Test systems were chosen to evaluate both partition function and GMEC calculations, and to 

include all three types of continuous degrees of freedom used in OSPREY: sidechain 

dihedrals, backbone perturbation (shear and backrub) parameters,11 and rigid-body rotations 

and translations of strands. Some of the tests are intended to be within the scope of previous 

methods, allowing a quantitative comparison of running times, while others are intended to 

show EPIC can compute previously intractable GMECs and partition functions with 

provable accuracy.

For GMEC calculations (Table 1), the first set of systems used was taken from Gainza, 

Roberts, and Donald,8 and featured only sidechain dihedral flexibility. The structures for 

these correspond to PDB codes 2o9s, 2qsk, 2rh2, 2ril, and 3g36. The second set of systems 

was taken from Hallen, Keedy, and Donald,11 and included both sidechain and backbone 

flexibility. The structures’ PDB codes were 1aho, 1c75, 1cc8, 1f94, 1fk5, 1i27, 1iqz, 1jhg, 

1l6w, 1l7a, 1l7l, 1l7m, 1l8n, 1l9l, 1l9x, 1lb3, 1m1q, and 1mwq. Three variants of the 1aho 

system with more residues were tried as well. Finally, a GMEC calculation was performed 

for the complex of the HIV surface protein gp120 with the broadly neutralizing antibody 

NIH45-46 (PDB code 3u7y35).

To investigate the application of EPIC to partition function calculations (Table 2), we first 

chose systems with only sidechain dihedral flexibility from Gainza, Roberts, and Donald8 

and calculated a partition function for the unliganded protein, with wild-type amino acids at 

all residue positions, to within 97% guaranteed accuracy. Partition function calculations 

such as these are the key operation in K*7,12 calculations. The structures for these 

correspond to PDB codes 2cs7, 2o9s, 2p5k, 2qsk, 2r2z, 2rh2, 2ril, 2wj5, 2zxy, 3a38, 3dnj, 

3fgv, 3fil, 3g21, 3g36, 3hfo, and 3i2z. Furthermore, a K* run is presented for trypsin with a 

small-molecule inhibitor (PDB code 3pwc); the run is tractable with EPIC but fails to finish 

without it. Unlike the calculations for the other, monomeric structures, the K* run for trypsin 
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involves calculation of three partition functions: one for the protein, one for the ligand, and 

one for the complex.

Each design was allowed 17 days of total runtime, after which those that had not finished 

were deemed to have exceeded the time limit and were terminated. A* times with EPIC 

ranged from 0.7 seconds to 4 days, and the speedups due to EPIC are shown in Tables 1 and 

2.

In these experiments, fitting was performed without parallelization. However, the 

computation of the EPIC polynomial for each pair of RCs is an independent operation, so 

each can be done in parallel, meaning that parallelization to p processors will give a p-fold 

speedup as long as p does not approach the number of RC pairs. OSPREY currently 

supports computation of each residue pair in parallel, so the speedup holds as long as p does 

not approach the number of residue pairs. In practice however, for large systems, pruning 

and A* take longer than the polynomial fitting, so this parallelization may not be necessary. 

Additionally, once the EPIC fits have been computed for a system, there may be a large 

number of computations that can be performed using it—calculation of partition functions 

for many sequences, computation of GMECs for various subsets of the sequence space, etc. 

These extensive reuses of the fits may be especially desirable when designing a library of 

sequences for experimental testing—if one performs various optimizations with different 

assumptions and tests top sequences from each optimization, the results will be more robust 

to errors in the assumptions.

To investigate the ability of EPIC to represent quantum-mechanical energy functions, EPIC 

calculations were also performed on the aspartame dipeptide (extracted from PDB code 

1a8j36) with the energies for EPIC samples evaluated using NWChem37 instead of using 

OSPREY’s usual energy function. Calculations were performed at the SCF level of theory 

with STO-3G and with 6-31G** basis sets, and also at the MP2 level of theory with a 

STO-3G basis set.20 For each rotamer of each residue, dihedrals were sampled within the 

allowed range for the rotamer and the total energy of the dipeptide was fit to a polynomial.

3.11 Applications of EPIC to other algorithms

For this study, EPIC was implemented in the context of the OSPREY protein design 

package OSPREY1,3,7,23,24 to run along with the algorithms (iMinDEE, DEEPer, and K*) 

and pairwise energy functions already implemented in OSPREY. However, EPIC would 

enable some other capabilities in different implementations.

First, EPIC can be applied in the context of other protein design algorithms. For example, 

one can apply it an iterative algorithm like FASTER38 or Monte Carlo34 that tries to find a 

suitably low-energy conformation by accepting or rejecting rotamer changes based on the 

energies of conformations with these changes. Whenever the energy is needed for a rotamer 

assignment, the EPIC energy for the protein can be locally minimized starting at the ideal 

internal coordinate values for that rotamer assignment. In this case, the matrix of EPIC 

polynomials substitutes directly for the matrix of pairwise rotamer energies commonly used 

to calculate conformational energies for these algorithms in the absence of continuous 

flexibility. EPIC could even be used for molecular dynamics, since most residue pairs in a 
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molecular dynamics trajectory4 will spend most of their time in fairly relaxed conformations

—the region of conformational space modeled by EPIC. In all these cases, EPIC energy 

evaluations would be markedly faster than regular energy function calls, particularly for 

expensive energy functions. Thus, EPIC would provide a substantial speedup for any 

algorithm whose bottleneck is energy function calls.

For docking algorithms39 that require sidechain optimization or local backbone 

optimization, EPIC can be used both for conformation scoring and for conformational 

optimization using any of the above algorithms.

3.12 EPIC can accommodate higher-than-pairwise energies

EPIC was implemented in this work to handle pairwise energy functions (in the sense of a 

sum of 1-body and 2-body energies with no terms dependent on three or more residues’ 

degrees of freedom), because these are currently typical for protein design and include the 

AMBER, CHARMM, and EEF1 energy functions we use in OSPREY. However, the true 

energy of proteins is not exactly pairwise decomposable, and EPIC could easily 

accommodate higher-order terms. EPIC simply requires that each energy term correspond to 

a set D of degrees of freedom, constrained to a region in which they are relatively well-

behaved (e.g., dihedrals at each residue constrained to a single rotamer); we can sample D 

subject to the constraints and then fit the energies as a polynomial function with domain D. 

Thus, for any set R of more than two interacting residues, for each RC assignment to those 

residues, we can fit an EPIC polynomial, and thus describe the energy terms for R.

In practice, the number of sets of residues that can interact significantly is quite limited, 

because residues typically must be physically near each other to have significant higher-

than-pairwise interactions. For example, if we have a Ramachandran-based potential, its 

terms each depend on the ψ and ϕ backbone dihedrals of a certain residue r, and thus depend 

on the conformations of the three residues r − 1, r, and r + 1. Likewise, the conformation of 

a residue i can induce polarization effects in a nearby residue j that will affect the 

interactions of j with another residue k, and this effect can be quantified using quantum 

chemistry, but i and j have to be physically very close to each other (≪1 nm) for this effect 

to be significant (and j and k have to be fairly close too—probably subnanometer as well, 

since the potential of an induced dipole falls off faster than 1/d2 with distance d). Hence, 

EPIC can be used to model any realistic energy function, by accounting for all sets of 

residues with significant energetic interactions.

4 Results

Computational experiments were performed to measure what kinds of polynomial fits are 

necessary to accurately model different proteins with different degrees of freedom and 

energy functions, and what speedups EPIC brings to DEE/A* and K* calculations. The 

results demonstrate that EPIC brings a substantial speedup to design calculations when 

proteins are modeled as in previous OSPREY designs.1,3,8,11,23 They also show that EPIC 

efficiently represents energies calculated by quantum chemistry, and is a potentially decisive 

tool for using both realistic, continuous flexibility and quantum-mechanical energy functions 

in protein design.
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4.1 Application to protein designs

First, computational experiments were performed to compare GMEC search with and 

without EPIC, as described in Section 3.10. Key portions of the design calculation were 

timed with and without EPIC to determine the speedup for these portions (Table 1). On 

average, minimization of fully enumerated conformations was 79-fold faster using EPIC 

than with traditional energy function calls. Overall A* speedups due to EPIC averaged 167-

fold (Fig. 5A). The overall A* speedup is likely greater than the minimization speedup 

because of the way OSPREY’s standard energy function is implemented. Each time the 

energy function is run on a new sequence, setup time (e.g., initialization of the energy 

function) is required to identify electrostatic, van der Waals, and solvation terms that will be 

necessary for that sequence. This setup time is eliminated by EPIC, and is not counted as 

part of the minimization time here, but it may be performed an exponential number of times 

without EPIC, since minimizations may be required for an exponential number of 

sequences. Runs that did not finish without EPIC are not included in these averages. 85% of 

the fits in these experiments were quadratic, with no SAPE needed (Figure 5B). GMECs 

from EPIC runs showed good agreement between energies from minimization of EPIC 

energies and energies from the actual energy function. The average energy difference was 

0.04 kcal/mol, which is less than one-tenth of thermal energy at room temperature (0.592 

kcal/mol, calculated as the universal gas constant times a room temperature of 298° K) and 

thus functionally insignificant.

Five of the 27 systems finished only with EPIC, demonstrating that EPIC allows design of 

larger and more diverse systems than were previously designable. For example, a redesign 

of the complex of HIV surface protein gp120 with the antibody NIH45-46 did not finish 

when run without EPIC, but finished with EPIC using about a day of A* time (Fig. 4). This 

redesign allowed the mutation of 16 residues all over the gp120 surface in the interface—

five in the D-loop of gp120,40 which is central to the interaction with NIH45-46, and the 

other 11 scattered through other parts of the interface in various types of secondary 

structure. Redesigns of the gp120 surface to achieve specific binding to particular antibodies 

has been instrumental in the development of probes to isolate these antibodies from sera.28 

Redesign of the antibody surface of a gp120-antibody complex has also been effective in 

optimizing antibody affinity,25 which is useful for passive immunization and immunogen 

design. Interestingly, the redesign of the NIH45-46 complex yielded 12 top conformations 

within 0.06 kcal/mol of each other—two from the top sequence and ten from a double 

mutant. This high density of favorable conformations suggests the complex is entropically 

favored, a result consistent with the observed high affinity of NIH45-46 for gp120, attained 

through extensive affinity maturation of the antibody.

Two variations of EPIC were also tried for these systems. It was found that minimization of 

partial conformations during A* (Section 3.8) provides a speedup (2.3-fold on average), 

though it is not nearly as great as the speedup from faster minimization of fully assigned 

conformations (Fig. 5). Furthermore, EPIC without SAPE was often effective; however, 

under some circumstances it was unable to provide accurate fits (as usual, trying only the 

polynomial degrees described in Section 3.6). In systems where EPIC without SAPE was 

effective, it averaged insignificantly (1.1-fold) slower than EPIC with SAPE for A*. 
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However, there were four systems that required SAPE to give accurate results (out of 27; 

Table 1), including the HIV gp120 complex with antibody NIH45-46 (Fig. 4). There were 

also four systems that exceeded the time limit during fitting. These limitations on EPIC 

without SAPE do not indicate a fundamental theoretical barrier, because in principle the 

Stone-Weierstrass theorem guarantees an accurate fit if the polynomial degree is sufficiently 

increased (see Section 3.6). However, they do indicate that EPIC without SAPE may 

sometimes require polynomial degrees that are prohibitively time-consuming for typical 

protein designs, and/or a higher numerical precision than the double precision efficiently 

supported in Java and thus used in OSPREY.

Experiments were also performed to compare partition function calculations with and 

without EPIC (Table 2). To obtain a provably good approximation to the partition 

function,7,12 many more conformations must be enumerated and minimized than for GMEC 

calculations. As a result, marked speedups were achieved by EPIC (Fig. 5C). Out of the 19 

systems for which EPIC finished, only three finished without EPIC (average speedup 2000-

fold). The speedup in EPIC designs from minimization of partial conformations was only 

modest (1.4-fold).

With an A* speedup of 2–3 orders of magnitude, designs that would previously take years 

can be performed with EPIC in days. This will allow many designs that would otherwise be 

considered intractable to be completed using EPIC.

4.2 Quantum-mechanical energies

In addition to classical mechanics-based energy functions, we also used EPIC to fit 

conformational energies of the aspartame dipeptide calculated using quantum-mechanical 

models of electronic structure. EPIC fits for aspartame showed that quantum-mechanical 

energies and AMBER and EEF1 energies can be represented by polynomials of very similar 

degree, i.e., energy surfaces from quantum chemistry are just as polynomial-like as energy 

surfaces from molecular mechanics. SAPE was not found to significantly increase the 

accuracy of the fits, and thus were not included, though it is likely that reparameterized van 

der Waals and/or electrostatic terms (or other specially fit functions of the atom-pair 

distance) would be able to improve fit quality. This discrepancy indicates that the atom-pair 

energies used in SAPE are a poor approximation to the interactions between the same atom 

pairs predicted by quantum mechanics, and thus that energies returned by quantum-

mechanical and molecular-mechanics methods are substantively different.

For Phe 2 of aspartame, the same types of polynomial fits were needed for Hartree-Fock 

with a STO-3G basis set, Hartree-Fock with a 6-31G** basis set, and the usual AMBER/

EEF1 energy function (Fig. 6). These were quadratic fits for three rotamers and a quadratic 

fit plus quartic fits on D10 for the fourth. MP2 with a STO-3G basis set also required 

quadratic fits for the first three rotamers, and required a quadratic fit plus quartic fits on 

D100 for the fourth.

For Asp 1, AMBER/EEF1 required quadratic terms plus quartic terms on D10 for three 

rotamers and on D100 for two. Both Hartree-Fock and MP2 with a STO-3G basis set 

Hallen et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2015 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



required slightly simpler fits: only quadratic for one rotamer, quadratic plus quartic terms on 

D10 for three, and quadratic plus quartic terms on D100 for one.

These results show that quantum and polarization-type effects can be represented effectively 

by polynomial fits, and the polynomial degrees needed are essentially the same as for 

AMBER/EEF1.

5 Conclusions

EPIC eliminates the current bottleneck in minimization-aware protein design by performing 

energy function calls only in a precomputation step. It thus opens several avenues for more 

accurate and efficient design calculations. More residues can now be mutated, and more 

ligands can be tested. Additional continuous conformational degrees of freedom (e.g., in the 

backbone) can be modeled, and minimization can be performed over a greater range for each 

degree of freedom when appropriate. In this sense, EPIC helps protein design algorithms 

emulate the extensive continuous flexibility of molecular dynamics algorithms, while 

searching an exponentially large sequence space that would be intractable for molecular 

dynamics-based design. Furthermore, more accurate but (previously) slower energy 

functions can be incorporated without any asymptotic increase in computation time.

The polynomial representation of energy provided by EPIC could also allow dedicated 

algorithms for polynomials to be used in energy calculations. For example, since exact 

derivatives of polynomials are trivial to compute, EPIC is very amenable to rapid calculation 

of energy derivatives with respect to internal coordinates, which are used in many 

minimization algorithms.41,42 Note that the gradient of the EPIC polynomials may not 

approximate the gradient of the energy (i.e., forces) to the same degree of accuracy as the 

polynomials approximate the energy, because the polynomials are fit to the energies rather 

than the forces. Thus, differentiation of the fit polynomial may amplify noise. However, 

when we are numerically minimizing the polynomial approximation to the energy, we 

require derivatives of the polynomials themselves.

EPIC fits are tractable, accurate approximations that provide a new understanding of the 

energy landscape of proteins in the vicinity of ideal rotamers, and more generally in the 

vicinity of energy minima. This is useful because the high dimensionality of conformational 

space makes direct visualization difficult.

By enabling better modeling both of conformational space and of conformational energies, 

EPIC moves us closer to the goal of algorithms that can produce reliable predictions for our 

biomedically and biologically important protein and drug design problems. EPIC is thus 

offered to the protein design community both as an immediate speedup in designs and as an 

enabling technology for future improvements.

Software Availability

Our implementation of EPIC, as part of the OSPREY1,3,7,23,24 open-source protein design 

software package, is available for free download at http://www.cs.duke.edu/donaldlab/

osprey.php.
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Figure 1. 
(A) The energy of each residue is represented by EPIC as a polynomial in the internal 

coordinates, such as sidechain dihedrals χ. Low-degree, inexpensive polynomials (blue) are 

tried first, and the degree is increased as needed to achieve a good fit (black) to the actual 

energy function (red). These polynomials are then used for design in place of the full energy 

function. (B) Interactions between pairs of residues are represented in terms of both 

residues’ internal coordinates.
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Figure 2. 
The number of energy wells in a protein system scales exponentially with the number of 

flexible residues, leading to an exponential number of energy function calls, but EPIC can 

replace most of these calls with quick evaluations of low-degree polynomials. (Top) A 

protein may have an energy well for every combination of rotamers (rainbow) at different 

residues. The global minimum-energy conformation (GMEC) of a protein may be in any of 

these wells. We model the energy as a sum of pairwise energy terms. Each pairwise term 

will have wells for pairs of rotamers, but there are far fewer wells of this kind—a number 

quadratic in the number of residues. We can easily afford the energy function calls needed to 

characterize each pairwise well. (Bottom) By precomputing a polynomial representation 

(blue) of the energy within each well of each pairwise term (red), we enable computation of 

any pairwise term in any pairwise well, and thus of the full protein energy in any energy 

well of the protein, solely by a quick evaluation of polynomials.
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Figure 3. 
(A) For each energy value E′, there is a range of “ideal” values for the EPIC fit (green). For 

the energies below cutoff b1, which may be found in favorable conformations, this range is 

just the energy (the range has zero width). For higher energies, the range is defined using the 

cutoffs b1 and b2. For fitting purposes, EPIC fit values are penalized by the amount they lie 

outside the ideal range (the purple point represents a sample conformation for a given EPIC 

fit incurring the penalty indicated in red). (B) Example of curves satisfying these conditions. 

The EPIC fit matches the energy closely up to the cutoff b1, after which it deviates from the 

energy, but stays in the target region shown in A, by staying below the energy. Once the 

energy is over b2, the EPIC fit can be either above or below the true energy without leaving 

the target region.
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Figure 4. 
Mutatable residues in the redesign of the surface of the HIV surface protein gp120 in 

complex with the broadly neutralizing antibody NIH45-46 (PDB code 3u7y35). This design 

finished only when EPIC was used. Mutatable residues, blue backbone and pink sidechains; 

gp120, black backbone; NIH45-46 heavy chain, green backbone; NIH45-46 light chain, 

brown backbone.
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Figure 5. 
(A) A* times with and without EPIC. Five designs that did not finish without EPIC are 

shown on the right in red. (B) Proportions of each type of fit (see Section 3.6) required in 

EPIC calculations. The “quartic*” category includes both full quartic fits and quadratic fits 

with quartic terms added for D10 or for D100. Fits were all made as high-degree as needed to 

obtain a residual below 0.0001, as described in Section 3.6. Some fits have substantially 

lower residuals, especially quadratic fits without SAPE, since no lower fit degrees were 

allowed. (C) Speedups due to different EPIC methods compared to A* based on pairwise 

lower-bound energies; standard EPIC includes both SAPE and minimization of partial 

conformations. PF denotes partition function calculations; the others are GMEC 

calculations.
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Figure 6. 
Intra-residue energy calculated for Phe 2 of aspartame using Hartree-Fock theory with a 

STO-3G basis set, and quadratic EPIC fit, as a function of the two sidechain dihedrals. The 

fit is very close to the energy surface, though a slight discrepancy is visible in the upper 

right-hand corner (χ1 ≈ 70°, χ2 ≈ 100°).

Hallen et al. Page 30

J Chem Theory Comput. Author manuscript; available in PMC 2015 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallen et al. Page 31

T
ab

le
 1

G
M

E
C

 c
al

cu
la

tio
n 

te
st

 c
as

es
. E

PI
C

 w
ith

 S
A

PE
 s

ol
ve

d 
ea

ch
 o

f 
th

es
e 

ca
se

s;
 in

 m
os

t c
as

es
, A

* 
w

ith
ou

t E
PI

C
 w

as
 s

lo
w

er
 o

r 
di

d 
no

t f
in

is
h 

w
ith

in
 th

e 
tim

e 

lim
it 

(† )
. M

in
im

iz
at

io
n 

(“
M

in
.”

) 
sp

ee
du

p 
(r

at
io

 o
f 

si
ng

le
-c

on
fo

rm
at

io
n 

m
in

im
iz

at
io

n 
tim

e 
w

ith
ou

t E
PI

C
 v

s.
 ti

m
e 

w
ith

 E
PI

C
) 

is
 r

ep
or

te
d 

fo
r 

E
PI

C
 w

ith
 

an
d 

w
ith

ou
t S

A
PE

. S
im

ila
rl

y,
 A

* 
sp

ee
du

p 
de

no
te

s 
th

e 
ra

tio
 o

f 
to

ta
l A

* 
tim

e 
w

ith
ou

t E
PI

C
 v

s.
 ti

m
e 

w
ith

 E
PI

C
. F

it 
tim

es
 (

tim
es

 to
 c

al
cu

la
te

 th
e 

E
PI

C
 

po
ly

no
m

ia
ls

) 
an

d 
to

ta
l c

al
cu

la
tio

n 
tim

es
 (

T
ot

. t
im

e)
 a

re
 r

ep
or

te
d 

fo
r 

E
PI

C
 c

al
cu

la
tio

ns
 w

ith
 S

A
PE

, i
n 

m
in

ut
es

, c
al

cu
la

te
d 

w
ith

ou
t p

ar
al

le
liz

at
io

n 
of

 

fi
tti

ng
. “

G
M

E
C

 e
ne

rg
y 

er
ro

r”
 is

 th
e 

ab
so

lu
te

 d
if

fe
re

nc
e 

be
tw

ee
n 

G
M

E
C

 e
ne

rg
ie

s 
ca

lc
ul

at
ed

 w
ith

 a
nd

 w
ith

ou
t E

PI
C

, a
nd

 is
 r

ep
or

te
d 

in
 k

ca
l/m

ol
. “

Fi
t 

D
N

F”
 m

ea
ns

 th
e 

tim
e 

lim
it 

w
as

 e
xc

ee
de

d 
du

ri
ng

 p
ol

yn
om

ia
l f

it 
pr

ec
om

pu
ta

tio
n,

 a
nd

 “
B

ad
 f

it”
 m

ea
ns

 th
at

 f
its

 f
or

 E
PI

C
 w

ith
ou

t S
A

PE
, e

ve
n 

at
 th

e 

m
ax

im
um

 a
llo

w
ed

 p
ol

yn
om

ia
l d

eg
re

e,
 d

id
 n

ot
 a

cc
ur

at
el

y 
re

pr
es

en
t t

he
 e

ne
rg

y.
 T

hi
s 

pr
ob

le
m

 is
 r

es
cu

ed
 b

y 
SA

PE
 f

or
 th

es
e 

ca
se

s.
 W

he
n 

ne
ith

er
 A

* 

w
ith

ou
t E

PI
C

 n
or

 E
PI

C
 w

ith
ou

t S
A

PE
 w

as
 s

uc
ce

ss
fu

l, 
th

e 
A

* 
sp

ee
du

p 
w

ith
ou

t S
A

PE
 c

an
no

t b
e 

ca
lc

ul
at

ed
 a

nd
 is

 li
st

ed
 a

s 
“n

/a
.”

 E
PI

C
 w

as
 p

er
fo

rm
ed

 

w
ith

 m
in

im
iz

at
io

n 
of

 p
ar

tia
l c

on
fo

rm
at

io
ns

 in
 a

ll 
ca

se
s.

P
ro

te
in

 n
am

e
P

D
B

 c
od

e
M

ut
ab

le
 r

es
id

ue
 c

ou
nt

M
in

. 
sp

ee
du

p 
w

it
h 

SA
P

E

M
in

. 
sp

ee
du

p 
no

 
SA

P
E

A
* 

sp
ee

du
p 

w
it

h 
SA

P
E

A
* 

sp
ee

du
p 

no
 

SA
P

E

F
it

 t
im

e 
(m

in
)

T
ot

. t
im

e 
(m

in
)

G
M

E
C

 e
ne

rg
y 

er
ro

r

Sc
or

pi
on

 to
xi

n
1a

ho
7

26
.5

8
13

.6
0

26
.8

8
48

.8
4

42
49

0.
01

Sc
or

pi
on

 to
xi

n
1a

ho
9

23
.5

9
14

.5
3

10
5.

70
14

3.
52

43
5

45
6

0.
03

Sc
or

pi
on

 to
xi

n
1a

ho
12

29
.6

6
Fi

t D
N

F
>

14
2.

9†
n/

a
56

6
11

19
0.

04

Sc
or

pi
on

 to
xi

n
1a

ho
14

26
.4

9
Fi

t D
N

F
>

4.
30

†
n/

a
80

79
19

44
6

0.
05

C
yt

oc
hr

om
e 

c5
53

1c
75

6
41

.0
3

24
.4

8
10

2.
23

73
.7

8
57

63
0.

01

A
tx

1 
m

et
al

- 
lo

ch
ap

er
on

e
1c

c8
7

36
.4

9
B

ad
 f

it
75

.9
7

B
ad

 f
it

33
2

63
0

0.
05

B
uc

an
di

n
1f

94
7

15
.8

9
5.

03
25

0.
13

17
9.

70
24

3
42

7
0.

03

N
on

sp
ec

if
ic

 li
pi

d-
tr

an
sf

er
 p

ro
te

in
1f

k5
6

35
.2

5
14

4.
14

24
.1

7
24

.8
7

4
6

0.
01

T
ra

ns
cr

ip
tio

n 
fa

ct
or

 I
IF

1i
27

7
27

.6
6

Fi
t D

N
F

32
0.

41
Fi

t D
N

F
22

05
37

93
0.

03

Fe
rr

ed
ox

in
1i

qz
9

59
.3

6
13

2.
22

96
.3

7
12

7.
82

36
41

0.
02

T
rp

 r
ep

re
ss

or
1j

hg
7

41
.1

6
B

ad
 f

it
13

9.
39

B
ad

 f
it

16
2

36
7

0.
04

Fr
uc

to
se

-6
-p

ho
sp

ha
te

 a
ld

ol
as

e
1l

6w
6

19
4.

30
17

8.
60

15
2.

26
77

.7
3

19
7

26
4

0.
03

C
ep

ha
lo

sp
or

in
 C

 d
ea

ce
ty

la
se

1l
7a

8
15

7.
71

Fi
t D

N
F

>
31

70
†

n/
a

33
41

47
84

0.
04

PA
-I

 le
ct

in
1l

7l
6

58
.2

1
14

1.
90

30
.7

7
32

.6
0

41
55

0.
01

Ph
os

ph
os

er
in

e 
ph

os
ph

at
as

e
1l

7m
7

69
.8

4
34

0.
73

81
0.

68
99

8.
47

24
6

62
4

0.
03

al
ph

a-
D

- 
gl

uc
ur

on
id

as
e

1l
8n

5
35

5.
82

44
3.

00
0.

99
0.

93
69

1
14

10
0.

01

G
ra

nu
ly

si
n

1l
9l

7
50

.6
6

34
.2

5
2.

54
13

.6
0

94
11

9
0.

01

J Chem Theory Comput. Author manuscript; available in PMC 2015 June 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallen et al. Page 32

P
ro

te
in

 n
am

e
P

D
B

 c
od

e
M

ut
ab

le
 r

es
id

ue
 c

ou
nt

M
in

. 
sp

ee
du

p 
w

it
h 

SA
P

E

M
in

. 
sp

ee
du

p 
no

 
SA

P
E

A
* 

sp
ee

du
p 

w
it

h 
SA

P
E

A
* 

sp
ee

du
p 

no
 

SA
P

E

F
it

 t
im

e 
(m

in
)

T
ot

. t
im

e 
(m

in
)

G
M

E
C

 e
ne

rg
y 

er
ro

r

ga
m

m
a-

gl
ut

am
yl

 h
yd

ro
la

se
1l

9x
5

11
1.

57
46

8.
00

1.
86

1.
87

10
3

26
4

0.
00

Fe
rr

iti
n

1l
b3

5
10

3.
05

33
.3

1
51

.6
8

49
.3

3
14

8
17

4
0.

01

C
yt

oc
hr

om
e 

c
1m

1q
8

80
.7

9
61

.9
4

32
0.

23
48

6.
77

39
97

0.
05

H
yp

ot
he

tic
al

 p
ro

te
in

 Y
ci

I
1m

w
q

8
60

.0
5

48
.3

0
56

.1
0

16
.4

1
60

13
3

0.
00

Po
ns

in
2o

9s
14

68
.3

2
B

ad
 f

it
>

45
.8

1†
n/

a
21

8
17

32
0.

41

Sc
yt

ov
ir

in
2q

sk
10

64
.9

4
35

.4
5

29
6.

06
32

9.
99

95
18

8
0.

12

D
ih

yd
ro

fo
la

te
 r

ed
uc

ta
se

2r
h2

14
54

.9
2

30
.2

8
77

1.
86

52
1.

44
9

37
0.

01

Pu
ta

tiv
e 

m
on

oo
xy

ge
na

se
2r

il
8

15
9.

98
58

0.
00

28
.3

6
66

.7
2

7
11

0.
01

dp
y-

30
-l

ik
e 

pr
ot

ei
n

3g
36

4
36

.4
4

17
.9

6
5.

77
10

.0
0

23
30

0.
05

H
IV

 g
p1

20
3u

7y
16

14
1.

17
B

ad
 f

it
>

14
.3

3†
n/

a
17

73
77

62
0.

06

† A
* 

w
ith

ou
t E

PI
C

 d
id

 n
ot

 f
in

is
h 

w
ith

in
 th

e 
tim

e 
lim

it,
 s

o 
w

e 
re

po
rt

 a
 lo

w
er

 b
ou

nd
 o

n 
th

e 
sp

ee
du

p:
 th

e 
ra

tio
 o

f 
th

e 
tim

e 
lim

it 
(1

7 
da

ys
) 

to
 th

e 
A

* 
tim

e 
w

ith
 E

PI
C

 a
nd

 S
A

PE
.

J Chem Theory Comput. Author manuscript; available in PMC 2015 June 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallen et al. Page 33

Table 2

Partition function calculation results. EPIC was performed with SAPE in all cases. As in Table 1, EPIC solved 

all cases, and cases for which A* without EPIC did not finish are denoted by †.

Protein name PDB code Mutable residue count A* speedup due to EPICa A* speedup due to partialb

Histidine triad protein 2cs7 14 >48.48† 1.52

Ponsin 2o9s 14 >1131† 0.96

Transcriptional regulator AhrC 2p5k 11 >256.0† 1.34

Scytovirin 2qsk 10 5698.04 1.01

Hemolysin 2r2z 12 >217.7† 1.24

Dihydrofolate reductase 2rh2 14 >50.45† 2.16

Putative monooxygenase 2ril 8 1121.34 1.01

alpha-crystallin 2wj5 15 >29.06† 0.80

Cytochrome c555 2zxy 14 >8.87† 3.32

High-potential iron-sulfur protein 3a38 13 >1916† 1.40

ClpS protease adaptor 3dnj 12 >50.25† 0.93

Putative monooxygenase 3fgv 10 >9639† 1.57

Protein G 3fil 14 >1475† 1.31

Viral capsid 3g21 15 >7.84† 1.21

dpy-30-like protein 3g36 4 211.87 0.91

Hfq protein 3hfo 10 >194.8† 1.45

Cold shock protein 3i2z 14 >872.8† 1.24

Trypsin 3pwc 10 >624.2† 1.04

Trypsin 3pwc 11 >131.8† 2.07

†
A* without EPIC did not finish within the time limit, so we report a lower bound on the speedup: the ratio of the time limit (17 days) to the A* 

time with EPIC.

a
Ratio of total A* time without EPIC vs. total A* time with EPIC and minimization of partial conformations.

b
Ratio of total A* time with EPIC but no minimization of partial conformations vs. total A* time with EPIC and minimization of partial 

conformations.
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