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Abstract To refer to metabolomics as a new field is

injustice to ancient doctors who used ants to diagnose the

patients of diabetes having glycosuria. Measuring the lev-

els of molecules in biological fluids believing them to be

the representatives of biochemical pathways of carbohy-

drates, fats, proteins, nucleic acids or xenobiotic metabo-

lism and deciphering meaningful data from it is what can

be called as metabolomics, just as high glucose in urine

suggests diabetes mellitus. Genomics, epigenetics, proteo-

mics, transcriptomics finally converge to metabolomics,

which are the signatures of mechanisms of bodily processes

which is why understanding this science can have many

applications. Just as a heap of stones does not make a

house, having data of metabolite levels does not make it a

science. Analyzing this data would help us in constructing

biochemical pathways and their interactions. Analyzing the

changes caused by a drug in the metabolite levels would

help us in deriving the mechanisms by which the drug acts.

Comparing metabolite levels in diseased with non-dis-

eased, good-responders with poor-responders to a particu-

lar drug can help in identifying new markers of a disease or

response to a drug respectively. Also, metabolite levels of

an endogenous substrate can tell us the status of a person’s

metabolizing enzymes and help in drug dose titration.

Generating hypothesis by identifying the new molecular

markers and testing their utility in clinics seems to be the

most promising approach in future. This review narrates

the modes of quantifying and identifying metabolome, its

proposed applications in diagnosis, monitoring and under-

standing the diseases and drug responses. We also intend to

identify hindrances in using metabolomics in clinical

studies or experiments.
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Introduction

Genes code for proteins. Epigenetics regulates gene

expression. Transcriptomics regulates RNA synthesis in

turn regulating protein synthesis. Proteomics deals with the

protein synthesis and function. The most dynamic func-

tions of proteins are served as enzymes taking part in

various metabolic pathways, using up substrates to form

end products. Each reaction is therefore governed by epi-

genomics, genomics, transcriptomics and proteomics. The

chemical signatures that each reaction leaves behind can

therefore give important insights into various metabolic

pathways of our body. Thus, metabolomics as defined by

Oliver Fiehn is-‘A comprehensive analysis in which all the

metabolites of a biological system are identified and

quantified’ [1]. Quantitatively analyzing each metabolite in

samples of biological fluids is what metabolomics deals

with, in a way being the integration of all ‘omics’ (Fig. 1).

Another such term-‘Metabonomics’ as defined by Jeremy

Nicholson is-‘Quantitative measurement of the multipara-

metric time-related metabolic responses of a complex

(multicellular) system to a pathophysiological intervention

or genetic modification’ [2].

In as early as 1951, this concept was born in the mind of

Williams R.J. [3] who tried to identify patterns of
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metabolite excretion by paper chromatography, i.e. quali-

tatively by analyzing data from over 2 lakh chromato-

grams. With the advent of gas chromatography (GC) and

liquid chromatography, quantification of metabolites

began. One of the first papers, published in 1971 was

‘Quantitative analysis of urine vapor and breath by gas

liquid partition chromatography’ [4]. The first draft of the

human metabolome project was put in 2007. At present, the

software contains information about 41,514 metabolites

which is freely accessible [5]. For each metabolite chem-

ical, clinical, biochemical and where possible protein/

genetic linkage is given. It is supported by David Wishart

and ‘The Metabolomics Innovation Centre’, Canada.

Quantifying the Metabolites

Any biological fluid will have several different chemicals/

proteins. The first step is to separate each substance after

which each one is separately quantified. The first step of

separation can be achieved by chromatographic techniques

like GC, high performance liquid chromatography (HPLC),

ultrahigh performance liquid chromatography (UPLC) and

capillary electrophoresis (CE). HPLC is the most com-

monly used method since it can analyze a wide range of

metabolites, though having a lower resolution compare to

GC.

The second step of detection and quantification is done

by mass spectrometry (MS). Here, the first step is to ionize

the compounds by spray ionization or matrix associated

laser desorption and ionization (MALDI), after which

either a magnet or an electric field (time of flight MS)

deflects them towards a detector. The strength of magnetic

field required to deflect or the time taken after applying

electric field to reach the detector gives an idea of the mass

of the molecule [6]. The second step is collision induced

fragmentation and determining the mass of each fragment,

each compound fragmenting in its own characteristic

daughter compounds.

Tandem mass spectrometers do not need prior separa-

tion of compounds in the biological fluid sample [6], nei-

ther does nuclear magnetic resonance (NMR) spectrometer.

In an NMR spectrometer, a strong magnetic field aligns the

Fig. 1 Metabolomics in

hypothesis generation and

testing

Table 1 Differences between nuclear magnetic resonance (NMR)

and mass spectrometry (MS)

Parameters NMR MS

Detection limit Micro moles Pico moles

Molecular

analysis

spectrum

Analyses less variety

of compounds

(should have H?)

Analyses wide range of

compounds after

chromatographic

separation

Recovery of

sample

Non-destructive,

sample can be

recovered

Fragments the sample

Preparation

before

running

Not much

preparation

Preparation of sample

needed

Identification

of molecules

Easy to identify

molecules from

analysis of spectra

Difficult to identify

unknown compound

Availability of

databases of

metabolites

Still comprehensive

databases not

available

Databases available
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protons in a parallel manner. This is opposed by a tiny field

created by electrons and thus gives rise to resonance. The

change in energy when the protons go back to their original

position is detected and visualized as peaks which are

characteristic of each compound [6]. Some of the differ-

ences between NMR and MS are summarized in Table 1.

The human body produces such a variety of metabolites

that none of the instruments is in itself sufficient to detect

all of them.

Identifying the Molecular Signatures

The pillars on which this science relies are MS and NMR

spectrometry and the complex data generated by them is

being stored in global databases like the METLIN, from

where retrieval is easy. Compounds are identified on the

basis of mass, mass/charge ratios and retention time. For

identifying unknown and known compounds when we have

these parameters, online databases are available which

store thousands of metabolite’s characteristics from which

we can identify the metabolite of our interest. Two such

online databases are the Metlin/XCMS and the human

metabolome database. There are still many compounds

whose MS or NMR characteristics are not known in which

case an ‘untargeted’ approach can be used and ‘chemo-

metrics’ can be applied where the intent is to identify the

pattern of metabolites using statistics and link pattern to

diseases by looking at all metabolites at a time.

Applications (Fig. 2)

Understanding Mechanisms of Drug Response

Aspirin

An example to identify a marker of drug response was a

study done to explain variability in aspirin response [7].

They hypothesized that the variation is due to genetic

variation in pathways other than thromboxane synthesis.

165 volunteers from the hereditary and phenotype inter-

vention (HAPI) heart study [8] were given 81 mg of aspirin

once a day for 2 weeks. GC–MS and LC–MS were per-

formed on serum samples before and after 2 weeks of

aspirin ingestion. Out of 165 metabolites measured in the

serum, 49 were significantly altered by aspirin exposure

and belonged to various pathways like purine, fatty acid,

glycerol, amino acid and carbohydrate. Later, volunteers

belonging to first quartile of post-aspirin collagen-stimu-

lated platelet aggregation were taken as good responders

(n = 40) and those belonging to fourth quartile of response

were taken as poor-responders (n = 36). After drawing a

metabolic profile of these 76 volunteers, it was found that

the poor responders had significant increase in levels of

adenosine and inosine after 2 weeks of aspirin exposure.

So a new hypothesis gets generated that aspirin affects the

purine pathway. To explain variation in aspirin response, a

metabolomics informed pharmacogenomics study was

done. Single Nucleotide Polymorphisms (SNPs) associated

with synthesis, transport and degradation of purines were

screened in 718 patients of HAPI study. A SNP in aden-

osine kinase (ADK) gene was found to be associated with

anti-platelet response. To confirm the role of this SNP, all

the participants having this SNP were screened for their

purine levels post-aspirin and the levels of inosine and

guanosine were found to be associated with this SNP. Thus,

in this study a novel pathway was found to be associated

with anti-platelet action of aspirin and a potential marker of

its action was identified.

Citalopram

Another example where ‘pharmacometabolomics informed

pharmacogenomics’ screening of SNPs was done, was in a

study to evaluate variation in antidepressant treatment with

citalopram [9]. Here, metabolomics first hinted that glycine

levels were negatively associated with treatment outcomes

and pharmacogenomics then revealed that a SNP in glycine

dehydrogenase (GLDC) gene was what led to the variation

in glycine levels.

Sertraline

Recent metabolomics study [10] on patients suffering from

major depression started on sertraline found not only

markers of drug response but also a new insight into ser-

traline’s mechanism of action. Tryptophan has four meta-

bolic end points- kynurenine, 5-methoxy tryptamine,

melatonin and 5-hydoxyindoleaceticacid (5-HIAA), the

latter three formed after tryptophan gets converted into

serotonin. It was found that after a month of therapy, the

good responders had lower levels of serotonin (5-HT) and

5-HIAA, the 5-HT being diverted to melatonin synthesis

(the melatonin analogue, agomelatine has anti-depressant

activity). Also a biomarker of good response was 5-meth-

oxy tryptamine, higher pre-treatment levels were associ-

ated with good response, which lowered with therapy.

Predicting Paracetamol Toxicity

Two studies done by Bhattacharyya et al. [11, 12] found

that in both animals as well as humans, elevations of long

chain acylcarnitines can predict hepatotoxicity due to

paracetamol before the transaminases get elevated. Since

these metabolites are involved in the b-oxidation of fatty
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acids and since b-oxidation takes place in mitochondria,

their elevations can mean mitochondrial toxicity. Such

predictions of drug induced toxicity can be used in pre-

clinical studies in drug development to identify potential

adverse drug reactions and prevent unnecessary human

clinical trials.

Anti-tubercular Drugs

In a prospective study on patients of tuberculosis started on

anti-tuberculosis drugs [13], urine samples were collected

at start and at 1 month of therapy. The two sets of samples

differed statistically with respect to six metabolites. These

metabolites could be used as biomarkers for evaluating

drug response, their estimation being faster than sputum

culture. Also, early recognition of response can hasten

clinical trials of anti-Tb drugs.

Anti-diabetics

It is possible not just to assess response to the anti-diabetic

drugs but also, based on the response, to characterize the

drug. A study by Walford et al. [14] involved administering

either metformin, glipizide or glucose challenge to type 2

diabetes patients. In patients who were insulin sensitive,

branched chain amino acids and aromatic amino acids

decreased in response to release of insulin, as happened

when they were given either glipizide or glucose challenge.

In patients who were insulin resistant, the same metabolite

levels increased when they were given metformin. Also, it

is previously proven that elevated branched chain and

aromatic amino acids levels are associated with insulin

resistance and type 2 diabetes [15].

Anti-hepatitis C Therapy

A study was done by Saito et al. [16] to differentiate

responders from non-responders in patients of hepatitis C

receiving interferon ? ribavirin therapy. In good respond-

ers, the levels of the enzyme gamma glutamyl transferase

(GGT) decreased more than those of non-responders as the

therapy brought down the oxidative stress. This reduced the

need for generating glutathione to combat oxidative stress.

Also, the pretreatment levels of tryptophan, glycine and c-
butyrobetaine were found to be more in good responders.

Statins

The ‘pleiotropic effects’ of statins are well known. These

may be due to the reduced synthesis of isoprenoids and

prenylation of proteins like rho/rab kinases. A study con-

ducted by Krauss et al. [17] identified some statin influ-

enced pathways that may contribute to variability in

clinical efficacy and adverse effects. Samples were taken

from participants of the ‘cholesterol and pharmacogenetics

study’ [18] in which 40 mg of simvastatin was given to 944

patients for 6 weeks. Samples for metabolomics assess-

ment were taken from 48 individuals, half categorized as

good responders (the upper 10 % of LDL-C response) and

the remaining half as poor responders. Both these type of

Fig. 2 Summary of proposed

applications of metabolomics in

diagnosis, monitoring and

understanding disease and drug

response; given in brackets are

the respective metabolic

markers; DHEA-

Dehydroepiandrosterone,

BCAA-Branched chain

aminoacids, AAA-Aromatic

aminoacids
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responders demonstrated increase in levels of arachidonic

acid and decrease in levels of linoleic acid. Since arachi-

donic acid was increased in both categories, this action was

independent of HMG-CoA inhibition and since arachidonic

acid is precursor for both pro-inflammatory and anti-

inflammatory molecules, affecting this pathway would

contribute to clinical efficacy as well as adverse reactions.

Another inference derived in the same study was the ability

of lithocholic acid, taurocholic acid, glycolithocholic acid

and coprostanol serum levels to predict statin response.

Higher levels of these metabolites before treatment were

associated with a better response. This is expected as both,

secondary bile acids as well as statins; share the same

transporter for absorption, i.e. SLCO1B1. Higher levels of

bile acids before starting statin meaning that the trans-

porters are functioning well and would help in better statin

absorption, both into the circulation as well as into the

hepatocytes. Another metabolite negatively correlated with

response was the baseline value of 2-hydroxy valeric acid.

This metabolite represents activity of intestinal bacteria

and the same bacteria causes simvastatin degradation,

hence lower levels of this metabolite predict lesser degra-

dation of simvastatin and hence better efficacy.

Anti-protozoal Drugs

The mechanism of most anti-protozoals is not exactly

known. This has hindered drug development in this field and

also has prevented modification of drugs already in use for

better pharmacodynamic/kinetic profiling or reducing their

toxic effects. A review of metabolomics of anti-protozoals

[19] done on parasite metabolome threw light on some

newly discovered facts like the inhibition of ornithine

decarboxylase by eflornithine, a drug used against try-

panosomiasis. It was seen that the substrate, ornithine

accumulates while depletion of products like putrescine and

spermidine occurs [20]. In case of nifurtimox, metabolomics

identified perturbations in parasitic nucleotide and glyco-

lytic pathways [20]. Likewise for the anti-leishmaniasis

drugs, amphotericin B and miltefosine, interaction with the

sterol and phospholipid metabolism was found respectively

[19]. For the antimalarial, atovaquone, its inhibition of

cytochrome bc(1), results in loss of mitochondrial mem-

brane potential, which inhibits dihydroorotate dehydroge-

nase, thus inhibiting pyrimidine synthesis. Metabolomics

confirmed this by showing accumulation of dihydroorotate

and carbamoyl-L-aspartate, its precursor [21].

Metabolomics as a Marker of Metabolic Activity

of CYP3A4/5 Activity

CYP3A4/5 metabolizes over 50 % of the commonly used

drugs. Endogenous metabolites of steroidal pathways make

use of CYP3A4/5 for their metabolism and their levels can

give an idea of the status of CYP3A activity. A study was

done to find endogenous markers which can predict

CYP3A activity [22]. The control used was midazolam

clearance and measuring its metabolites 10-hydroxy
midazolam and 4-hydroxy midazolam. Before giving

midazolam, urine samples and plasma samples were col-

lected. Midazolam and its metabolite’s levels in plasma

were measured and serial pharmacokinetic analysis was

done. Metabolomic analysis found that levels of plasma

4b-hydroxy cholesterol (a known marker), urinary 6b-hy-
droxycortisone, cortisone, dehydroepiandrosterone

(DHEA) and 16a-hydroxy DHEA correlated well with the

CYP3A activity as predicted by midazolam clearance. Also

the ratios of metabolite (16a-hydroxy DHEA) to parent

compound (DHEA) increased after inducing enzymes by

rifampicin and vice versa happened after giving ketocon-

azole, an inhibitor, thus confirming the validity of these

markers. The authors also generated an equation to predict

clearance by CYP3A using the levels of these metabolites

as markers of CYP3A activity.

As Biomarkers of Various Diseases

Diabetic Nephropathy

A recent study done by Makinen et al. [23] investigated

metabolic markers for nephropathy in type 1 diabetes

patients and found that sphingomyelin was elevated in type

1 diabetes patients with nephropathy as compared to those

without nephropathy and the same set of patients also had

increased VLDL levels and decreased HDL levels. This

might mean that the excess fat causes ceramide/sphingo-

myelin accumulation causing nephropathy (Palmitoyl CoA

and serine form sphingosine which combines with long

chain fatty acids to form ceramide. which then combines

with phosphatidyl choline to form sphingomyelin [24]).

Chronic Inflammation

A review was done to understand the interaction of

inflammation and metabolomics by Fitzpatrick et al. [25].

As expected, due to reactive species produced by inflam-

matory cells, plasma glutathione was reduced and lipid

peroxides were found to be increased in patients of rheu-

matoid arthritis (RA) [26]. An analysis of synovial fluid in

patients of RA showed increased levels of lactate which is

due to increased number of inflammatory cells which

increase the energy requirements and levels of lactate were

shown to be correlated with active inflammation and

damage to the joints [27]. Also in the same study increased

metabolic intermediates of fatty acid oxidation were found

which included ketones and glycerol. This may be due to
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altered permeability in inflamed tissues and thereby

increased influx of fatty acids. In inflammation increased

protein breakdown can be judged by the increased levels of

essential amino acids as shown by the increased valine

levels in patients of osteoarthritis [28]. In Crohn’s disease

and ulcerative colitis, analysis of fecal extracts showed

decreased levels of butyrate, acetate and methylamine [29],

suggesting that reduced amounts of gut bacteria may have a

role to play in these diseases.

Coronary Artery Disease

With a specificity of [90 %, metabolomics can help in

diagnosis of triple vessel stenosis, an approach much more

simpler than angiography [30].

Metabolic Unwellness

If elevated fasting plasma glucose and triglycerides;

hypertension, insulin resistance and low HDL is considered

as being metabolically unwell, then can metabolomics help

in diagnosing them? A study done on this concept [31]

proved that elevated branched chain amino acids, acyl-

carnitines, fatty acids and ornithine can discriminate met-

abolically unwell irrespective of their BMI. This way

branched chain amino acid levels can be monitored for

treatment response in high risk patients.

Chronic Kidney Disease (CKD)

A study was done in rats by Zhao et al. [32] in search for a

marker that could determine onset of chronic kidney dis-

ease (CKD) before urea and creatinine levels in plasma get

raised. The model for CKD induced by adenine was well

replicated. The two groups of rats (CKD and control) dif-

fered metabolically as seen by the increased levels of p-

cresolsulfate, indoxyl sulfate and allantoin amongst others

in the CKD group. Not only was the clearance of these

metabolites decreased but also they played a role in

aggravating the inflammation in kidneys.

Metabolomics of Gut Bacteria

Our body bacterial flora plays a significant role in gener-

ating metabolites as their cells outnumber our cells by 10:1

[33]. In a study it was demonstrated that when healthy

volunteers were given paracetamol, those with high urinary

p-cresol levels before taking paracetamol showed lower

ratios of sulfate conjugate/glucuronide conjugate. p-cresol

is formed in the body by Clostridium difficile residing in

the gut and this p-cresol competes with paracetamol for

sulfation by SULT1A1 [34]. Reduced sulfation of para-

cetamol could then lead to increased N-acetyl para

benzoquinoneimine resulting in hepatotoxicity. A study

revealed that metabolites produced by gut microflora-

phosphatidylcholine, trimethylamine N-oxide and betaine

predispose to cardiovascular diseases and hence can be

used as markers [35].

Gut microflora metabolites are a part of our metabolome

and thereby are a source of variation in each person’s

metabolome as everyone has a different microbial flora.

Not only do these bacteria help in degrading some drugs

but also the metabolites they produce compete with hepatic

metabolism of some drugs too, thereby altering the

response to drugs differently in different people.

Metabolomics in Food Industry

Here, metabolomics has surged in with a lot of applications.

An example of application in checking food quality is the

measurement of diacetyl and 2,3 pentadione compounds in

beer to determine endpoints of fermentation [36]. Also

accidental contamination by allergic compounds or by bac-

teria can be recognized, e.g. E. coli in spinach, putrescine,

cadaverine and histamine in spoiled fish [36]. Compounds

can be identified which determine the taste of some foods.

Metabolomics has shown that genetically modified potatoes

and tomatoes differ from normal ones by just a few com-

pounds like fructans and flavonoids respectively [37, 38].

Also, verification of labelled ingredients which we believe to

be true can be achieved by metabolomics.

Factors Affecting Metabolome

Genetics determine the status of drug metabolizing

enzymes and hence the metabolome. Another source which

determines a person’s metabolome is the gut microflora.

Environment naturally plays a major role, since diet,

exposure to xenobiotics and pollutants alter the metabolites

produced [39]. Also people only differing in age and

gender also tend to have a different metabolome [39].

Standardizing Experiments in Metabolomics

If we want to see the effect of a single drug or intervention

on the metabolome, it is a necessity that all experimental

subjects should have the same metabolome before inter-

vention. As noted above, the metabolome is affected by

factors which are hard to control or standardize. If the

study is being done in human subjects, all can be chosen

who have the same age, gender and from the same envi-

ronment. Their diet can be standardized few weeks before

the experiment and exposure to xenobiotics and smoking

should be avoided.
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In case of animal studies all these standardizations are

easy by controlling living conditions. To nullify genetic

differences, their breeding can also be controlled. But

differences exist between humans and mice in the way

which drugs and metabolites are handled. To overcome

these differences, genetically modified mouse models were

made [39], where, for example, PXR (pregnane X receptor)

humanized mice were used to standardize CYP3A experi-

ments [40], PPAR-a humanized mice for studying fibrates

and CYP2E1 humanized mice for paracetamol toxicity

studies [41]. To overcome differences in gut flora, human

microbiome can be set up in a mouse which is germ free at

birth.

Conclusion

Though technically a lot of progress has been made in

measuring metabolite levels, the understanding needed to

make use of the data generated is still lacking. Metabolo-

mics holds an important place in ‘hypothesis generation’ as

exemplified by the discovering of new pathways in

understanding drug action. Also it can help categorize poor

and good responders, find new markers for diseases like

cancer, predicting status of drug metabolizing enzymes.

Just like the genome each person has a unique metabolome.

The major advantage with metabolome over genome is that

it reflects the environmental influences and gives us a

snapshot of the current pathophysiological status of an

individual. New applications will come up as we test these

metabolomic approaches in clinics.
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