Skip to main content
. Author manuscript; available in PMC: 2016 Mar 1.
Published in final edited form as: Psychol Methods. 2013 Dec 23;20(1):117–141. doi: 10.1037/a0034523

Table 5.

Predicting MMOD Convergence from Simulation Parameters

Raw Coefficient Odds Ratio


Parameter Estimate S.E.
RNagel2
Estimate Lower CI Upper CI
Intercept 4.14 (2.57) 63.08 50.98 78.05
Occasions4 −0.68 (0.07) .001 0.50 0.44 0.58
Occasions5 −0.90 (0.07) 0.41 0.36 0.47
Items20 1.82 (0.06) .056 6.20 5.51 6.97
Factors2 −1.89 (0.09) .120 0.15 0.13 0.18
Factors3 −3.43 (0.09) 0.03 0.03 0.04
Loadings.6 2.88 (0.07) .267 17.75 15.46 20.38
Loadings.8 5.49 (0.16) 242.61 177.30 331.99
Auto.8 −3.02 (0.07) .141 0.05 0.04 0.06
n500 1.18 (0.06) .057 3.25 2.88 3.68
n1000 2.23 (0.07) 9.31 8.04 10.78

Note. Logistic regression of convergence (1=converged, 0=failure) on six simulation parameters. Simulation parameters treated as factors or dummy-coded variables, with 3 occasions, 10 items, 1 factor, loadings of 0.4, autoregression of 0.4 and a sample size of 250 treated as the baseline condition. R2 indicates variance accounted for by each simulation parameter. Auto=Factor Autocorrelation, Load=Factor Loadings, n=Sample Size. RNagel2=partial Nagelkerke’s pseudo-R2, calculated as ΔRNagel2 when each predictor was removed from the model. RNagel2=5.84 for full model. C-index (area under ROC curve) = 0.94.