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Abstract

Automatic tissue segmentation of the neonate brain using Magnetic Resonance Images (MRI) is 

extremely important to study brain development and perform early diagnostics but is challenging 

due to high variability and inhomogeneity in contrast throughout the image due to incomplete 

myelination of the white matter tracts. For these reasons, current methods often totally fail or give 

unsatisfying results. Furthermore, most of the subcortical midbrain structures are misclassified due 

to a lack of contrast in these regions. We have developed a novel method that creates a 

probabilistic subject-specific atlas based on a population atlas currently containing a number of 

manually segmented cases. The generated subject-specific atlas is sharp and adapted to the subject 

that is being processed. We then segment brain tissue classes using the newly created atlas with a 

single-atlas expectation maximization based method. Our proposed method leads to a much lower 

failure rate in our experiments. The overall segmentation results are considerably improved when 

compared to using a non-subject-specific, population average atlas. Additionally, we have 

incorporated diffusion information obtained from Diffusion Tensor Images (DTI) to improve the 

detection of white matter that is not visible at this early age in structural MRI (sMRI) due to a lack 

of myelination. Although this necessitates the acquisition of an additional sequence, the diffusion 

information improves the white matter segmentation throughout the brain, especially for the mid-

brain structures such as the corpus callosum and the internal capsule.
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a widely used modality to study in-vivo neonate 

brain structures. It allows researchers to assess brain growth defects1,2,3, to measure brain 

normality and to study children at high-risk of neurodevelopmental disorders including 

autism4 and schizophrenia5. However, manually segmenting MRI scans is a fastidious and 

time-consuming process. It is also subject to intra- and inter-rater variability6. Consequently 

automatic tissue segmentation of neonate brain MRI data is essential to study normal 

development and medical conditions. Such tissue segmentation is more challenging in the 

neonate than adult brain due to its small size, limited resolution, low Signal to Noise Ratio 

(SNR) and Contrast to Noise Ratio (CNR), increased motion artifacts, incomplete 

myelination7, and the high level of inhomogeneity and variability in the different tissues. 

Additionally, at the age, rapid changes in size, shape and appearance are observable8 which 

leads to large differences between subjects. A common result of these factors is that most of 

the existing methods fail or give unsatisfying results, especially in the subcortical midbrain 

structures.

Currently, most available methods include a single atlas tissue classification 

method9,10,11,12. Some of the most recent methods, which give better results, provide 

additional information to the algorithm by using a longitudinal approach10. The latter 

method necessitates the acquisition of images at multiple time points, which is not always 

possible. Single atlas classification method typically requires an atlas that has been 

generated from a set of images for which the segmentation is available. This atlas is 

representative of the population it was created from, but is generally fuzzy and may not be 

morphologically similar to the subject that needs to be segmented. Existing segmentation 

methods show failure rates as high as 50% of the studied subjects in the experimental data 

presented in this paper.

In order to improve these segmentations, we developed a new method that generates, for 

each subject, a specific probabilistic tissue atlas based on an atlas population composed of 

12 manually segmented cases. Our method then uses this subject-specific atlas with an 

existing standard single-atlas segmentation method. The computed subject-specific atlases 

are sharp and well adapted to the subjects to be segmented. Furthermore, we extended this 

method to include diffusion information in the construction of the subject specific atlas, as 

well as in the application of this atlas on the subject data. The results show that the diffusion 

MRI data helps segmenting the white matter in mid-brain regions such as the corpus 

callosum and the internal capsule. Overall, the proposed method shows considerably 

improved results, compared to the ones obtained with an existing population average atlas.
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2. METHODS

2.1. Data

We evaluated the performances of our proposed new neonate brain segmentation method 

using a dataset that contains twelve T1 weighted (T1w) and T2 weighted (T2w) MRI of 

newborns. Six subjects additionally had a Diffusion Weighted Image (DWI) acquired. 

Images from one subject were acquired in the same scanning session. Newborns were 

scanned between the age of 40 weeks corrected gestational age (two premature infants) and 

47 days. Children were scanned unsedated while asleep, fitted with ear protection and with 

their heads secured in a vacuum-fixation device. Acquisition parameters can be found in the 

supplementary material (Appendix A).

For all the subjects, subsequent quality control procedures by trained image analysis experts 

showed all scans to pass quality assessment for structural morphometric analysis. DWI scans 

were quality controlled using DTIPrep13: automatic and visual controls were performed. 

Each T1w and T2w images were co-registered to a template and resampled with a spacing of 

1×1×1mm3.

2.2. Design

For each subject to be segmented, the proposed method requires a co-registered T1w and a 

T2w MR scan. A DWI scan can also be provided. In order to generate the subject specific 

atlas, we also need an atlas population that is a set of cases, each containing a brain masked 

T1w image, a T2w image, and a tissue segmentation. The methods can largely be subdivided 

into five phases: pre-processing, registration of the atlas population, generation of the 

specific probabilistic atlas, execution of a single-atlas segmentation algorithm, and post-

processing.

2.2.1. Pre-processing—First, we skull-strip/brain-mask the T1w and T2w images using a 

mask previously computed via FSL-bet14. As FSL-bet has not been developed for the 

neonate setting, a manual correction of the brain mask is quite common. Following skull 

stripping, an inhomogeneity correction via N415 is performed on these images. Concerning 

the diffusion weighted images, if one is provided, we estimate the Diffusion Tensor Image 

(DTI), its average baseline (b0) images from the DWI, and then the Fractional Anisotropy 

(FA) and the Axial Diffusivity (AD) images from the DTI. The diffusion images are next 

registered to the structural images with an affine transformation followed by a 

diffeomorphic one. These transformations are computed with the multi-modality SyN 

optimization using normalized cross-correlation metric in ANTS16 registering the b0 to the 

T2w image and AD to the T2w image. The resulting transformations are applied to the FA 

and the AD images.

2.2.2. Atlas population registration—We register each case from the atlas population 

to the subject to be segmented. We employ an affine transformation followed by a 

diffeomorphic SyN transformation, computed via a multi-modal, normalized cross-

correlation based co-registration of the T1w and T2w images from the atlas case to the 

subject space. The transformations are then applied to the atlas cases’ T1w, the T2w and its 
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tissue segmentation. Our implementation dynamically handles whether the atlas cases 

provide label maps or probabilistic prior maps as tissue segmentations information.

2.2.3. Generation of the subject-specific probabilistic atlas—Once all the atlas 

images are co-registered with the subject’s data, we generate the subject-specific atlas 

following the steps shown in figure 1.

First we generate a subject specific template T1w and a template T2w by averaging 

respectively all the T1w and all the T2w images from the co-registered atlas population.

Weighted averaging of tissue probability maps: As some atlas cases are locally more similar 

to the subject after co-registration than others; we want to give those cases more weight 

when computing the subject-specific probability maps. For that purpose, we employ voxel-

wise weights per atlas case based on normalized cross-correlation metric within a specified 

neighborhood (default 3mm).

We compute the initial subject specific probability maps for each tissue class by local 

weighted averages of the co-registered atlas segmentations using the respective weight 

images.

Even in the early postnatal neonate setting, where little myelination is present in the brain 

white matter, DTI data shows significantly higher FA and AD values in the white than the 

gray matter. FA and AD images thus have the potential to provide relevant, additional 

information for tissue segmentation, particularly in the internal capsule and the corpus 

callosum. In this step, we aim to edit the initial subject specific white matter probability map 

using the subject’s FA image. As white matter regions are located centrally from gray 

matter, we first mask the FA image with an eroded brain mask (2mm, less than the expected 

average cortical thickness in the neonate brain) to remove the peripheral and gray matter 

regions where the FA is noisier (and potentially high due to noise only). Then, we transform 

the FA intensities via an error function (mean=0.3, sigma=10) based mapping that reduces 

low FA values and flattens out high values. Finally, the transformed image is added to the 

initial white matter prior (weight=1.5).

We apply a Gaussian smoothing of small kernel size to the current subject specific 

probability maps to allow for inaccuracies in the atlas registration and probability map 

creation process.

Finally, we compute a voxel-wise normalization of the probability maps to normalize their 

sum to 1 within the brain mask. Once we have generated the probability maps for the white 

matter, gray matter and cerebrospinal fluid (CSF), we can deduce the probability map for the 

“rest” class by subtracting the other ones to the maximum value.

2.2.4. Standard neonate tissue segmentation—Once the full subject-specific 

probabilistic atlas has been generated, we run an existing, expectation-maximization based 

single atlas tissue classification method, called neoseg9. While typically this segmentation is 

performed with T1w and T2w images, we optionally also include the AD images as a third 

channel in this tissue segmentation.
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2.2.5. Post-processing—Our neonate tissue classification yields segmentations of both 

early myelinated and unmyelinated white matter (WM) regions. Since for most of the 

studies we do not need this distinction, the tool optionally merges the two white matter 

types. Additionally, we reassign small white matter islands. We reassign them either to gray 

matter (GM) or CSF, according to the probability maps from the subject-specific atlas.

3. RESULTS

Figure 2A (top) shows a representative, comparative T2w slice of a selected subject image, a 

population average atlas and the subject-specific average image. Not surprisingly, the 

subject-specific one is sharper and more similar to the subject than the population average. 

Figure 2B (bottom) presents the WM probability maps of the different methods compared in 

this section: population average, subject-specific without diffusion information, subject 

specific with diffusion information. When the diffusion data is incorporated, white matter 

probability maps have significantly more appropriate values in the corpus callosum and 

internal capsule regions.

To evaluate the quality of the segmentation results, we performed a leave-one-out cross-

validation experiment. The analysis was realized using the twelve subjects that are part of 

our population atlas. First, the pipeline was run on all the cases with the default parameters 

without including the optional DWI. Then, to measure the improvement due to the addition 

of the diffusion information, the six newborn dataset that contains a DWI were also 

segmented with our pipeline using the same parameters but including the DWI. A 

segmentation result of one subject using the latter method is presented as a 3D rendering in 

figure 3.

For each case, we compared our results to a corresponding reference manual segmentation 

(ground truth). To estimate the improvement of our novel method, we also segmented all the 

images using a population average atlas. Results are presented in figure 4; each 

segmentation method result is overlaid on the corresponding T1w, T2w and FA images.

Figure 5 shows a close-up view of the midbrain structures of the brain where the white 

matter is typically poorly segmented. The segmentations computed with the subject-specific 

atlas, especially the one including the diffusion information, seem to considerably improve 

the segmentation result compared to the segmentation obtained using the generic population 

atlas. We computed volume difference, average surface distance, and Tanimoto volumetric 

overlap error between the developed methods and the generic average atlas method (table 2). 

The Tanimoto overlap error shows a significant improvement in the segmentation of the 3 

tissue types (WM, GM, CSF) when using a subject-specific atlas both when using and when 

not using the extra diffusion information.

Additionally, we measured the stability of the segmented volume across multiple scans of 

the same subjects. Six subjects were scanned twice and segmented using our proposed 

method without diffusion information. WM, GM, CSF, and ICV volumes were measured 

and compared across same-subject scans (table 3). WM, GM and ICV volumes are 

extremely stable: respectively 1.04%, 1.60% and 2.45% of variation across the different 
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scans. The CSF volume variation is larger: 12.69% (two subjects have a large CSF volume 

variation).

4. DISCUSSION

4.1. Conclusion

Our proposed method to employ a subject-specific atlas considerably improves neonate 

tissue segmentation results. The atlas used for the segmentation is more similar to the brain 

to segment than if a population average atlas were used. Complete failures are eliminated in 

our experimental data (two cases repeatedly failed when using the generic atlas 

segmentation method). Moreover, when adding diffusion information, the segmentation of 

the subcortical midbrain structures is also more accurate. If the subjects from the atlas 

population do not have a good segmentation of these regions, the diffusion information 

allows recovery of this missing information and adequate segmentation of these regions. 

Other methods that only segment the tissues based on the T1w and T2w images lack contrast 

in this central region of the brain to segment it accurately.

Additionally, we have verified that the presented pipeline gives stable results. The 

segmented tissue volumes are very stable across multiple scans. CSF volume is not as stable 

for all subjects, but this is likely due to brain mask differences. The stability measurements 

have been computed only for six subjects, and only two subjects have large variations while 

the others have little variation. Additional testing would be necessary to assess of the 

stability of the CSF.

4.2. Software implementation notes

Along with providing more accurate and stable segmentations, the tool we developed is also 

is also easy to use. Our pipeline is implemented as a graphical user interface that creates 

python scripts that contain the actual pipeline to be executed. These scripts are then directly 

executed as the user runs the pipeline. The advantage of this method is two-fold. First, this 

creates a pseudo-log of the execution without any command missing, as the script is the 

actual pipeline that is executed (i.e. it is easy to open and read the script to verify what 

options have been specified). Second, if one wants to run the processing on the same image 

again, maybe because a better scan from that subject is now available, one can just run the 

script again, without having to worry about starting the tool and setting the parameters 

again. Both manually creating a log and running the processing a second time are error 

prone. Our implementation avoids any potential error due to these steps. Our software is 

freely available on the Neuroimaging Informatics Tools and Resources Clearinghouse 

(NITRC) website (http://www.nitrc.org/projects/neosegpipeline) and the source code is 

published under a permissive license (Apache Licence 2.0).

When creating a subject-specific atlas, each case that is part of the population atlas has to be 

registered to the case to be segmented. Non-rigid (diffeomorphic) registration can be time 

consuming. To speed up the process, since each registration is independent from each other, 

we run as many registration processes in parallel as possible (limited to the number of cores 
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on the computer used). This allows to avoid increasing processing time linearly with respect 

to the number of subjects in the population atlas.

4.3. Limitations

A limitation of our study is the low number of cases we processed to evaluate the 

performances of our pipeline (twelve cases without DWI, six cases with DWI, six cases for 

the stability measurement) and the low number of cases that are part of the population atlas. 

However, the number of subjects for which we have a very good manual segmentation is 

small because manually segmenting a neonatal brain scan is a slow and fastidious process. 

Additionally, acquiring multiple images of the same infant to estimate the stability of our 

method across images from the same subject is also difficult due to the young age of the 

subjects. A possibility to increase the number of subjects in our population atlas would be to 

flip around the mid-sagittal plan the images of the population atlas cases as it has been 

shown in multiple studies that it improves segmentation results17,18,19,20.

4.4. Future work

Finally, although the final step of our pipeline, which consists in running the tool called 

Neoseg, performs well, especially with our subject-specific atlas, one could also try to 

improve it to obtain more accurate results. Our population atlas is freely available on our 

laboratory’s website (http://www.med.unc.edu/psych/research/niral/files/atlases/

neonate_multiatlas) and we will update it and improve it, adding new cases to it when new 

segmentations are available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Processing steps (atlas population registration and segmentation).

Cherel et al. Page 9

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2015 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
From left to right – Axial view of A-top) a subject T2w, a T2w population average, and a 

subject-specific T2w average. B-bottom) the population average WM probability map, a 

subject-specific WM probability map computed without DTI information, and a WM 

probability map computed using DTI.
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Figure 3. 
3D Rendering of a neonate segmentation: White Matter (white, solid) and Gray Matter 

(pink, transparent).
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Figure 4. 
From top to bottom: Axial view of a subject T1w, T2W and FA image. From left to right: 

manual, single population-atlas, subject-specific atlas (no DTI), subject-specific atlas (with 

DTI) segmentations.
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Figure 5. 
Close-up on the central White Matter regions (midbrain structures segmentation). From top 

to bottom: Axial view of a subject T1w, T2W and FA image. From left to right: manual, 

single population-atlas, subject-specific atlas (no DTI), subject-specific atlas (with DTI) 

segmentations.
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Table 2

Evaluation of segmentation difference across segmentation methods. Statically significant differences

Evaluation Volume difference (%) Average distance Tanimoto error

White matter Generic −9.762 0.798 47.069

No DTI −8.806 0.417 27.649 ***

DTI 14.157 ** 0.461 29.388 **

Gray Matter Generic −1.277 0.622 44.065

No DTI 6.737 0.310 *** 24.640 ***

DTI − 14.516 ** 0.368 *** 29.200 ***

CSF Generic −15.931 1.994 67.493

NoDTI −9.601 0.456 35.400 ***

DTI 0.806 0.568 43.637 **

*
p<0.05,

**
p<0.01,

***
p<0.001
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