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Abstract

The practical utility of diffusion tensor imaging (DTI), especially for 3D high resolution spin warp 

experiments of ex vivo specimens, has been hampered by long acquisition times. To accelerate the 

acquisition, a compressed sensing framework that employs a model-based formulation to 

reconstruct diffusion tensor fields from undersampled k-space data was presented and evaluated. 

Accuracies in brain specimen white matter fiber orientation, fractional anisotropy (FA) and mean 

diffusivity (MD) mapping were compared to alternative methods achievable using the same scan 

time via reduced image resolution, fewer diffusion encoding directions, standard compressed 

sensing or asymmetrical sampling reconstruction. The efficiency of the proposed approach was 

also compared to fully-sampled cases across a range of the number of diffusion encoding 

directions. In general, the proposed approach was found to reduce the image blurring and noise, 

and provide more accurate fiber orientation, FA and MD measurements compared to the 

alternative methods. Moreover, depending on the degree of undersampling used and the DTI 

parameter examined, the measurement accuracy of the proposed scheme was equivalent to fully 

sampled DTI datasets that consist of 33% to 67% more encoding directions and require 

proportionally longer scan times. The findings show model-based compressed sensing to be 

promising for improving the resolution, accuracy or scan time of DTI.
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Introduction

Diffusion Tensor Imaging (1) (DTI) is an MRI technique that allows quantitative 

characterization of the geometry and organization of tissue microstructures such as fiber 

orientation. DTI has been applied in the brain (2,3) to, for example, trace white matter tracts 

(4–6), map connectivity and characterize damage caused by stroke (7–9). The method has 

also been applied to ex-vivo specimens of the heart (10–12) to map structural changes due to 

fibrosis or infarction (13–17).
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Because the diffusion tensor is a rank 2, symmetric matrix (1), a unique solution of the 

diffusion tensor requires a minimum of six diffusion weighted images sensitized in non-

collinear diffusion encoding directions, plus a non-diffusion weighted image. In this sense, 

the minimum scan time required for a DTI dataset, which spans both the spatial and 

diffusion dimensions, is seven times that of an anatomical scan acquired using the same 

sequence and settings. DTI suffers from low SNR because diffusion is measured as signal 

attenuation and from increased echo time necessary to accommodate the use of diffusion 

sensitizing gradients. In practice, the loss of signal is often compensated for by additional 

signal averaging in forms of acquisition repetition or increasing the number of encoding 

directions, which further prolongs the scan time. Consequently, methods to accelerate the 

acquisition, especially those that minimize further SNR loss, are highly desirable.

Perhaps the most obvious method to accelerate acquisition would be to either scan at a lower 

resolution or simply encode fewer diffusion directions. Scanning at a lower resolution would 

introduce blurring and make it more difficult to discern fine structures in an image. In 

contrast, although the resolution is maintained, encoding in fewer diffusion directions would 

sacrifice the accuracy of the diffusion tensor estimation. A possible solution to both of these 

problems is to accelerate acquisition by partially sampling k-space, and apply reconstruction 

in such a way that fine structure and diffusion tensor accuracy are preserved. When not 

reconstructed properly, partially sampling k-space introduces artifacts in image space, such 

as ghosting, field of view (FOV) overlap or additional noise, depending on the 

undersampling pattern employed. Techniques have been introduced to reduce the effects of 

partial- or under-sampling when DTI is acquired using multiple receive coils (18–23).

Rather than reconstructing each image of the multi-image acquisition separately, 

compressed sensing techniques (24–26) are capable of jointly estimating multiple 

acquisitions by sharing sparsely sampled data. Compressed sensing can be particularly 

attractive for DTI, due to the high degree of similarity or redundancy (e.g., the size and 

shape of the brain, including the white matter) among the acquisitions at different diffusion 

directions that can be leveraged to represent a transform of the data sparsely. Previously, 

compressed sensing based on undersampling in the diffusion encoding or q-space has been 

applied to High Angular Resolution Diffusion Imaging (HARDI) (27,28), which is a more 

general form of diffusion imaging that allows resolution of crossing fibers. A possible 

alternate way to undersample DTI or HARDI data is in k-space (29) or spatial frequency 

domain. Intuitively, the nature of the desired information in the DTI dataset and the well 

known relationship between image- and k-space may offer flexibility that can be exploited 

for effective undersampling. For example, the fiber orientation of the brain white matter or 

myocardium varies relatively slowly and, therefore, the relevant information can be captured 

even when the outer k-space is sampled with a lower density.

Regardless of the scheme of undersampling, it is important that the performance of any 

reconstruction method be evaluated on not only the acquisition time acceleration, but also on 

its ability to capture the desired information. In DTI, fiber orientation, fractional anisotropy 

(FA) (30) and mean diffusivity (MD) are the often sought-after parameters for assessing 

tissue microstructure. Therefore, ideally the performance of any compressed sensing 

acceleration needs to be evaluated in terms of accuracy loss in measuring these parameters 
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with respect to a “ground truth” or “gold standard”. Moreover, to be considered effective, 

any proposed technique should retain more accuracy than alternative methods using, for 

example, lower resolution or fewer diffusion encoding directions to achieve the same 

acceleration.

The goal of the current study is to investigate the validity of a compressed sensing 

framework for DTI that, in addition, uses the signal intensity model to directly estimate 

diffusion tensor fields from undersampled k-space data. The formulation bypasses the usual 

intermediate step of estimating diffusion weighted images. By estimating the diffusion 

tensor directly, the number of variables to be solved is reduced from N×dim1×dim2×dim3 to 

6×dim1×dim2×dim3 (excluding the non-weighted volume) where dim1, dim2, dim3 are the 

spatial dimensions of a 3D acquisition and N is the number of diffusion weighted images 

acquired. In a noise dominated system, reducing the number of unknowns can provide more 

accurate estimates of the fitted parameters. As well, the model-based formulation provides a 

convenient platform that numerous practical considerations involved in DTI (e.g., phase 

errors) can be addressed in a single step. Model-based approaches have been proposed 

previously to compensate for eddy currents, field inhomogeneities and motion in DTI 

(31,32) and to reconstruct diffusion tensor tomography data (33), but not for accelerating 

acquisition. Other compressed sensing techniques using exponential models have been 

proposed for T1 and T2 mapping (34,35).

The current model-based algorithm is demonstrated on a 3D DTI acquisition, which is used 

for high resolution characterization of fixed specimens (36,37). Three dimensional DTI, 

especially one acquired with a spin echo sequence, can take many hours for ex-vivo 

acquisitions and thus can benefit greatly from acquisition acceleration. Also, 3D acquisitions 

have a higher degree of data redundancy and can be undersampled in more than one 

dimension. For the sake of brevity, in the following sections, and unless otherwise noted the 

term DTI strictly refers to 3D spin-warp spin echo DTI. The effectiveness of the model-

based compressed sensing algorithm is validated against other means to achieve comparable 

scan-time reduction. Part of the current work has been presented previously in a conference 

abstract (38).

Theory

Compressed sensing basically finds the target images by subjecting the estimates to a set of 

reconstruction constraints and minimization of the associated penalty or cost function. One 

form of a cost function for compressed sensing (24,39) reconstruction of a series of N 

undersampled MRI k-space data, dn, is given as

[1]

where ‖ ‖2 represents the L2-norm, which produces the least squares solution (25) and can 

be substituted by any other type of measure of deviation between images (40), and m̃n are 

the estimated magnitude images. The terms m⃗n and d⃗
n are the vectorized versions of m̃n and 

dn, such that for image resolution dim1 by dim2, the vectors m⃗n and d⃗
n have dim1×dim2 
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elements. The first term in Eq. [1] is a fidelity term that forces the solution to adhere to the 

acquired k-space data. The second term in Eq. [1] is a total variation (TV) operator (41) 

applied in image space to constrain the solution to generate piecewise-constant images, 

hence reducing erratic points due to undersampling k-space. The scalar regularization 

weight factor α controls the relative contributions of the fidelity and total variation terms. 

The jth k-space element of the k-space signal model, F⃗ (m⃗n, n), is

[2]

where Wn is the binary undersampling function for the diffusion direction n, ϕn is the image 

phase which is estimated and fixed from the acquired low-resolution data from each 

diffusion weighted image, x⃗ is the position in image space and k⃗
j is the position in k-space. 

The series of images, m̃n, can be obtained simultaneously by minimizing the cost function in 

Eq. [1] with respect to m ̃n.

In the current model-based DTI reconstruction, to allow direct estimation of the diffusion 

tensor, m̃n is replaced with the standard diffusion tensor intensity equation (1). This allows 

direct estimation of the diffusion tensor. The relationship between m ̃n and the DTI signal is 

given by,

[3]

where Io is the image without diffusion weighting, b is the diffusion weighting factor and gn 

= (gxn, gyn, gzn)T is the diffusion encoding directional vector in the 3D space spanned by the 

readout (x), phase (y) and slice (z) encoding directions. D is the rank 2, symmetric tensor 

defined as

[4]

Replacing m̃n yields the new k-space signal model

[5]

For the current formulation, the total variation can be defined as

[6]

where (m̃n)y and (m̃n)z are the partial derivatives of m̃n with respect to y and z. TV is not 

calculated in the x-direction since it is already fully-sampled.

Maps corresponding to each diffusion tensor element can be estimated by minimizing Eq. 

[1] simultaneously with respect to each element of the tensor, D, via, for example, gradient 

descent optimization. In order to perform gradient descent, computational equations for the 
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derivative of Eq. [1] are needed with respect to each diffusion tensor element, Ds (s ∈ {xx, 

yy, zz, xy, xz, yz})

[7]

where  is a 3 × 3 matrix and the (·)s operator extracts the sth element corresponding to 

the Ds parameter map. The full derivation of this equation can be found in the attached 

appendix. The diffusion tensor elements are then updated iteratively using the derivative in 

Eq. [7]

[8]

where λ is the step size used in the gradient descent and r is the iteration number.

Methods

Data Set

Fully-sampled 3D, Cartesian k-space, DTI spin echo data consisting of diffusion-weighted 

scans in a relatively high number of encoding directions (96 in all) and 4 non-diffusion 

weighted “b0” images (100×75×70 matrix size, 0.5×0.5×0.5 mm3 isotropic voxel size, TE = 

39ms, TR = 500ms, NEX = 1) were acquired on a fixed, excised macaque brain hemisphere 

using a Bruker Biospec 7T scanner (Bruker Biospin Inc., Billerica, MA) equipped with a 

high performance gradient system (max gradient amplitude capable of 600 mT/m). The 

acquisition time for the entire diffusion MRI dataset was ~72 hrs. Figure 1 shows the “b0” 

and diffusion weighted images of a representative 2D slice, for reference. The diffusion 

tensor solution to the entire fully-sampled dataset was used as the “gold-standard” for 

subsequent performance assessments.

Undersampling Schemes

To simulate more typical DTI acquisitions, 10 test datasets each comprised of a subset of 

diffusion-weighted images encoded in 24 gradient directions were retrospectively selected 

from the original 96-direction set. The first direction of each subset was randomly chosen, 

and the remaining directions were selected based on maximizing the angular distance 

between each successive encoding direction (42). In order to have distinct datasets, 

precaution was taken to avoid excessive overlap of gradient directions between any two 

datasets. When the gradient directions overlapped by more than 45%, alternative gradient 

directions were substituted. Among the final test datasets, the amount of overlap ranged 

from 8% to 45%, with 20% being the average.

Undersampling was subsequently applied to the above test datasets, which was 

mathematically equivalent to multiplying the k-space data with appropriate binary masks. k-
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space was undersampled in the phase (y) and slice (z) directions, while sampled fully in the 

readout (x) direction for the 3D data. Two different degrees of undersampling were 

examined, 50% and 75%, which are equal to the acceleration factor R of 2 and 4, 

respectively. Figure 2 shows examples of the binary masks used with R of 2 and 4. To take 

advantage of the low-frequency nature of DTI data, the center k-space was fully-sampled, 

whereas the remaining k-space was sampled randomly, using a uniform distribution, to 

achieve the desired overall acceleration factor. The reference image, Io, was sampled fully 

and reconstructed separately using an IFFT. The reference image was fixed throughout the 

reconstruction.

Reconstruction

All computation was performed using Matlab (Mathworks, Natick, Mass; version R2011a). 

Two steps were taken in preparation for the iterative compressed sensing reconstruction. 

First, an inverse Fourier transform was applied to the k-space data along the readout 

direction, which was fully sampled. The procedure permitted the reconstruction of data in 

each subsequent 2D ky-kz plane perpendicular to the readout direction to be performed 

separately and in parallel. Second, the phase map, ϕn needed in Eq. [5] was approximated 

from the central fully-sampled k-space block and low-pass filtered using a 2D Hann 

window.

Implementation of the compressed sensing reconstruction is summarized in the flowchart 

shown in Fig. 3. The estimation was initialized by the linear least squares fit of the diffusion 

tensor to the images generated by direct reconstruction (inverse Fourier transform) of the 

undersampled k-space data. The initialization of the diffusion tensor is important, but the 

optimization solution can withstand a wide range of initial conditions (e.g., initializing DTI 

parameters to the tensor solution of using the b0 image plus identical DWIs). The algorithm 

then enters a loop, the first step of which is to determine the derivative of the cost function 

with respect to each of the diffusion coefficients, according to the procedure outlined in the 

Theory section. A value of 1×10−6 was used for β in Eq. [7]. The derivatives were used to 

update the diffusion tensor elements according to Eq. [8]. The loop was repeated until 

convergence was achieved, which was determined to occur when the value of the cost 

function changed by less than 1×10−4 percent from iteration to iteration.

Optimal values of the computational parameters, TV weight α and step size λ from Eqs. [7] 

and [8], were determined empirically by reconstructing an arbitrarily selected test dataset 

with a range of values of α and λ. The values that yielded the most accurate tensor 

eigenvector estimation with respect to the gold standard, 0.00025 and 0.00001 for α and λ, 

respectively, were used in the remaining test datasets. The parameters were found to be 

relatively robust and when changed by a factor of 10, increased the estimation errors by only 

about 10%. The reconstruction of each undersampled 24-direction test dataset typically 

converged within 1000 iterations and took approximately 1.0 hr on a computer with a quad-

core processor, 8 GB of RAM and Matlab’s Parallel-Computing toolbox.
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Assessment of Performance

The effectiveness of the proposed model-based compressed sensing DTI technique was 

evaluated by comparing its performance to those of two other reconstruction techniques and 

two control experiments all of which required equal total scan time:

1. Conventional compressed sensing. The compressed sensing reconstruction 

estimated individual diffusion weighted images by minimizing the cost function 

defined in Eq. [1] with respect to m̃n, as in (29), utilizing a TV weight, α, equal to 

0.025 and performing 300 iterations. The data was undersampled in the same 

manner as the proposed model-based approach.

2. Asymmetrical sampling. In the asymmetrical sampling case, a modified iterative 

partial Fourier method (43) was employed to fill in the missing k-space. k-Space 

was sampled asymmetrically in the phase (ky) direction to get an overall 

acceleration factor, R, of 2 and 4. Ten phase-encodes of negative k-space were 

sampled for R = 2 and five phase encodes for R = 4. To maintain the same 

acceleration factor as the other techniques, the same number of phase-encoding 

steps were not sampled at the high, positive frequencies, but were estimated in the 

reconstruction to maintain the original resolution.

3. Low resolution. In the lower resolution control scheme, the center half (which is 

 in each phase and slice dimensions for R = 2) or center fourth (1/2 in each 

phase and slice dimensions for R = 4) of k-space for each test dataset was taken and 

zero-padded. The diffusion weighted images were obtained by using the inverse 

Fourier transform.

4. Fewer Directions. The fewer directions control scheme used fewer encoding 

directions to achieve the same R factor (12 and 6 fully-encoded images for R = 2 

and R = 4, respectively). The directions used for R = 2 and 4 were found by 

iterating over every 12- and 6-direction combination in each 24-direction test 

dataset to find the combination that minimizes the fiber orientation deviation angle 

for each test dataset. Again, the diffusion weighted images were obtained by using 

the inverse Fourier transform.

In each of the reconstruction and control experiments, the diffusion tensors and their derived 

parameters were obtained using conventional means (linear least squares fitting on a pixel-

by-pixel basis).

The performances of the acquisition schemes in capturing the essential DTI information 

were quantified along three error metrics: the fiber orientation deviation angle (Δθ, in 

degrees), fractional anisotropy difference (ΔFA, dimensionless), and mean diffusivity 

difference (ΔMD, cm2/s) with respect to the gold standard. Fiber orientation, fractional 

anisotropy and mean diffusivity are parameters commonly derived from DTI results, which 

are useful in tractography and detection of pathology. The fiber deviation angle, Δθ, was 

calculated by finding the angular difference (arccosine of the vector dot product) between 

primary eigenvectors of the gold standard and the model-based estimate. Δθ was averaged 

over the brain white matter, which was defined as regions with FA greater than 0.3. In low-

FA areas, such as the brain gray matter, where diffusion is relatively isotropic, noise can 
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lead to wide fluctuations of the primary eigenvector and skew the error metric. In contrast, 

root-mean square (RMS) of the FA difference, ΔFA, and MD difference, ΔMD, were 

calculated over the entire specimen. The mean Δθ, RMS ΔFA and RMS ΔMD metrics 

obtained for the proposed and alternate schemes in all 10 test datasets were compared using 

one-way repeated measurement analysis of variance (ANOVA). When significant group 

difference (i.e., F-test with p < 0.05) was found, post-hoc multiple comparisons based on the 

Bonferroni criterion with overall P < 0.005 were conducted to identify the group pairings 

that were significantly different.

Whereas the above comparisons were intended largely to assess the relative advantages of 

the proposed scheme, to offer guidance in the design of future DTI studies, and as an 

alternative way to evaluate the performance, it is instructive to determine the fully-sampled 

DTI experiment that offers equivalent performance as the proposed scheme. To this end, the 

performance metrics, mean Δθ and RMS ΔFA, were obtained as described above for DTI 

experiments that comprised fully-sampled diffusion-weighted images encoded over a range 

of the number of gradient directions (N, 6 ≤ N ≤ 24, 10 experiments for each N). The DTI 

experiments (i.e., N) that yielded the same performances as the proposed schemes for each R 

= 2 and R = 4 case were then identified. As an additional reference, the performance metrics 

obtained for N = 24 were extrapolated to lower values of N via the  relationship, 

which approximated DTI experiments that are SNR-limited. The same analysis was not 

carried out for ΔMD since the deviations were found to be small across all schemes and, 

therefore, improving its measurement efficiency was less critical.

Results

Figure 4 shows the FA-weighted, red-green-blue (RGB) color coded primary eigenvector 

maps for the model-based, compressed sensing, asymmetrical, low-resolution and fewer 

direction cases, for R = 2 and 4, obtained for a representative test dataset. Qualitatively, 

compared to the “gold standard” (also shown in Fig. 4), all five schemes produced 

progressively worse DTI maps as the acceleration factor R increased, which was expected. 

The limitations of each of the low resolution and fewer directions control schemes were 

more conspicuous at R = 4. There was considerable blurring in the low-resolution scheme, 

whereas the noise was markedly higher in the reduced-direction scheme. In contrast, the 

issues were clearly improved or avoided in the model-based compressed sensing approach.

Figure 5 shows the mean diffusivity maps for the five test cases. The degradation in quality 

due to image acceleration was less apparent for the mean diffusivity maps than it was for the 

FA maps shown in the previous figure, although there was more blurring in the low-

resolution scheme than in the model-based case. The MD maps had more in common with 

each other than did the FA maps.

The above qualitative observations are supported by the histograms of the performance 

metrics shown in Fig. 6, for the same test dataset. In each R = 2 and R = 4 case, the 

distributions of Δθ, ΔFA and ΔMD for the model-based compressed sensing scheme were 

generally not only narrower, but also closer to zero, compared to those of the other 

reconstruction and control schemes, with the exception of ΔMD in the fewer directions case. 
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An exception to the observed trends in the histograms was in the R = 4 case, where the Δθ 

distributions between the proposed and low-resolution schemes were similar. However, this 

may be due to the noise-smoothing effect inherent to lowering the scan resolution and the 

absence of a penalty for blurring in the performance metrics. The similarity likely reflects 

artifacts of the experimental methodology, and not actual benefits of the low-resolution 

scheme. Also, there appears to be a slight bias in ΔFA for the proposed model-based 

technique, the cause of which is currently unclear.

The quantitative performance comparisons among the schemes are summarized in Tables 1 

and 2, which contain the means of Δθ, ΔFA, and ΔMD for each R = 2 and R = 4 case, 

respectively. Once again, the results were consistent with the above qualitative observations. 

Among the test datasets examined, the model-based approach at R = 2 produced a mean Δθ 

of 4.11 ± 0.05° (n = 10, ± SEM), RMS ΔFA of 3.22 ± 0.07 × 10−2 and RMS ΔMD of 1.09 ± 

0.01 × 10−7 cm2/s, which were better than those respectively obtained by compressed 

sensing and asymmetrical reconstructions and the low-resolution scheme. The model-based 

approach performed better than the fewer-direction case in terms of mean Δθ and RMS ΔFA 

(4.93 ± 0.12° and 4.35 ± 0.01 × 10−2) but not RMS ΔMD (0.57 ± 0.03 × 10−7 cm2/s). 

Similarly, at R = 4, the proposed scheme outperformed the compressed sensing and 

asymmetrical reconstructions and, again, the low-resolution scheme and the fewer-direction 

scheme in terms of mean Δθ and RMS ΔFA (8.89 ± 0.14° and 7.22 ± 0.03 × 10−2) but not 

RMS ΔMD (0.89 ± 0.05 × 10−7 cm2/s).

Figure 7 shows the results of the repeated-measurement ANOVA post-hoc comparisons. 

The results indicate that the performance of the proposed model-based compressed sensing 

scheme, in terms of Δθ and ΔFA, was significantly better than any of the other 

reconstruction or control methods. Moreover, between the two control schemes, lowering 

the scan resolution performs significantly better, in terms of mean Δθ and RMS ΔFA, than 

reducing the number of diffusion encoding directions in all cases except for mean Δθ at R = 

2. Again, this may be due to the noise-smoothing effect of lowering the scan resolution. 

Nevertheless, the results point out that, for a given total scan time, more relevant DTI 

information was captured by the proposed model-based compressed sensing scheme than by 

realizing the acquisition acceleration via reducing the scan resolution or the number of 

diffusion encoding directions.

Results of the diffusion encoding gradient direction number and equivalent model-based 

reconstructed DTI experiment analysis are illustrated in Fig. 8, from which several 

observations can be made. First, in general and as expected, the number of diffusion 

encoding directions was inversely proportional to the error. Second, as the number of 

diffusion encoding directions was reduced from 24, ΔFA closely follows the performance of 

a noise-dominated DTI experiment where the RMS ΔFA error metric was proportional to 

. However, mean Δθ deviates more from the  curve, suggesting that the 

accuracy of the diffusion tensor eigenvector (the fiber orientation) can easily suffer from 

unoptimized placements of the diffusion encoding gradient directions. Third, at low numbers 

of gradient directions (less than 9), both mean Δθ and RMS ΔFA dramatically depart from 

the noise-dominated behavior. And last, depending on the reduction factor R used and the 
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DTI parameter being measured, the proposed model-based compressed sensing scheme can 

achieve performances that are equivalent to a longer DTI experiment using a higher number 

of gradient directions. Specifically, instead of a DTI experiment using fully sampled 

diffusion-weighted images encoded in 12 gradient directions, using a nominal R = 2 to 

encode in 24 gradient directions in the same acquisition time, the proposed scheme would 

produce equivalent fiber orientation accuracy that is otherwise achievable by a longer DTI 

scan using 16 gradient directions. In the case of FA mapping, the accuracy is equivalent to 

using 20 gradient directions. Similarly, instead of a 6-direction fully-sampled DTI 

acquisition, using a nominal R = 4 to encode in 24 gradient directions, the proposed model-

based approach would produce equivalent fiber orientation and FA mapping accuracy of 8 

and 9-direction fully-sampled DTI experiments, respectively.

Discussion

The results from the present study show that the proposed model-based compressed sensing 

approach for DTI was generally more accurate and produces less blurring than spatial TV 

compressed sensing and iterative asymmetrical reconstruction methods. Also, the proposed 

method was better for fiber orientation and FA estimation than either the lower-resolution or 

fewer-direction control experiments of equal scan time, as seen in Fig. 6. These trends are 

shown quantitatively in Table 1 and 2, and are statistically significant (Fig. 7). Combined, 

these results demonstrate the validity of the proposed approach for accelerating DTI, 

obtaining more accurate DTI, or a combination of both.

One possible exception to the relative performance of the proposed scheme was in the ΔMD 

metric when compared to the fewer-direction control case, where the deviation of the former 

was about twice that of the latter (1.09×10−7 vs. 0.57×10−7 cm2/s, for R=2). It is noted that 

both ΔMD values represent only 1–2% deviation from the actual MD value for the entire 

specimen (0.58×10−5 cm2/s). In contrast, the percentages of ΔFA values of the same 

schemes (3.22×10−2 and 4.35×10−2) were an order of magnitude larger, or about 15% of the 

whole-specimen FA (0.26). Moreover, unlike all other schemes examined, the fewer-

direction scheme was based on datasets that were unaltered image subsets of the gold-

standard. The overlap of image data would have made not only the ΔMD error but also the 

ΔFA error artificially lower than its true value, but the effect was less apparent because of 

the larger error associated with ΔFA. Combined, the observed ΔMDs for the fewer-direction 

control scheme as seen in Fig. 5 and 6 and Tables 1 and 2 were likely artificial 

underestimations of already low deviation values.

The data undersampling and scan time savings afforded by the model-based reconstruction 

can be exploited to include more DTI diffusion encoding gradient directions. Typically DTI 

employing more encoding directions is better than simply signal averaging in the same 

directions, especially when the number of directions used is relatively low (44). The 

proposed compressed sensing technique in effect allows more DTI encoding directions to be 

used without requiring a proportional increase in the scan time. A second factor that 

contributed to the performance of the proposed approach was in its use of model-based 

reconstruction, where fewer parameters were involved in the estimation. When the model-

based DTI estimation was applied to the non-undersampled test datasets (data not shown), 
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the mean Δθ and RMS ΔFA performance metrics improved from 3.23° and 3.01×10−2 to 

2.77° and 2.48×10−2, respectively. Although spatial smoothing, such as in the case of lower-

resolution scans, can produce artificially improved metrics, it is unlikely that the model-

based compressed sensing method added smoothing, since a very low weighting factor α = 

0.00025 was used for the spatial TV constraint in Eq. [7]. As well, in Fig. 4, the model-

based result contained little or no evidence of blurring.

Practical implications of the current work for designing DTI acquisition schemes can be 

extrapolated from the results summarized in Fig. 8. With either R = 2 or 4 undersampling, 

the proposed approach was equivalent to fully-sampled DTI scans using 1.33 (8/6 for R = 4 

or 16/12 for R = 2) times more encoding directions, in terms of the required scan time and 

the performance in fiber orientation mapping. For FA mapping, the equivalence factors were 

even greater, 1.5 (or 9/6) and 1.67 (or 20/12) at R = 4 and R = 2, respectively. On the one 

hand, for acquisitions designed to improve the accuracy of DTI measurements for given 

scan times, these factors readily provide estimates of the improvements that can be 

practically realized. On the other hand, for experiments aimed at shortening the scan time 

while preserving the measurement accuracy, these factors provide a basis to reduce the DTI 

scan time. For example, to measure FA, a fully sampled DTI scan using 20 encoding 

directions can be replaced with one that uses 24 directions with R = 2 compressed sensing, 

which could be obtained in only 62% of the required scan time (including the b0 scan).

It should be noted that the acquisition efficiency improvement factors were determined in 

the current work for the particular 3D spin echo DTI experiment chosen. Although 

improvements are also expected when the proposed approach is applied to other DTI 

studies, the specific gains will necessarily depend on the nature and settings of the 

experiments, including but not limited to the sample being imaged, pulse sequence and the 

diffusion encoding gradient direction set used. Moreover, improvements in the 

implementation of the reconstruction framework may lead to further performance gain. For 

example, in the current study the phase term, ϕn in Eq. [5], was estimated based on lowpass-

filtered central k-space data. When phase maps were obtained from fully-sampled k-space 

data (results not shown), which represent idealized estimates of ϕn, the performance metrics 

mean Δθ, RMS ΔFA and RMS ΔMD improved by approximately 20% to 3.43 ± 0.06, 2.85 ± 

0.07 × 10−2 and 1.00 ± 0.01×10−7 cm2/s for the R = 2 case.

In this work, the proposed method was demonstrated for the case of uniform RF coil 

sensitivity (e.g., when imaging is performed using a single coil). The proposed approach can 

be easily extended for multi-coil parallel imaging (45,46) by adding a coil sensitivity term, 

c⃗l, to Eq. [1] and summing over all coils, L,

[9]

Similarly, the model-based approach can be extended to deal with other MRI corrections, 

such as eddy current distortion or T2 blurring in fast spin echo or T2* blurring in echo-

planar imaging (EPI), by adding these terms to the signal model in Eq. [3]. This would 

require acquisition of additional data to determine a T2* map, for example. Application of 
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the model-based algorithm to EPI could increase SNR by shortening TE, but would not 

significantly shorten acquisition time. Although currently demonstrated only for 3D spin 

echo DTI experiments, the proposed model-based compressed sensing reconstruction 

methodology can potentially serve as a framework to improve other diffusion-based 

characterizations of ordered tissues such as those involving higher-order tensor 

representations (47,48) for resolving crossing fibers or rapid-acquisition techniques using 

fast spin echo (FSE), echo planar (EPI), or multi-coil parallel imaging. These extensions, 

which will necessarily involve additional technical considerations, are beyond the scope of 

the current study.

Conclusions

The present study demonstrated a model-based compressed-sensing reconstruction approach 

for undersampled DTI k-space data acquired using a spin echo readout. The methodology 

can be applied to enhance the acquisition efficiency of 3D spin echo DTI, including 

shortening the overall scan time, improving the measurement accuracy, or a combination of 

both. The performances of the proposed approach in fiber orientation, FA and mean 

diffusivity mapping were quantified, which serve as practical guides for applying to other 

DTI experiments. The model-based method was shown to outperform asymmetrical and 

compressed sensing reconstructions and using lower resolution or fewer diffusion directions 

to accelerate acquisition. Beyond 3D spin echo DTI, with additional work, the current 

methodology can potentially be extended to FSE or EPI acquisitions, or higher-order 

diffusion tensor imaging.
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Appendix

The derivative of the cost function in Eq. [1] with respect to the diffusion tensor, D, is 

derived in this appendix. The derivative of the fidelity term

[10]

will be demonstrated first, modeled after the derivation presented in (39). The first step is to 

expand the L2-norm

[11]

where  is the complex conjugate. The derivative can be taken in a generalized sense for 

the diffusion tensor, D, at a spatial location, x⃗a, such that
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[12]

Therefore, the general derivative can be found by inputting the derivative of the complex 

conjugate of Eq. [5] at x⃗a

[13]

Next, the derivative of the TV term, Eq. [6], is derived. The first step is to express Eq. [6] in 

the continuous case

[14]

where

[15]

and m̃n is the DTI signal intensity expressed in Eq. [3]. Next, a new function is defined by 

examining one spatial location, x⃗a,

[16]

The Euler-Lagrange equation states that

[17]

The derivative with respect to the diffusion tensor parameters at x⃗a in a general sense is 

desired, therefore, the derivative with respect to Ds(x⃗a) can be found using the chain rule on 

the above expression
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[18]

The previous expression can be found to be

[19]

Therefore, the generalized derivative of the total variation term can be expressed as

[20]

where β is introduced to avoid singularities in the calculation. The product rule needs to be 

carried out on the above expression to be implemented in the discrete case since m̃n is a 

function of Io (x,y,z) and D(x,y,z). This is not shown explicitly. The overall expression for 

the derivative of the cost function can be found by combining the results of Eq. [13] and 

[20]

[21]
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Figure 1. 
Two-dimensional MRI coronal view of the macaque brain hemisphere used in this study. 

Left, nondiffusion-weighted “b0” image, b = 0 s/mm2. Right, diffusion-weighted image, b = 

5000 s/mm2 in a single diffusion direction, scaled up for better display. There is notable 

shading due to coil inhomogeneity.
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Figure 2. 
Two-dimensional representation of sampling masks in the phase-slice plane for 50%, left, 

and 75%, right, undersampling. The data was sampled fully in the readout direction.
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Figure 3. 
Flowchart of the model-based reconstruction algorithm.
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Figure 4. 
FA-weighted, primary eigenvector RGB maps for the “gold standard” obtained from 

diffusion-weighted images encoded in 96 directions (a), test dataset comprising of 24 

diffusion images reconstructed using the model-based algorithm (b and g), compressed 

sensing (c and h), asymmetrical sampling (d and i), low resolution scans (e and j), 12 fully-

encoded images (f) and 6 fully-encoded images (k). The results from each row (b-f and g-k) 

require the same scan time. The results from b-e and g-j were derived from undersampled k-

space in order to accelerate scan time. The sphere in the lower-left corner indicates the 

direction of the fibers according to their color in RGB (e.g., red indicates a fiber traveling in 

the up-down direction).
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Figure 5. 
Mean diffusivity maps for the “gold standard” obtained from diffusion-weighted images 

encoded in 96 directions (a), test dataset comprising of 24 diffusion images reconstructed 

using the model-based algorithm (b and g), compressed sensing (c and h), asymmetrical 

sampling (d and i), low resolution scans (e and j), 12 fully-encoded images (f) and 6 fully-

encoded images (k). Note the lack of blurring in the model-based case indicated by the 

arrow.
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Figure 6. 
Distribution of primary eigenvector (top row), FA (middle row) and mean diffusivity 

deviation (bottom row) for 50% (left) and 75% (right) undersampling for the same test 

dataset shown in Figs. 4 and 5. The model-based approach (solid squares) was compared 

against compressed sensing (solid diamonds) and asymmetrical reconstructions (solid 

triangles) and comparable low-resolution (dashed circles) and fewer-direction (dash dot x’s) 

cases. The bias in FA deviation (e.g., in the fewer directions case for R = 4) indicates that 

the FA was underestimated as compared to the gold standard.
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Figure 7. 
Results of pair-wise, post hoc analysis of the five DTI acceleration schemes from Tables 1 

and 2. Asterisks denote a significant difference between the pairs, which was determined by 

P <0.005 for each post hoc comparison by Bonferroni criterion. MB = model-based, CS = 

compressed sensing, AS = asymmetrical sampling, LR = low resolution and FD = fewer 

directions. The model based approach was shown to be statistically different than the other 

four acceleration approaches.
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Figure 8. 
DTI fiber orientation, left, and FA, right, measurement errors plotted as a function of the 

scan time in terms of the number of fully-sampled diffusion scans included in the dataset. 

The dash dotted lines represent the  dependence of the errors based on the 24-

direction case. The performances of the proposed model based approach are plotted at their 

equivalent scan times, and are extrapolated (dotted lines) to determine the number of fully-

encoded diffusion weighted images needed to achieve the same measurement accuracy.
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Table 1

Performance of DTI acceleration schemes in terms of fiber orientation, FA, and MD errors for an acceleration 

factor R = 2.

Metric Mean Δθ RMS ΔFA RMS ΔMD

Scheme (deg) (10−2) (10−7 cm2/s)

Model-Based 4.11 ± 0.05 3.22 ± 0.07 1.09 ± 0.01

Compressed Sensing 4.81 ± 0.06 3.98 ± 0.06 1.18 ± 0.01

Asymmetrical Sampling 4.77 ± 0.07 4.12 ± 0.07 3.58 ± 0.03

Low Resolution 4.83 ± 0.06 3.98 ± 0.05 1.88 ± 0.01

Fewer Directions 4.93 ± 0.12 4.35 ± 0.01 0.57 ± 0.03

Entries are mean ± SEM for the 10 test datasets examined.
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Table 2

Performance of DTI acceleration schemes in terms of fiber orientation, FA and MD errors for an acceleration 

factor R = 4.

Metric Mean Δθ RMS ΔFA RMS ΔMD

Scheme (deg) (10−2) (10−7 cm2/s)

Model-Based 6.63 ± 0.04 4.86 ± 0.07 1.90 ± 0.02

Compressed Sensing 7.74 ± 0.04 5.71 ± 0.04 2.27 ± 0.01

Asymmetrical Sampling 8.05 ± 0.08 6.00 ± 0.05 3.73 ± 0.02

Low Resolution 7.17 ± 0.04 5.43 ± 0.03 2.93 ± 0.01

Fewer Directions 8.89 ± 0.14 7.22 ± 0.03 0.89 ± 0.05

Entries are mean ± SEM for the 10 test datasets examined.
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