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Abstract

Genome-wide association studies (GWAS) for non-syndromic cleft lip with or without cleft palate 

(CL/P) have identified multiple genes as important in the etiology of this common birth defect. 

We performed a candidate gene/pathway analysis explicitly considering gene-gene (G×G) 

interaction to further explore the etiology of CL/P. Animal models have shown the WNT signaling 

pathway plays an important role in mid-facial development, and various genes in this pathway 

have been associated with non-syndromic CL/P in previous studies. We propose a combined 

approach to search for possible G×G interactions using machine learning and regression-based 

methods to test for interactions between genes in the WNT family, and between these genes and 

other genes identified by genome-wide association studies (GWAS) in case-parent trios. Using 

this combined approach of regression-based and machine learning methods in CL/P case-parent 

trios, we found robust evidence of G×G interaction between markers in WNT5B and MAFB 

(empiric p-values =0.0076 among Asian trios and =0.018 among European trios). Additional 

evidence for epistatic interaction between markers in WNT5A, IRF6 and C1orf107 was seen 

among Asian trios, and markers in the 8q24 region and WNT5B among European trios.
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Introduction

Genome-wide association studies (GWAS) have identified many common risk alleles for 

various complex diseases and traits, but the apparent risk alleles generally exert a modest 

Correspondence to: TH Beaty; JE Bailey-Wilson.
*Contributed equally to the paper

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of 
Dental and Craniofacial Research, nor the National Institutes of Health.

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2016 July 01.

Published in final edited form as:
Genet Epidemiol. 2015 July ; 39(5): 385–394. doi:10.1002/gepi.21888.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect on risk and cannot explain all of the heritability for these complex traits. It has been 

suggested that undetected gene-gene (G×G) interactions [Van Steen et al. 2012; Moore et al. 

2010] and/or the cumulative effects of multiple, independent rare variants (which could have 

individual large effect sizes) may account for this “missing heritability” [Cantor et al., 2010; 

Manolio et al., 2009].

Non-syndromic cleft lip with or without cleft palate (CL/P) is the most common craniofacial 

birth defect in humans. Several genes in the WNT signaling pathway, in particular WNT3A, 

WNT5A, WNT9B and WNT11, are recognized candidate genes for non-syndromic CL/P 

[Chiquet et al., 2008]. WNT3 and WNT9B are highly expressed during midfacial formation 

in mice, suggesting these genes could play a major role in normal development of the lip and 

palate [Lan et al., 2006]. WNT9B also plays an important role in epithelial development from 

mesenchymal cells [Caroll et al., 2005]. In an A/WySn mouse model for human CL/P, 

disruption of WNT9B by the transposon clf1 was shown to cause CL/P [Juriloff et al., 2005; 

Juriloff et al., 2006]. Recently, Pbx has been shown to affect the joint regulation of WNT-

P63-IRF6 through epithelial apoptotic promotion in the midface [Ferretti et al., 2011]. 

Several WNT signaling genes are expressed in the human embryo between fetal ages 4 to 8 

weeks, the critical period for development of CL/P [Ferretti et al., 2011].

Recent GWAS have identified regions of the genome that are significantly associated with 

risk of CL/P. Rahimov et al. [2008] showed evidence that a variant in IRF6 was associated 

with increased risk of cleft lip. Association of variants in this gene was later confirmed by 

Mangold et al. [2010] and Beaty et al. [2010]. Mangold et al. [2010] also detected genome-

wide significant association of CL/P near VAX1 and NOG. Beaty et al. [2010] also detected 

genome-wide significant associations near the MAFB and ABCA4 genes and in the 8q24 

region. A subsequent meta-analysis of these 3 studies [Ludwig et al., 2012] supported all of 

these significant associations and detected significant association to 6 additional regions 

near the PAX7, THADA, EPHA3, SPRY2 and TPM1 genes and in the 8q21.3 region. See 

Supplementary Table 2 for more details of these regions.

This study was aimed at detecting risk loci that may not have had large enough marginal 

effects on CL/P risk to exhibit genome-wide significant marginal effects in the data from the 

Beaty et al. [2010] GWAS but which might have larger gene-gene interaction effects. This 

study concentrated on variants in candidate loci to make this problem more tractable. The 

candidate loci were the 12 regions previously shown to have genome-wide significant 

association to CL/P (Supplementary Table 2), 18 genes in the WNT pathway, and 65 

additional regions which showed suggestive evidence of association to CL/P (genotypic 

transmission disequilibrium test (TDT) p-values < 10−5) in the Beaty et al. [2010] study. We 

used 895 trios of Asian ancestry and 681 trios of European ancestry ascertained through a 

case with an isolated non-syndromic CL/P [Beaty et al, 2010]. We tested for potential G×G 

interaction between 153 SNPs with genotypic TDT p-values < 10−5 from the 4 genome-wide 

significant regions and the 65 suggestive regions from the previous GWAS of these trios 

[Beaty et al., 2010], plus eight SNPs, each representing one of the 8 other regions showing 

genome-wide significant association with CL/P in the Ludwig et al. [2012] meta-analysis, 

and 360 SNPs from 18 genes in the WNT pathway.
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Even when using a candidate locus approach, the multiple testing penalty would be large if 

we were to model and explicitly test all possible two-way and three-way interactions among 

the 521 SNPs in these candidate loci. In addition, assumptions concerning additivity of 

effects and type of epistatic interaction add further complexity to parametric modeling of 

G×G interactions. Therefore, we used a multi-pronged approach, first applying two machine 

learning methods, Random Forest (RF) [Breiman, 2001] and Logic Regression (LR) 

[Ruczinski et al., 2003] adapted to trio data [Li et al. 2010], as well as a parametric, pair-

wise case-only interaction test available in PLINK [Purcell et al., 2007]. Results from the 

three methods (RF, trio LR and case-only) were used to select a set of genes that were 

further tested for epistatic interaction using conditional logistic regression models in case-

parent trios [Cordell, 2002]. Finally, we compared the evidence for interaction across 

methods and across ancestry groups (Figure 1).

Machine learning methods are data mining tools for high dimensional data. Some machine 

learning tools, such as Random Forest [Breiman, 2001], rely heavily on bootstrapping to 

control false-positive rates and relax assumptions regarding the exact relationship between 

underlying factors (e.g. genes) and outcomes. These methods have the advantage of 

exploiting potential non-linear relationships, which is more realistic for any complex 

biological system, as well as unifying the analysis of very large numbers of predictors into a 

comprehensive framework. We used two machine learning methods: Random Forests (RF) 

[Breiman, 2001] and trio Logic Regression (trio LR) [Li et al., 2010].

RF is a collection of classification and regression trees (CART), which each can include 

multiple SNPs to predict the trait. These CARTs are created using bootstrap samples with 

replacement and random subsets of variables (i.e., predictors, often called “features”) for 

explaining the occurrence of a dichotomous trait or variation of a quantitative trait. This 

method has the advantage of not assuming additivity or any specific parametric model, thus 

avoiding the risk of model mis-specification and its resultant biases. Various bootstrap-

based metrics are used to rank these variables in order of importance as potential predictors 

of the trait. The SNPs that best account for the prediction of disease risk across many 

thousand trees are considered the most important. The non-parametric, tree-based design of 

RF allows it to determine whether a feature is an important predictor of the trait even when 

the marginal effect of the feature is minimal but it acts through a strong interaction effect. 

Dasgupta et al. [2014] have recently developed a method to estimate the size of such 

interaction effects using RF and Holzinger et al. [2015] have shown RF can determine that 

SNPs with interaction effects but zero marginal effects are important risk factors for a trait. 

RF++ [Karpievitch et al., 2009] is an extension of RF appropriate for trio data (affected 

case-parent) and provides greater prediction accuracy for individual SNPs compared to all 

other SNPs included in the analysis. However, its result does not reveal which set of SNPs, 

as a whole, affects the disease risk.

Logic Regression (LR) is a generalized regression method utilizing logic terms to capture all 

possible interactions among variables [Ruczinski et al., 2003]. Embedded in this method, the 

underlying regression model can be any regression model appropriate for the study design. 

The logic terms were used as covariates fitted to the regression model. Since logic terms can 

represent different combinations of genotypes from multiple SNPs, LR employs a simulated 
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annealing algorithm to control the searching for the optimal logic term producing the best 

goodness-of-fit measure from the regression model. Trio LR [Li et al., 2010] is an extension 

of LR for the case-parent trio design, which uses conditional logistic regression as its 

regression model.

In addition to the machine learning analyses, we also performed a case-only analysis to 

identify genes interacting to increase risk to CL/P without considering controls. Two 

interacting genes, when examined only in cases, will appear to be correlated. If the logistic 

model is appropriate for this trait, then a parametric model may be more powerful to detect 

strong two-way interactions.

Here, we propose a combined approach to search for possible G×G interaction using 

machine learning and regression-based methods in a case-parent trio study, and apply this 

approach to CL/P case-parent trios focusing on genes in the WNT pathway and specific 

genes/regions identified as influencing risk to CL/P in GWAS studies [Ludwig et al., 2012]. 

RF and LR are two supervised machine learning methods with the potential to identify high-

order, non-linear interactive relationships within a data set. The two methods are 

complementary to each other and different from other model-based two-way interaction 

tests. Therefore, our approach serves as an example, on this small set of SNPs, of using both 

methods to facilitate the test and interpretation of high-order interaction in more general 

genome-wide settings.

Methods

Samples

We used data from a GWAS of isolated, non-syndromic CL/P [Beaty et al., 2010], where 

case-parent trios were drawn from an international consortium. We used 895 trios of Asian 

ancestry and 681 trios of European ancestry. During data quality control (QC), a SNP was 

dropped if its missing rate was >1% or if Mendelian errors occurred in more than one trio (5 

SNPs in European and 2 SNPs in Asian samples, respectively were dropped for Mendelian 

errors). Further, monomorphic SNPs within each population were dropped [Beaty et al., 

2010]. From the cleaned set of GWAS SNPs, we extracted the 360 markers belonging to the 

18 genes in the WNT pathway, plus 152 markers with p<10−5 from GWAS results based on 

a genotypic TDT [Beaty et al., 2010] (shown in Supplementary Table 1). To remove effects 

of linkage disequilibrium (LD) among SNPs in WNT genes, we kept only markers with 

pairwise r2 < 0.1, estimated from the founder population for each ancestry group, resulting 

in 346 SNPs for the Asian samples and 395 SNPs for the European samples. Of these, 319 

SNPs overlapped in the ancestry groups, 27 SNPs were unique to the Asian samples and 76 

SNPs were unique to the European samples. In addition, eight SNPs previously identified as 

significantly associated with CL/P in other published GWAS studies [Rahimov et al., 2008; 

Mangold et al., 2010; and Ludwig et al., 2012] (Supplementary Table 2) were added to the 

list considered for each ancestry group when searching for 2-way G×G interactions.
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Imputation and pseudo-controls

Both RF and trio LR require complete genotypes for cases and pseudo-controls. We used the 

R-package Trio [Schwender et al., 2014] to create pseudo-controls and impute missing 

genotypes in cases. This imputation method first estimated haplotype blocks and haplotype 

frequencies from the parents, then estimated the joint frequencies of diplotypes in both 

parents and the case for each case-parent trio. Principal components analysis was conducted 

using parents from the original GWAS (see Murray et al., 2012), and the largest genetic 

distances in this data set were between Asian and European ancestry groups. Therefore, we 

estimated haplotypes within each ancestral group and used their respective haplotype 

distributions to impute genotypes for these two groups separately. The purpose of using 

pseudo-controls in the RF++ and trio LR analyses is to control for the effects of population 

stratification within each of the Asian and European samples, thus retaining the advantage of 

the trio study design.

Statistical Analyses

The following sections describe details of each method: RF, trio LR, case-only analyses and 

epistatic tests using conditional logistic regression.

Random Forests

RF is an ensemble method where decision trees are used to rank variables in their order of 

importance when explaining variation in a trait of interest. Here, decision trees are trained 

using bootstrap samples of CL/P cases and pseudo-controls (selected with replacement) and 

random subsets of predictor variables, and tested on out-of-bag (OOB) samples (i.e. those 

cases and pseudo-controls left-out of the bootstrap sample during the training phase). For a 

dichotomous trait such as CL/P, prediction error rates for cases and pseudo-controls from 

tested OOB samples are calculated across all such trees (i.e. the entire forest). The 

importance of each variable is also estimated using OOB samples by permuting variables 

and comparing the prediction ability of the forest based on the original values and the 

permuted values. Each vote on predicted case-control status of the OOB individuals from 

each tree is aggregated across all trees in a forest, and the prediction error rate is compared 

for the forest trained using the real data for all variables versus the forest trained using 

permuted values for one predictor variable. This process is repeated, permuting one 

predictor variable at a time, and results are used to rank the predictor variables in terms of 

their contribution to prediction of case-control status. The end product of RF is an ordered 

list of variables, ranked by the importance of each variable in predicting the outcome based 

on their marginal effects and G×G (or higher order) interaction effects. These ranked 

variable lists can be used to select sets of important variables; hence, we should have fewer 

variables of interest for further analyses after applying RF to a data set.

For the case-parent trio design, an extended RF developed by Karpievitch et al. (2009) can 

be employed after generating matched case-control sets. This method implements an 

algorithm to boost correlated data by subject-level strata together using cluster (family) 

information, and to provide subject- and replicate-level classification and error rates. Using 

three imputed pseudo-controls per trio per haplotype block, one pseudo-control was 

randomly selected to match to the case in each trio, for the purpose of controlling effects of 
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population stratification within each ethnic group. As a training dataset for growing trees, 

2/3 of matched case-control pairs were randomly selected in each ancestral group, and 1/3 of 

matched case-control pairs were used as an OOB sample to test grown trees. We calculated 

the training and testing errors using OOB sampling.

We used the RF++ program version 1.0 [Karpievitch et al., 2009] to select top ranked 

variables. To perform RF++ in an optimized setting, we pre-tuned two parameters, the 

number of trees to grow and the number of randomly selected variables to be examined at 

each node of a tree (“mtry” value). As suggested in the previous literature [Liaw et al., 

2002], we tried all combinations of two tree numbers (5,000 and 10,000) and three mtry 

values (the square root of the total number of variables (p), half of p, and double of p). The 

combination resulting in the lowest training/testing errors (0.288/0.2836 for the Asian 

ancestral group, and 0.325/0.2863 for the European ancestral group, respectively) was 

selected for the analyses. In each random forest, we grew 10,000 trees, and we used the 

square root of the total number of variables for the mtry parameter (mtry values of 19 and 20 

for the Asian and European ancestral groups respectively). To rank variables as potential 

predictors of the trait, permutation based variable importance scores were calculated. The 

importance score for the vth predictor was calculated using two proportions of correctly 

classified individuals in the OOB sets, one obtained from the original data and one after 

permuting the values of the vth predictor in the OOB data, and repeating the classification of 

the OOB data using the original tree and the permuted data. For this purpose, among all the 

trees fitted in the random forest, only a subset of trees will be used in the calculation of 

importance of the vth predictor variable, i.e. those trees where the variables available to build 

the tree included the vth variable. The importance score is defined as the difference between 

these two proportions of OOB correctly classified individuals, averaged over all the 

applicable trees. One can express this as follows,

where pc,t is the proportion of correctly classified individuals out of the total number of 

OOB individuals in a given tree t;  is the proportion of OOB individuals correctly 

classified after variable v was randomly permuted across all OOB individuals for tree t; and 

T is the total number of trees in the forest where the variable v was among the subset of 

variables which could have been included in the tree.

Trio logic regression for multi-way gene-gene interactions

The LR method has two components making it a flexible framework to analyze trio data. 

The logic term uses Boolean operators to transform multiple levels of combinations of many 

binary predictors into just two levels, one corresponding to the logic expression, and its 

corresponding opposite (i.e. the compliment) of the logic expression. For example, let F1, 

F2, and F3 stands for three binary predictors. There are 23=8 levels representing whether 

each factor is present. However, if the logic expression is “F1 and F2 and F3”, only two 
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levels remain, which is also true for expression such as “F1 or (F2 and F3)”. Each logic term 

is then used as a single predictor in a regression model. The second flexible component of 

the LR method is its underlying regression model. It can take any form that is appropriate 

for the study design. LR uses a regression model to fit data using all possible logic terms, 

and uses the corresponding goodness-of-fit measures, i.e., the score function from the 

regression model, to determine the optimal logic term. At each step of fitting the regression 

model with a new logic term, this new term is accepted not only based on how much the 

goodness-of-fit changes from the old term to the new term, but also based on a probability 

related to the stage of the search. The probability is determined by the simulated annealing 

algorithm [Ruczinski et al., 2003], which gives a higher chance of acceptance at the 

beginning of a search rather than at the end. Logic regression was originally developed for 

case-control data, or quantitative outcome analysis, but has been extended to the case-parent 

trio design [Li et al. 2010].

The conditional logistic regression test is often used in lieu of a genotypic TDT for its ability 

to include covariates and account for population stratification. The trio LR employs the 

conditional logistic regression model as its underlying regression model and uses the 

deviance from the conditional regression as the goodness-of-fit measure [Li, et al., 2010]. 

This method generates genotypes for the pseudo-controls to match with observed genotypes 

of cases (to control for population stratification), then converts those genotypes into binary 

predictors under either dominant or recessive coding. A logic term of multiple predictors, 

i.e., some combination of either dominant or recessive coding at multiple loci were treated 

as the dependent variable in the underlying conditional logistic regression model. The trio 

LR method tests whether the relative risk of any combination of transmitted variants, in 

terms of a logic term representing dominant or recessive coding at multiple markers, is 

higher than the non-transmitted variants at these same markers.

We initially applied trio logic regression to all selected SNPs. Within each ancestral group, 

we allowed the logic term to have a maximum of two or three predictors, to identify 

potential G×G interaction between two or three SNPs. Then, we increased the total number 

of predictors up to 5, to check whether higher order interactions could be detected. Although 

the method can detect large main effects of individual SNPs, it is designed, and therefore is 

more powerful than single marker TDT, to detect G×G interaction when no individual SNP 

has strong marginal effects. Although it adjusts for the LD among markers (SNPs) within 

the same haplotype block, this method assumes markers in different haplotype blocks are 

completely independent. When proposing a new logic term to fit the data, logic regression 

randomly selects predictors to include in the logic term, with the possibility of adding one 

predictor in high LD with another predictor already included in the logic term. When we 

fitted this model using all SNPs, we found markers in adjacent haplotype blocks were picked 

up as if they interactively affected disease risk, although we had already pruned out all 

markers in high LD (using a threshold of r2≥0.1) among those without significant marginal 

effects. This may be due to long-range, low LD rather than a true epistatic interaction. 

Interestingly, two different sets of two markers, each with very strong marginal effects and 

physically close to each other, were identified as representing 2-SNP interactions in both 

Asian and European trios.
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To detect possible interactions between markers showing significant marginal effects and 

other markers in the WNT pathway, preferably on a different chromosome or chromosomal 

arms from the marker of significant marginal effect, we kept the two markers previously 

identified as having a 2-way interaction in the analysis, as they had strong marginal effects. 

Then, we further screened the rest of the SNPs to generate a “strictly pruned set” of SNPs. 

Initially, we had SNPs in marker set A, which included those SNPs with significant or 

suggestive marginal effects (TDT test p<10−5) in a GWAS, and SNPs in marker set B, 

which are SNPs in the WNT genes (which did not have significant marginal effects in our 

original GWAS). To screen marker set A, we only kept the most significantly associated 

SNP on the whole chromosome. On chromosomes with only SNPs from marker set B, we 

kept all of the marker set B SNPs in the G×G interaction analysis. This resulted in our 

“strictly pruned set” of SNPs, which contains at most one marker per chromosome which 

has a significant or suggestive marginal effect, and all candidate SNPs (negligible marginal 

effects) in the WNT genes on the chromosomes without a marker set A SNP. This strictly 

pruned set of candidate SNPs was used to rule out the possibility of spurious cis-cis 

interactions that are purely due to inter-marker LD.

Case-only interaction tests

The case-only interaction test available in PLINK tests whether any pair of SNPs assumed to 

be independent shows excessive correlation in the cases, and relies on a χ2 statistic with 1 

degree of freedom to calculate statistical significance. To minimize false positive signals due 

to SNPs in high LD, or with low minor allele frequency (MAF) in the founder population, 

we filtered out any SNP in the WNT genes with MAF<5% (leaving 301 SNPs for Asian 

trios, and 378 SNPs for European trios), and only pairs of SNPs separated by at least 1 Mb 

and with r2<0.01 (estimated from the founder population) or on a different chromosome 

were considered (pruning was done separately in the two ethnic groups). Similarly pruned 

SNPs from the significant GWAS association regions were combined with this pruned set of 

SNPs in the WNT genes resulting in 351 SNPs for the Asian group and 400 SNPs for the 

European group. We used a more stringent r2 threshold (r2<0.01) than was used to prune the 

data for RF and trio LR analysis (r2<0.1) and included the physical distance requirement, 

because the case-only analysis is not robust to the presence of LD. We observed an 

excessive number of extremely significant pair-wise results if we set the threshold higher 

(data not shown). While it is possible SNPs in LD do exhibit a true pair-wise interaction 

affecting disease risk, it is more likely that most such apparent interactions are false 

positives due to a violation of the assumption of this test. We used the PLINK [Purcell et al., 

2007] --fast-epistasis option (http://pngu.mgh.harvard.edu/purcell/plink/) to perform a case-

only analysis using only proband genotypes. In brief, this approach tests whether any pair of 

SNPs assumed to be independent show excessive correlation between them among cases, 

and a χ2 statistic with 1 degree of freedom is used to test for statistical significance. 

Bonferroni correction was used to correct for multiple testing of the actual number of 

pairwise interactions taken into consideration at the final step.
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Epistatic tests using conditional logistic regression for 2-way G×G interactions

All SNP pairs selected from each result of RF, trio LR and case-only analyses were further 

tested for 2-way G×G interactions using conditional logistic regression [Cordell, 2002] as 

implemented in the ‘trio’ R package v1.4.24 [Li et al., 2010].

These epistatic tests represent departure from predicted effects under a log-linear model for 

alleles at two independent genes [Fisher, 1918]. Because this epistatic test is based on a 

parametric regression model, the number of possible pairwise G×G interactions is virtually 

unlimited and would quickly create severe issues with multiple testing. To reduce the 

number of tests, we applied these parametric regression methods only after each data mining 

method had reduced the number of candidate SNPs. We first used Random Forest (RF) 

[Breiman, 2001] method to identify a subset of plausible SNPs associated with the disease 

risk. We also tested high-order interaction using trio Logic regression (LR) [Li et al., 2010], 

as well as pair-wise interaction using a case-only interaction test available in PLINK. We 

applied this two-SNP conditional logistic regression epistatic test [Cordell, 2002] to all 

SNPs or SNP-pairs identified by any of the methods, i.e., RF, LR or case-only analysis, to 

validate those findings, as well as to compare evidence produced by various approaches.

The basic idea behind case-parent trios in the conditional logistic regression framework is to 

generate ‘pseudo controls’ from the untransmitted alleles in each parental mating type 

(where the case is the affected child), thus yielding a matched case-control design. For a 

single SNP in one gene, these matched sets consist of one case and three pseudo-controls 

fitted in a conditional logistic regression model. When considering two SNPs from 

independent genes, this method considers the genotypes at these two SNPs in the one 

observed case and15 matched pseudo-controls [Cordell, 2009]. Fifteen matched pseudo-

controls were generated for each CL/P case, and used in a conditional logistic regression 

model. We permuted case-control status 10,000 times to obtain empiric p-values for the 

most plausible pairs of SNPs (nominal p < 0.05) in both ancestral groups for validation.

Results

Random Forests

From the RF analysis, we obtained permuted importance scores for every SNP and ranked 

them by their scores. Importance scores were ranked from the highest to lowest 

(Supplemental Figures 1–2) for Asian and European samples separately. To obtain a list of 

top-ranked candidate SNPs for use in the pairwise conditional logistic regression test 

[Cordell, 2009], we employed a procedure proposed by Goldstein et al. [2010]. On each 

plot, we located the cut-point (“elbow”) on the curve, where importance scores started to 

decrease slowly among the top-ranked SNPs. By doing this, we identified 25 top SNPs in 

the Asian samples and 32 top SNPs in the European samples with importance scores higher 

than their corresponding cut-points. This gives us a list of plausible SNPs worth following 

up. Although somewhat ad hoc, this procedure is reasonable for filtering the SNPs for 

further testing given the limitations on power in our small dataset. These top SNPs are listed 

in Supplementary Tables 3–4. Five SNPs: rs3789451, rs11802196, rs6686599, rs813218, 

and rs6065259, were among these top SNPs in both ethnic groups. Pairs of these top SNPs 
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plus the most significant GWAS SNPs yielding evidence of significant interaction in the 

pairwise conditional logistic regression tests are shown in Table 1.

Trio logic regression

When all SNPs with large marginal effects from each candidate region and all pruned SNPs 

from the WNT genes (r2<0.1) were analyzed, the logic regression method detected evidence 

of G×G interactions between two markers in high LD which both showed significant 

marginal effects in our discovery GWAS [Beaty et al., 2010]. In the Asian ancestry samples, 

two markers (rs2013162 in gene C1orf107 and rs126280 in IRF6), spanning about 0.1 MB 

region on chr. 1 showed evidence of G×G interaction. In the European ancestry samples, 

rs2395855 and rs1850889 in the 8q24 region showed evidence of G×G interaction. In the 

analysis of these significant SNPs plus the strictly pruned set of SNPs, we found additional 

interactions. In the Asian ancestry samples, we identified G×G interactions between 3 SNPs 

(including rs126280 in IRF6, rs2013162 in C1orf107, and rs7640326 in WNT5A on chr. 3). 

In the European ancestry samples, the best 3-way interaction model included rs2395855 and 

rs1850889 (both in 8q24), and rs2240507 (in WNT5B on chr. 12). To confirm this 

observation, we used the 3-way interaction models identified by trio logic regression to 

generate a single “combined risk factor”, and then used this combined factor to run a single 

marker TDT test and estimate genetic effects. For example, for the Asian samples, the 

optimal logic term is “(rs126280R and rs2013162R) or rs7640326R”, where superscript R 

means the genotype had two copies of the minor allele at a particular SNP. This logic term 

means if one person had two minor alleles at both rs126280 and rs2013162, or had two 

minor alleles at rs7640326, then that person was at elevated risk. For each of the cases and 

pseudo-controls, we applied that logic term on the genotypes for those three SNPs to 

generate a binary value as the “single combined risk factor”. Among Asian trios, the log 

Odds Ratio (OR) estimated for this “single combined risk factor” was 1.43 (p = 10−44). 

Among European trios, the corresponding log OR was estimated as 1.37 for the “single 

combined risk factor” (p = 2*10−44). Based on 105 permutation tests, no p-values from the 

permuted datasets were more significant than these observed p-values. The pairwise 

conditional logistic epistatic test [Cordell, 2009] for every SNP pair identified in the 3-way 

interaction models failed to converge, possibly because all of these SNPs were perfectly 

correlated with case status in these data.

Case-only analysis

Table 2 and Supplementary Tables 5 and 6 show results of the case-only analyses using the 

candidate SNPs with MAF<0.05, separated by at least 1 Mb and with r2<0.01 or were on a 

different chromosome. After Bonferroni correction, two pairs of SNPs show significant p-

values within each of the Asian and European ancestral groups: two SNP pairs involving 

markers in WNT9A and COL8A1 among Asian cases (p < 2.09×10−5), and two SNP pairs in 

WNT2B and WNT5A among European cases (p < 1.45×10−5). Results are shown in Table 2. 

In addition, supplementary Table 5 and 6 show the pairwise interaction test results with p < 

10−4 within each ancestral group respectively. While not significant at the Bonferroni 

threshold, the case-only approach also found evidence of interaction between SNPs in 

WNT5B and MAFB, which is consistent with findings from the RF analyses (Table 1).
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Epistatic tests and comparison among methods

The reduced list of candidate SNPs resulting from the RF, trio LR and case-only analyses 

were further tested for 2-way G×G interactions using the conditional logistic regression 

epistatic test [Cordell et al., 2002]. From the RF analysis, we identified 25 top-ranked SNPS 

in Asians and 32 top-ranked SNPs in Europeans, respectively. In addition, 12 genome-wide 

significant SNPs from the four regions found by Beaty et al. [2010] and from 8 other regions 

from other published GWAS studies [Rahimov et al., 2008; Mangold et al., 2010; Ludwig et 

al., 2012] (Supplementary Table 2) were added to the list of top SNPs for pair-wise G×G 

testing. Since one SNP was both significant in Beaty et al. [2010] and was among the “top” 

SNPs in the current RF analysis of 630 Asian case-parent trios, we used 36 SNPs in the 

conditional logistic regression epistatic analysis. For the 841 European case-parent trios, two 

SNPs significant in Beaty et al. [2010] analyses were also in the “top” list from RF, so only 

42 SNPs were used in this epistatic analysis. Table 1 shows significant results of the 

conditional logistic regression analyses for these SNPs and the corresponding case-only 

association results. There were 2,390 pairs of SNPs tested in the Asian samples, and 3,415 

pairs tested in the European samples.

In the Asian group, the SNP pair composed of rs4765835 (in WNT5B) × rs11696257 (in 

MAFB) was significant (p=0.0085, empiric p=0.0076). This finding, reported in Table 1, 

was supported by a significant interaction in Europeans (p=0.017, empiric p=0.018). 

Additional marker pairs (WNT2/IRF6 and WNT2/ABCA4) also were nominally significant, 

but showed no evidence of epistasis among European trios. Among European trios, 3 pairs 

of SNPs yielded consistent results across all methods (nominal p<0.05 in the epistatic test of 

top RF SNPs, candidate SNPs and the case-only test); WNT5A (rs1499890) × ABCA4 

(rs3789451), WNT4 (rs2807376) × MAFB (rs13041247), and FILIP1L (rs813218 on 

chromosome 3; 101.08MB) × 8q24 region (rs12546523). However, only the FILIP1L × 

8q24 pair attained significance in permutation tests (empiric p=0.0017). None of these pairs 

were significant among Asian trios.

From the case-only analysis, we applied the epistatic test on SNP pairs with the most 

significant p-value (these SNP pairs are listed in Supplementary Table 5 and 6). The 

conditional logistic regression epistatic test results are shown in Table 2 for the two pairs of 

SNPs in each population yielding significant case-only results after Bonferroni correction. 

However, none of those pairs exhibited significant interaction in the conditional logistic 

regression test after Bonferroni correction.

The trio LR methods produced evidence for one 3-way interaction, which is hard to test in 

the epistatic test designed for 2-way interaction. We attempted to perform these 2-way 

interaction tests on every-pair of SNPs identified in these 3-SNPs interaction models. 

However, these tests failed to converge, possibly because all three SNPs were perfectly 

correlated with case status in these data.

We observed some overlapping findings among these methods. Top ranked SNPs from RF, 

the case-only test, and the epistatic tests, showed fairly strong evidence of interaction 

between SNPs in WNT5B and MAFB (Table 1) in both Asian and European trios. The 

empirical p-value of the epistatic tests was 0.0076 in Asian samples and 0.018 in European 
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samples. Case-only analysis reported p=0.00078 in Asian samples. In addition, the trio LR 

method identified WNT5B in its 3-way interaction model, which included rs2240507 (in 

WNT5B), plus rs2395855 and rs1850889 (in 8q24) in the European samples.

The partial overlap as well as differences in results across multiple methods revealed the 

possibility of complex interactions among genes influencing risk to CL/P. At a nominal 

significance level (p<0.05), both epistatic and case-only analyses detected additional pair-

wise interactions, but these involved different pairs in the different ancestral groups. In 

Asians, we found evidence for WNT2(rs2023708) × IRF6(rs1044516) and 

WNT2(rs2023708) × ABCA4(rs6686599) interactions, while in Europeans, we found 

evidence for WNT5A(rs1499890) × ABCA4(rs3789451), WNT4(rs2807376) × 

MAFB(rs13041247), and FILIP1L(rs813218 chromosome 3) × 8q24 region (rs12546523) 

interactions. Among these pairs, only the FILIP1L × 8q24 pair attained significance in 

permutation tests (empiric p =0.0017) in Europeans. Interestingly, WNT5A, together with 

IRF6 and C1orf107, was identified in a 3-way interaction model using the trio LR method.

Furthermore, none of the most significant pairwise interactions found in the case-only 

analysis yielded strong evidence of any effect in either the RF or the trio LR analyses. In RF, 

no SNPs in WNT9A, COL8A1 (on chromosome 3) or WNT2B were highly ranked based on 

the importance scores in either Europeans or Asians (Supplementary Tables 3–4). However, 

trio LR did not support the interactions identified from the case-only analysis.

Discussion

Combined approaches of regression-based and machine learning methods for case-parent 

trio data were used in a search for evidence of G×G interactions between 18 genes in the 

WNT family and SNPs attaining genome wide significant evidence of association in a 

family-based study of non-syndromic CL/P from an international collaboration (consisting 

largely of Asian and European groups). Although different pairs of genes were identified via 

different methods, the genes WNT5B on chromosome 12 and WNT5A on chromosome 3 

showed no significant marginal effects but were identified as interacting with other genes in 

all three methods. In addition, three regions previously shown to have significant marginal 

effects on risk of CL/P were also involved in the observed G×G interactions: the IRF6 

region, the 8q24 region, and a region on chromosome 20q11.2 - q13.1 containing MAFB 

[Beaty et al. 2010]. Our RF analyses followed by conditional logistic regression epistatic 

tests and the case-only analyses showed some evidence for G×G interaction between SNPs 

in MAFB with markers in WNT5B on chromosome 12p13.3 among both Asians and 

Europeans. Our trio logic regression results also suggested markers in WNT5B may interact 

with markers in the chromosome 8q24 region among Europeans, while markers in WNT5A 

may interact with markers in IRF6 and the nearby open reading frame C1orf107 among 

Asians. The WNT5B gene is a ligand for members of the frizzled family of 7 transmembrane 

receptors in the WNT pathway. WNT5B may be a signaling molecule affecting development 

of different tissues. Also, WNT5B has been reported to show differential expression 

compared to WNT5A, but WNT5A and WNT5B play an essential role in regulating the 

longitudinal bone growth during chondrocyte transition between different zones controlled 

by each gene [Yang et al., 2003]. Since WNT5A has already been reported to be associated 
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with CL/P risk, our evidence of statistical interaction between WNT5B and MAFB is 

consistent with previous findings.

Based on our results, a combined approach using regression-based and machine learning 

methods found evidence for G×G interactions among WNT genes and GWAS signals for 

CL/P. Overall, these results agreed with each other and should provide robust evidence to 

support further biological investigation. RF methods using matched cases and pseudo-

controls successfully prioritized the list of genes for further pairwise tests for G×G 

interaction tests using regression based methods, and thus minimized multiple testing issues. 

Logic regression can test for higher order G×G interactions and, its underlying conditional 

logistic regression model can estimate specific interaction terms. The resulting coefficient 

gives an estimate of the log odds ratio of the combined effect of putative interacting SNPs. 

Case-only analysis provides another way to look at the available data among cases, and is 

computationally fast compared to these other approaches. However, over-representation of 

pairs of genetic variants among cases could be a result of LD. Hence, case-only results 

corroborated by additional results from formal tests for epistasis (with permutation testing) 

should be more robust to false positive findings.

The limitations of our study were small study sample sizes and low power to detect modest 

effects of G×G interactions compared to the main marginal effect of any individual marker 

in the presence of LD. In case-only analysis, the method depends heavily on the MAF of 

markers, which is harder to estimate with great precision in a small sample. When a set of 

markers collectively is the most appropriate proxy for the causal gene or genes, we will lose 

power if we only consider a single SNP from the set in the analysis. Furthermore, two 

markers far away from each other that appear to interactively increase risk, may simply have 

weak LD between them. Therefore we decided to only follow-up those pairs located on 

different chromosomes or at least on different chromosomal arms. LD is also a challenge 

when generating haplotype data for imputing missing genotypes. Since both RF and logic 

regression analyses require complete genotype data, we had to impute missing genotypes 

and then created a pruned list of SNPs in linkage equilibrium (LE) with one another. For 

case-only analysis, since the statistical tests aim to detect correlation between pairs of SNPs, 

pairwise LD will result in a flood of false positive interaction signals. By default, PLINK’s 

case-only test analyzes pairs of SNPs located at least 1Mb apart. However, even pruning by 

1Mb inter-marker distance yielded false positive signals driven solely by long distance LD. 

Using a more stringently pruned set of uncorrelated SNPs and filtering the results of case-

only analysis down to SNP pairs with r2<0.01 reduced the number of false positive signals 

caused by LD. Logic regression models are useful to detect interaction when no SNP shows 

a strong marginal effect. However, this approach cannot fully adjust for LD between 

markers from different haplotype blocks, making it impossible to differentiate LD from 

interaction among markers. LD among markers competes with the G×G interaction signal, 

and cannot be eliminated without dropping many informative markers.

RF++ can test millions of SNPs in parallel, but the LR/trio LR program has a computational 

restriction. LR can accommodate a maximum of 1000 predictors in one analysis. 

Fortunately, the number of SNPs in our analysis fell well below this limit; therefore, we 

directly applied the trio LR on the completed set of SNPs without further filtering the 
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number of SNPs beyond removing SNPs in high LD. However, to use LR or trio LR to test 

for interactions between larger numbers of candidate SNPs, one might adopt a strategy of 

choosing the most important SNPs selected by RF or RF++ as input to LR.

Although not all evidence of G×G interactions among European trios replicated in Asian 

trios, some of our results remain intriguing. Markers in FILIP1L and the8q24 region showed 

evidence of G×G interaction in Cordell’s epistatic test (p=0.0011). The 8q24 region is a 

gene desert and its genetic elements remain undefined. Since our analysis was limited to 

candidate regions from association studies and the genes in the WNT pathway, we may have 

missed some important gene-gene interactions. However, our analytical approach is 

promising and could be expanded to other candidate pathways. In practice, for G×G 

interaction studies for a trio design, RF could prioritize a set of SNPs of interest among 

many thousands of SNPs, and researchers could then focus on these to ameliorate the 

multiple testing problem. Downstream tests could use a combination of the conditional 

logistic regression epistatic test and case-only analysis for 2-way G×G interactions among a 

preliminary set of SNPs. Trio logic regression could subsequently test for 2-way or higher 

order interactions.

Finally, the most consistent evidence from this study supports possible interactions between 

MAFB on chromosome 20q11.2 - q13.1 and WNT5B on chromosome 12q13.3 in both 

Europeans and Asians. Since WNT5A has already been reported to be associated with CL/P 

risk, our evidence of statistical interaction between WNT5B and MAFB is especially 

interesting. In Europeans, there is also some evidence of interactions between these two 

genes and SNPs in the 8q24 region. In Asians, interactions between WNT5A, IRF6 and the 

nearby open reading frame C1orf107 were observed. All these results are worthy of follow-

up in additional studies of CL/P and suggest that G×G interactions may indeed explain some 

of the “missing heritability” in the risk of non-syndromic oral clefts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow chart of analytical methods for trio design
a. The threshold was set as genotypic TDT p-values < 10−5.

b. The threshold was set as case-only test p-values < 10−4, excluding pairs in non-negligible 

LD (r2 < 0.01). The lists of selected SNPs were shown in supplementary table 5 and 6.

c. The threshold was set as the cut-point (“elbow”) along the curve for importance scores 

from all SNPs. The procedure proposed by Goldstein et al. [2010] is a heuristic approach to 

identify the top SNPs that have much higher importance scores than the rest. The lists of 

selected SNPs were shown in supplementary table 3 and 4.

d. The threshold of pairwise LD is set as r2< 0.1 to select the tagging SNPs.
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