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Abstract

Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide 

despite the fact that there are licensed S. Typhi vaccines available. This is primarily due to the fact 

that these vaccines are not used in the countries that most need them. There is growing recognition 

that an effective invasive Salmonella vaccine formulation must also prevent infection due to other 

Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars 

will be needed to control invasive Salmonella infections worldwide: S. Typhi, S. Paratyphi A, S. 

Paratyphi B (currently uncommon but may become dominant again), S. Typhimurium, S. 

Enteritidis and S. Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines 

are an attractive vaccine formulation for use in developing as well as developed countries. Here, 

we describe the methods of attenuation that have been used to date to create live attenuated 

Salmonella vaccines and provide an update on the progress that has been made on these vaccines.
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1. Introduction

The first vaccines against typhoid fever consisting of heat-inactivated typhoid bacilli 

preserved in phenol administered parenterally, were developed in the late 19th century.[1] 

Experiences with implementation of typhoid vaccines in the British and US military in the 

early 20th century and subsequent large-scale controlled field trials sponsored by the World 

Health Organization documented that the inactivated whole cell vaccines were efficacious 
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but were highly reactogenic.[1] Whole-cell vaccines against Salmonella enterica serovars 

Paratyphi A and B were also developed in the early 20th century and used by the U.S. 

military as a trivalent “TAB” vaccine against enteric fever.[2] However, these whole-cell 

vaccines lost favor due to their propensity to produce high fever, severe headache and 

malaise and gave way to the development of better tolerated Salmonella vaccines using 

other approaches such as parenteral polysaccharide and polysaccharide-protein conjugate 

vaccines and live attenuated oral vaccines. There are currently three types of licensed 

Salmonella vaccines: the live attenuated vaccine Ty21a marketed as Vivotif® (PaxVax 

Corporation); unconjugated Vi polysaccharide vaccine commercialized as Typhim Vi® 

(Sanofi Pasteur), Typherix® (GSK) and Typbar Vi® (Bharat Biotech), amongst others; and 

Vi polysaccharide conjugated to tetanus toxoid (Typbar TCV®, Bharat Biotech and Peda 

Typh™, Biomed).

Currently, licensed vaccines exist against no Salmonella serovars other than S. Typhi 

(although S. Typhi vaccine strain Ty21a confers moderate cross protection against S. 

Paratyphi B as well as S. Typhi).[3] There is growing recognition that other invasive 

Salmonella serovars also cause a notable disease burden.[4] S. Paratyphi A is emerging as a 

pathogen in Asia;[5] the non-typhoidal Salmonella serovars S. Typhimurium and S. 

Enteritidis cause invasive disease throughout sub-Saharan Africa,[6] and Salmonella Group 

C serovars such as S. Choleraesuis are associated with invasive disease in certain countries 

such as Taiwan.[7] As such, a multivalent vaccine that targets the following serovars is 

needed to control invasive Salmonella infections worldwide: S. Typhi, S. Paratyphi A, S. 

Paratyphi B (currently uncommon), S. Typhimurium, S. Enteritidis and S. Choleraesuis (as 

well as other Group C Salmonella).

At the Center for Vaccine Development, University of Maryland School of Medicine, we 

have developed and evaluated a variety of Salmonella live attenuated vaccines. There are 

several advantages of live oral attenuated vaccines over other vaccine formulations: 1) they 

can induce local immune responses at mucosal surfaces; 2) they are economical to produce; 

3) they induce Salmonella-specific B and T cell immunity; 4) they are practical to 

administer to a large population, and 5) they do not generate hazardous waste (e.g., needles 

and syringes) that needs to be discarded appropriately.[8, 9] However, there are several 

limitations to live attenuated vaccines. First, one needs to balance immunity and 

reactogenicity, particularly if the vaccine is to be used as a live vaccine vector.[10] The 

vaccine may also need to be formulated differently for infants. For example, Ty21a at times 

has been available in both a sachet formulation for use in young children as well as enteric-

coated capsules for use in older children and adults.[11–13] Finally, safety of live attenuated 

vaccines needs to be determined in immunocompromised subjects and also the very young 

prior to widespread use.

Here, we describe the methods of attenuation that have been used to date to create live 

attenuated Salmonella vaccines and provide an update on the progress that has been made on 

these vaccines.
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2. Methods of attenuation

The first method used to mutate bacteria to create live attenuated vaccines was chemical 

mutagenesis. However, with the advent of molecular biology, live attenuated vaccines are 

now constructed by making focused site-directed mutations using genetic engineering.

a. Chemical mutagenesis

Here, bacteria are exposed to a mutagen and spontaneous mutants are selected and passaged. 

The licensed typhoid vaccine Ty21a was constructed in the early 1970’s using chemical 

mutagenesis.[14] Spontaneous galE mutants were selected and shown to lack UDP-

galactose-4-upimerase activity. In the absence of galactose, these mutants produce rough 

LPS whereas when galactose is supplied exogenously, smooth LPS is produced. Chemical 

mutagenesis is a simple procedure and highly effective if the mutation is not lethal to the 

bacteria. However, one disadvantage of this method is that additional mutations may occur 

in several locations in the genome and as such the mutations are not fully defined. For 

example, Ty21a has more than two dozen mutations in addition to galE, the sought 

mutation.[15] Interestingly, the galE mutation alone is not responsible for the attenuation of 

Ty21a.[16] Instead, attenuation is most likely due to a combination of the galE mutation and 

one or more of the other mutations.

b. Genetically engineered mutagenesis

With the introduction of recombinant DNA technology, bacteriologists were able to 

genetically engineer defined mutations in bacteria. This meant that researchers were able to 

accurately characterize the mutations in attenuated vaccine strains. Mutations can be 

introduced into the Salmonella genome using homologous recombination such that the final 

live attenuated vaccine is free of antibiotic resistance genes.[17, 18] Presently, regulatory 

agencies such as the U.S. Food and Drug Administration require a live attenuated vaccine 

strain to possess two independently attenuating mutations. Interestingly, the choice of 

background strain also plays a role in generation of effective live attenuated vaccine strains. 

In some backgrounds, certain mutations were fully attenuating whereas in other strains, the 

effect on virulence was not as profound.[19, 20]

Below, we describe some the most commonly mutated genes in live attenuated Salmonella 

vaccines which have been evaluated in human volunteer studies.

i. Aromatic acid biosynthesis pathway—The first live attenuated Salmonella vaccines 

contained mutations in aromatic acid biosynthesis pathway genes.[21] Deletion of genes 

involved in aromatic amino acid synthesis (e.g., aroA, aroC and aroD) produces bacteria 

that are auxotrophic for para-aminobenzoic acid (PABA) and 2,3-dihydrobenzoate. When 

administered to mice, Salmonella aro mutants are unable to scavenge enough PABA and 

dihydrobenzoate to replicate.[21] Multiple pre-clinical studies have shown that Salmonella 

aro mutants elicit robust immune responses which can protect animals against lethal 

challenge.[22–25]
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ii. htrA—HtrA (also known as DegP) is a serine protease that is induced by heat shock in E. 

coli and other Enterobacteriaeceae.[26] This protein degrades misfolded proteins in the 

bacterial periplasm. S. Typhimurium ΔhtrA mutants show decreased survival within 

macrophages, decreased virulence in mice and are protective.[27–31]

iii. ssaV—The ssaV gene has been used as an attenuating mutation in S. Typhi and S. 

Typhimurium vaccines.[32] This gene is encoded on Salmonella Pathogenicity Island 2 

(SPI-2) a Type 3 Secretion System (TTSS) which is required for virulence of S. 

Typhimurium in mice.[33] SPI-2 mutants show decreased survival within macrophages.[34–

36] This pathogenicity island translocates Salmonella effector proteins across the bacterial 

inner and outer membranes to the host cell cytoplasm. SsaV forms part of the TTSS needle 

apparatus. Salmonella ssaV mutants are unable to secrete SPI-2 effector proteins. [37]

iv. PhoP-PhoQ virulence regulon—The PhoP/PhoQ regulon is a two component 

regulatory system which controls the transcription of multiple genes.[38–40] PhoP is a 

cytoplasmic transcriptional regulator and PhoQ is a membrane associated sensor kinase. 

This operon contributes to survival within macrophages and resistance to antimicrobial 

peptides.[38, 41] S. Typhimurium phoP mutants are avirulent and can induce a protective 

immune response in mice.[42, 43]

v. Adenylate cyclase and cyclic AMP receptor protein—Cyclic AMP (cAMP) and 

cAMP receptor protein (CRP) are required for multiple essential cellular processes including 

transport of metabolites.[44] The cya gene is required for adenylate cyclase synthesis and 

crp encodes cAMP receptor protein. S. Typhimurium cya and crp mutants are attenuated in 

mice and protective in various animal models.[45–48]

vi. clpPX—At the CVD, we have deleted clpPX in several live attenuated Salmonella 

vaccines.[49] This is an attenuating mutation in S. Typhimurium and other Salmonella 

serovars and also has an added benefit. The clpPX genes encode a protease that degrades the 

master flagella regulator FlhD/FlhC.[50, 51] The FlhD/FlhC complex is a transcriptional 

activator of the flagella synthesis pathway. When ClpPX is absent, FlhD/FlhC accumulates 

and large amounts of flagellin are produced. We have used this phenotype to our advantage 

to enable economical purification of flagellin from recombinant Salmonella strains for use 

as a carrier protein in conjugate vaccines.[49]

vii. Other genes—Many other mutations have been shown to produce effective live 

attenuated Salmonella vaccines in preclinical studies. For example, S. Typhimurium DNA 

adenine methylase (Dam) mutants are avirulent and can protect mice against lethal 

challenge.[52–54] Dam methylates adenine in GATC sequences and controls the expression 

of multiple Salmonella virulence genes.[55] A S. Typhimurium ΔrelA ΔspoT mutant which 

is unable to produce ppGpp, a signal important for Salmonella pathogenicity island (SPI) 

virulence gene-encoded expression, was also effective as a live attenuated vaccine in a 

murine challenge model.[56, 57] Other genes which have been deleted to create live 

attenuated Salmonella strains include cdt (colonization of deep tissue), fur (ferric uptake 

regulator), gidA (encodes a glucose-inhibited division gene), wecA (encodes a UDP-N-
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acetylglucosamine-1-phosphate transferase gene required for production of enterobacterial 

common antigen [ECA]) and rpoS (encodes the alternative sigman factor RpoS).[58–64] 

Several groups have also shown that modifications of Salmonella LPS can produce effective 

live vaccine strains.[65, 66] Interestingly, instead of deleting genes, some investigators have 

attenuated bacteria by overexpressing bacterial surface appendages such as flagella and pili 

using a method termed Attenuated Gene Expression (AGE).[67]

3. Live attenuated vaccines against invasive Salmonella serovars

Since the majority of invasive Salmonella disease burden has traditionally been attributed to 

S. Typhi, multiple typhoid vaccine candidates have been evaluated in clinical trials whereas 

vaccines against other Salmonella serovars have been neglected. Here, we describe some of 

the live attenuated invasive Salmonella vaccines that have been developed to date including 

vaccines that are currently in development (summarized in Table 1).

a. S. Typhi

Ty21a, a licensed S. Typhi live attenuated vaccine, was derived from S. Typhi Ty2 by 

chemical mutagenesis.[14] This vaccine is well-tolerated and shown to be immunogenic and 

protective against S. Typhi in several large-scale, randomized placebo-controlled field trials.

[11, 68, 69] Ty21a also confers significant protection against S. Paratyphi B disease.[70] 

However, the vaccine needs to be administered in 3 – 4 doses every other day. Therefore, 

new candidate live attenuated S. Typhi vaccine strains have been developed which elicit 

higher immunogenicity and only require a single oral dose.

In the 1990’s, the CVD developed live attenuated S. Typhi vaccines that possessed 

mutations in the aromatic acid biosynthesis pathway.[71] The aroC and aroD genes were 

deleted from S. Typhi Ty2 to produce CVD 908.[72] This vaccine was well-tolerated at 

doses of 5 × 104 CFU and 5 × 105 CFU and also immunogenic.[19, 73] However, upon 

subsequent testing CVD 908 produced a clinically silent bacteremia at higher doses (5 × 107 

CFU and 5 × 108 CFU).[74] Interestingly, CVD 906 which is another S. Typhi candidate 

vaccine strain with aroC and aroC deletions in the wild-type strain ISP1820 also produced 

asymptomatic vaccinemia in volunteers at 5 × 107 CFU.[75] To further attenuate CVD 906 

and CVD 908, an additional mutation was introduced. The htrA gene was deleted from CVD 

906 to produce CVD 906-htrA and from CVD 908 to produce CVD 908-htrA. Incorporation 

of this mutation had the desired effect and no vaccine bacteremias were observed at doses up 

to 5 × 109 CFU with no reduction in immunogenicity.[20, 74] CVD 908-htrA was 

subsequently tested in a Phase 2 study as a lyophilized formulation (in contrast to freshly 

harvested bacteria as was used for the Phase 1 studies).[76] At the two doses tested, 5 × 107 

CFU (low dose) and 4.5 × 108 CFU (high dose), no bacteremias were observed. Even after 

only one dose of vaccine, 100% of high-dose recipients and 92% of low-dose recipients 

possessed antibody secreting cells (ASCs) producing IgA against LPS.

To further improve on the live attenuated vaccine CVD 908-htrA, this strain was genetically 

engineered to constitutively express the Vi polysaccharide. Generally, live attenuated S. 

Typhi vaccines elicit poor anti-Vi responses presumably due to down regulation of the genes 

that express Vi in vivo. The native PtviA promoter which regulates Vi expression in CVD 
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908-htrA was replaced with the strong constitutive promoter Ptac to produce CVD 909.[77] 

Vi-specific IgA ASCs were detected in 80% of volunteers given 108 – 109 CFU CVD 909.

[78] Although impressive ASC responses were produced, only 2 out of 32 volunteers 

generated anti-Vi serum IgG antibodies.

Another aro-based S. Typhi vaccine is M01ZH09 (S. Typhi Ty2 ΔaroC ΔssaV). This 

vaccine has been evaluated as a single dose vaccine in Phase 1 and Phase 2 clinical trials and 

shown to be safe and well-tolerated in adults and children including in Vietnam, a typhoid-

endemic country.[79–81] This vaccine, now called Typhella®, is licensed by Prokarium and 

is also being investigated for use as a vaccine delivery vector.

Two other live attenuated S. Typhi vaccines, Ty800 and χ3927, have been evaluated in 

human volunteers but have not progressed past Phase 1 studies. Ty800 (S. Typhi Ty2 

ΔphoP/phoQ) was evaluated in 11 volunteers.[82] Ty800 was safe and immunogenic as a 

single dose. χ3927 (S. Typhi Ty2 Δcya Δcrp) was well tolerated and immunogenic in a 

Phase 1 study but produced vaccinemia in 2 of 12 volunteers and fever in an additional 

volunteer.[19]

b. S. Paratyphi A and B

There is growing recognition that S. Paratyphi A should be targeted in addition to S. Typhi. 

Roland et al. [83] have constructed a S. Paratyphi A ΔphoPQ vaccine strain which was well 

tolerated and immunogenic in an oral rabbit model. The CVD has developed a live 

attenuated S. Paratyphi A vaccine, CVD 1902, which harbors ΔguaBA ΔclpX deletions in the 

ATCC9150 parental strain. This vaccine has been tested in a Phase 1 clinical trial 

(NCT01129452; ClinicalTrials.gov) at the CVD. The vaccine was well-tolerated at doses 

ranging from 106 – 1010 CFU and was immunogenic (K. Kotloff, personal communication).

Little S. Paratyphi B vaccine development has been performed to date. This is partly due to 

the fact that currently, S. Typhi and S. Paratyphi A are the dominant typhoid disease causing 

serovars. However, in anticipation that S. Paratyphi B could potentially resurface in the 

future, we are developing a candidate live attenuated S. Paratyphi B vaccine with mutations 

in guaBA and clpX.

c. S. Typhimurium and S. Enteritidis

Invasive non-typhoidal Salmonella are increasingly being recognized as a significant cause 

of morbidity and mortality in sub-Saharan Africa. In particular, S. Typhimuium and S. 

Enteritidis are responsible for 80–95% of invasive NTS infections.[6]

One of the early S. Typhimurium live attenuated vaccines that has been tested in a Phase 1 

clinical trial was S. Typhimurium ΔaroC ΔssaV. This vaccine was well-tolerated by 

volunteers but when ingested at 108 and 109 CFU, was shed in stools for up to 23 days. In 

contrast, a S. Typhi vaccine with the same gene deletions was well tolerated and not 

persistently excreted in stool.[32]

At the CVD, we have created live attenuated S. Typhimurium and S. Enteritidis vaccines 

with mutations in the guaBA and clpPX genes.[49] With further genetic modifications, these 
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strains also serve as reagent strains for economical purification of components of a bivalent 

conjugate vaccine that is also in development.[84, 85] The live attenuated vaccine strains 

CVD 1921 (S. Typhimurium I77 ΔguaBA ΔclpP) and CVD 1941 (S. Enteritidis R11 

ΔguaBA ΔclpP) were safe and immunogenic in BALB/c mice.[49] Importantly, they were 

able to protect against a lethal challenge. Furthermore, the S. Typhimurium vaccine CVD 

1921 was also safe in SIV-infected rhesus macaques.[86] We have also created another 

candidate S. Typhimurium live attenuated vaccine CVD 1931 (S. Typhimurium D65 

ΔguaBA ΔclpX). The parent of this vaccine wild-type strain D65 was isolated from the blood 

of an infant in Mali, West Africa. This isolate is multi-locus sequence type 313, the 

dominant genotype of S. Typhimurium that is circulating in sub-Saharan Africa. We have 

recently shown that S. Typhimurium ST313 strains are phenotypically different from ST19 

isolates (the most common genotype found throughout the world and which causes 

gastroenteritis).[87] S. Typhimurium ST313 isolates from sub-Saharan Africa are highly 

resistant to killing by macrophages and elicit reduced inflammation compared to S. 

Typhimurium ST19 isolates.[87] Carden et al. have also shown that ST313 isolates produce 

less caspase 1 dependent macrophage cell death and IL-1β release compared to ST19 strains.

[88] We anticipate that S. Typhimurium live attenuated vaccines of the ST313 backbone 

may manifest different effects in human volunteers compared to ST19-derived strains. We 

hypothesize that the ST313 vaccine strain CVD 1931 will not be shed in stool for an 

extended period of time as was seen for the S. Typhimurium ΔaroC ΔssaV vaccine that was 

constructed in the gastroenteritis-causing strain TML.[32] This is primarily based on 

genomics analyses which showed that S. Typhimurium ST313 are lacking pipD which is 

required for fluid secretion in bovine ileal loops.[89, 90] Okoro et al. provide evidence to 

support this hypothesis and found that ST313 isolates exhibit reduced enteropathogenicity in 

streptomycin-treated C57BL/6 mice and in bovine ligated loops.[91]

d. Salmonella Group C

Several S. Choleraesuis (Group C1) vaccines have been developed for use in pigs.[92– 96] 

A S. Bovismorbificans (Group C2) live attenuated vaccine has also been developed with the 

aim of reducing Salmonellosis in sheep. This live attenuated ΔaroA vaccine was able to 

protect mice against a lethal challenge with wild-type S. Bovismorbificans.[97] A S. 

Choleraesuis Δaro mutant was also able to partially protect mice against a lethal dose of S. 

Choleraesuis delivered intraperitoneally.[98] To date, no Salmonella Group C vaccines have 

been evaluated in humans. At the CVD, we are developing live attenuated vaccines against 

Salmonella Group C1 and C2 infections with the view to combine these strains with live 

attenuated S. Typhi, S. Paratyphi A, S. Paratyphi B, S. Typhimurium and S. Enteritidis 

vaccines to create a multivalent vaccine that protects against the major causes of invasive 

Salmonella disease worldwide. It is unclear how many vaccine strains would need to be 

included to provide adequate protection against all of these serovars. Studies that have 

examined cross-protection elicited by Salmonella vaccines have shown mixed results with 

some reports describing cross-protection against heterologous challenge organisms and 

others reporting no protection.[24, 99– 103] Similarly, volunteer studies have shown that 

immune responses generated by live S. Typhi vaccines are cross-reactive with other 

Salmonella serovars but it is not yet known whether these responses would be protective.

[104–106]
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4. Conclusions

Despite the first Salmonella vaccines being developed over a century ago, invasive 

Salmonella disease is still a significant cause of mortality and morbidity worldwide. Due to 

improved surveillance efforts, there is a growing realization that in addition to preventing S. 

Typhi, other invasive Salmonella serovars, particularly S. Paratyphi A in Asia and S. 

Typhimurium and S. Enteritidis in sub-Saharan Africa should also be targeted. Live 

attenuated vaccines are an attractive vaccine platform given that they are economical, 

provide long lived protection and easy to implement.
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