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Summary

Primary and metastatic melanoma tumors share the same cell origin, making it challenging to 

identify genomic biomarkers that can differentiate them. Primary tumors themselves can be 

heterogeneous, reflecting ongoing genomic changes as they progress toward metastasizing. We 

developed a computational method to explore this heterogeneity and to predict metastatic 

progression of the primary tumors. We applied our method separately to gene expression and to 

microRNA (miRNA) expression data from ~450 primary and metastatic skin cutaneous melanoma 

(SKCM) samples from the Cancer Genome Atlas (TCGA). Metastatic progression scores from 

RNA-seq data were significantly associated with clinical staging of patients’ lymph nodes whereas 

scores from miRNA-seq data were significantly associated with Clark’s level. The loss of 

expression of many characteristic epithelial lineage genes in primary SKCM tumor samples was 

highly correlated with predicted progression scores. We suggest that those genes/miRNAs might 

serve as putative biomarkers for SKCM metastatic progression.
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Introduction

Melanoma is highly aggressive and its incidence has been increasing world-wide. Both 

genetics and environmental exposure contribute to its etiology (Bennett, 2008, Gray-

Schopfer et al., 2007, Miller and Mihm, 2006). Melanoma has often metastasized to a distal 

site before being diagnosed (Braeuer et al., 2014); these metastases cause the majority of 

deaths from melanoma.
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Tumor metastasis is a complex process that is thought to involve several steps including 

epithelial-mesenchymal transition (EMT), invasion, and angiogenesis (Geiger and Peeper, 

2009, Friedl and Alexander, 2011, Quail and Joyce, 2013). Many key signaling pathways 

have been implicated in EMT including those associated with receptor tyrosine kinase 

(Lemmon and Schlessinger, 2010), the transforming growth factor β (TGFB) superfamily 

(Massague, 2012), WNT (Komiya and Habas, 2008), NOTCH (Andersson et al., 2011), and 

hedgehog (Briscoe and Therond, 2013). Complex tumor environments that govern the 

cytoskeletal dynamics, cell-matrix interactions and cell-cell junction stability play a role in 

tumor progression and metastasis (Friedl and Alexander, 2011, Quail and Joyce, 2013). 

Inflammation and hypoxia also contribute (Finger and Giaccia, 2010, Wu and Zhou, 2009).

The Cancer Genome Atlas (TCGA) project has generated a large amount of data using 

several platforms including RNA-seq and miRNA-seq applied to the same tissue specimens. 

Those data provided unprecedented information about the molecular map of tumors. Those 

and many other studies have identified driver mutations (Guan et al., 2015, Hodis et al., 

2012) and molecular pathways and provided insights into the molecular mechanisms and 

etiology of cancers (reviewed in (Vogelstein et al., 2013, Garraway and Lander, 2013)).

Earlier, we developed a stochastic search algorithm, GA/KNN (Li et al., 2001a, Li et al., 

2001b), to identify near-optimal feature sets that can separate different classes of samples 

based on either gene expression or proteomic data (Li et al., 2004). The GA/KNN method 

employs a genetic algorithm (GA) as the search engine and the k-nearest neighbors (KNN) 

algorithm as the classification tool. We showed that the GA/KNN is capable of identifying 

gene features that not only can separate different classes of samples but also may uncover 

subtypes within a class (Li et al., 2001b).

In this analysis, we aimed to identify expression signatures that can separate primary and 

metastatic skin cutaneous melanoma (SKCM) based on RNA-seq and miRNA-seq 

expression data from TCGA. Data from the two platforms were analyzed separately. Our 

initial analysis using the GA/KNN algorithm showed unacceptably high misclassification 

rates, especially for the primary tumor samples. In that analysis, we randomly divided the 

data into a training (75%) and test set (25%). The training data were used to identify gene 

signatures that could distinguish primary from metastatic tumors. When the gene signatures 

were applied to the test samples, ~42% of the primary tumors were classified as metastatic 

tumors (data not shown). Both primary and metastatic tumors share the same cell of origin – 

melanocytes; the resulting similarity may contribute to the high misclassification. Another 

possible contributor, however, is heterogeneity among the tumors: some of the primary 

SKCM tumors might have undergone progression toward metastasizing, i.e., metastatic 

progression, which might be evident at the genomic level even before frank metastases can 

be detected.

To account for the potential discordance between the underlying gene/miRNA expression 

patterns and clinical/pathological phenotype assignment, we modified our GA/KNN method 

to allow a few samples in one phenotype to be reassigned to the other, e.g., primary to 

metastatic or vice versa. Such explicit allowance for “allegiance switching” is carried out 

carefully, in that each sample of one phenotype had the same small probability of being 
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switched to the other. Classification accuracy with respect to the newly assigned phenotypes 

determined the quality of the final classification.

In accord with our previous GA/KNN, we obtained many near-optimal classifications so that 

we could obtain the proportion of runs in which a sample was assigned to the metastatic 

group. This procedure was based on the realization that for genomic data with more features 

than samples (commonly referred to as small n large p) multiple equally discriminative 

feature sets may exist. We reasoned that, if all the primary SKCM tumors resembled the 

metastatic tumors to a similar degree, those tumor samples would have the same chance of 

being assigned to the metastatic group. In contrast, we found that proportion of runs in 

which a clinically classified primary SKCM tumor was reassigned to the metastatic group 

varied widely among tumors. In comparison, nearly all the clinically classified metastatic 

tumors consistently remained in the metastatic group.

We regarded the proportion of runs where a particular SKCM tumor was assigned to the 

metastatic group as quantifying metastatic progression for that tumor. Thus, our modified 

GA/KNN algorithm provided a putative metastatic progression score for each primary or 

metastatic SKCM tumor specimen using either RNA-seq or miRNA-seq data. For primary 

tumors, these two metastatic progression scores were correlated with each other and with 

some clinical/pathologic indicators of prognosis. Analysis of the RNA-seq and miRNA-seq 

expression data identified several families of genes (such as KRT, S100 and SERPIN) and 

miRNAs (such as mir-205) whose expression levels were highly correlated with the 

predicted metastatic progression scores of primary SKCM tumors, suggesting that those 

genes/miRNA may serve as putative biomarkers for metastatic progression of primary 

SKCM tumors.

Results

For data from each platform (RNA-seq or miRNA-seq), we carried out 10,000 independent 

runs of our modified GA/KNN algorithm to obtain 10,000 near-optimal feature sets of 20 

genes and the respective 10,000 reassignments of each tumor to one of the phenotypes. 

Using results of the 10,000 runs, we computed the frequency with which each gene/miRNA 

appeared within a near-optimal feature set and the frequency with which each sample was 

assigned to the metastatic group. As demonstrated before (Li et al., 2001b), the frequencies 

with which genes were selected into near-optimal feature sets across the runs were highly 

non-uniform with some genes occurring in more than 25% of the near-optimal signatures 

(Fig. 1a & 1b). Conversely, the proportion of runs where a tumor specimen was classified as 

metastatic among the 10,000 runs was also highly non-uniform, particularly across primary 

tumors (Fig. 2a & 2b).

For the three separate runs with different minimal group sizes (70%, 80%, or 85% of the 

total number of primary tumors), both the frequencies of gene selection and proportions in 

which the primary tumors were reassigned to the metastatic group were highly correlated (ρ 

≈ 0.98, Spearman correlation) between any two minimal sizes (Supplementary Fig. S1). 

This is also true for the three separate runs with different switching chances (see Methods) 

(ρ=0.96–0.98, Spearman correlation) (Supplementary Fig. S2). The proportions increased as 
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the switching chance increased; but, the rank of the proportions remained remarkably 

consistent regardless of the choice for the minimum or switching chances.

Comparison of metastatic progression scores among RNA-seq and miRNA-seq results

Nearly all the clinically classified metastatic tumors consistently reassigned to the metastatic 

group. In contrast, the clinically classified primary SKCM tumors were often reassigned to 

the metastatic group (Fig. 2a & 2b). Those results suggest that many primary SKCM tumors 

resembled metastatic tumors to some degree in gene/miRNA expression and that the degree 

of resemblance varied across individual primary SKCM tumors. The heterogeneity in 

primary tumors may reflect that fact that some of those tumors may sustain a long period of 

growth before metastasis.

We regard the proportion of runs in which an SKCM tumor was assigned to the metastatic 

group as an index of that tumor’s metastatic progression. The metastatic progression scores 

from RNA-seq data were highly correlated with those from miRNA-seq data for primary 

tumors (ρ=0.79, Spearman correlation) (Fig. 3). This result indicates that both platforms 

tend to classify the same primary tumors as showing progression toward metastasizing.

Comparison of RNA-seq and miRNA-seq results with clinical features of tumors

We examined whether our expression-derived metastatic progression scores among primary 

tumors were associated with clinical factors plausibly indicative of tumor progression. To 

test for associations, we used the Jonckheere-Terpstra test (Hollander and Wolfe, 1973) for 

multi-category clinical factors (tumor stage, N classification, and Clark’s level), the Mann-

Whitney-Wilcoxon test for binary clinical factors (presence of ulceration) and Spearman’s 

rank correlation for continuous clinical variables (Breslow’s depth). Because many patient’s 

clinical records were incomplete, these tests are based on only a subset of the tumors; in 

fact, so few records included mitotic rate (a measure of cell proliferation in the tumor) that 

we omitted it from testing.

The predicted metastatic progression scores in primary tumors based on RNA-seq and 

miRNA-seq showed positive associations with two of five clinical prognostic factors (Table 

1, Supplementary Fig. S3–S4). We found no association of either metastatic progression 

score with presence of ulceration, with Breslow’s depth, or with tumor stage (p>0.20 in all 6 

tests). In the primary tumors, the regional lymph node classification (N classification) had 3 

levels ranging from N1 (1 regional node affected) to N3 (4 or more regional nodes affected). 

Its positive association was statistically significant with the RNA-seq-based metastatic 

progression score (p=0.03) but not with the miRNA-based score (p=0.18). Clark’s level, a 

measure of tumor invasiveness, spanned 3 levels (Level III to V) in the primary tumors. The 

association of Clark’s level with metastatic progression scores reached statistical 

significance for the miRNA-seq-based score (p=0.04) but not for the RNA-seq-based score 

(p=0.15). Though not conclusive, these results taken together suggest that the metastatic 

progression scores calculated with our modified GA/KNN algorithm reflect, however 

imperfectly, some clinically observable features of primary melanomas.
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Top-ranked genes

The 200 most frequently selected genes (more than 30 times out of 10,000) into near-

optimal discriminative signatures from RNA-seq data were largely those involved in 

ectoderm and epidermis development, epithelial and epidermal cell differentiation, 

keratinization, and regulation of inflammatory and defense response (Table 2). Those genes 

include C7, members of the KRT family, S100A family, MMP family, SERPINB family, 

IGFL family, F2RL2, LCE3D, MASP1, PAX1, and WNT2. A complete list of the top 200 

genes appears in the Supplementary Table S1. Many of those genes have been implicated in 

tumor development and progression. For example, keratins are extensively used as 

diagnostic tumor markers (Karantza, 2011). The S100 family of proteins is involved in a 

variety of biological processes such as cell proliferation, migration and invasion (Donato et 

al., 2013, Bresnick et al., 2015). In many human cancers, the expressions of many members 

of the S100 family of genes are altered (Bresnick et al., 2015). The MMP family of matrix 

metalloproteases plays a role in melanoma invasion by altering the tumor microenvironment 

through its proteolytic activities (Moro et al., 2014, Kondratiev et al., 2008). The heat map 

of the top 50 genes across the 448 samples revealed that the expression patterns of both 

primary and metastatic SKCM tumors are heterogeneous (Fig. 4).

The five most frequently selected genes were C7, KRT17, S100A7, S100A7A and STMN2. 

All except C7 were down-regulated in metastatic SKCM tumors compared to primary 

SKCM tumors. Among the 94 primary tumors, the expression levels of KRT17, S100A7 and 

S100A7A were highly inversely correlated with the tumor’s RNA-seq-based metastatic 

progression score (ρ=−0.84 to −0.86, Spearman correlation) (Fig. 5a–5e and Table 3).

KRT17 belongs to a family of genes that encode keratins, a group of tough, fibrous proteins 

that form the structural framework of certain cells. KRT17 promotes epithelial proliferation 

and tumor growth (Depianto et al., 2010). S100A7 and S100A7A are members of the S100 

family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are involved 

in the regulation of cellular processes such as cell cycle progression and differentiation 

(Gross et al., 2014). S100A7 promotes breast tumor growth and metastasis (Nasser et al., 

2012). C7 was differentially expressed between the primary and metastatic SKCM tumors 

with an overall higher expression in the metastatic tumors. C7 is a component of the 

complement system and participates in the formation of membrane attack complex. 

Evidence of complement system involvement in tumorigenesis and metastasis has begun to 

emerge. Oka et al. (Oka et al., 2001) showed that complements C6 and C7 expression levels 

were reduced in oesophageal carcinoma. Complement proteins may also play a role in 

biological processes such as apoptosis, invasion and migration (Rutkowski et al., 2010). 

Markiewski et al. (Markiewski et al., 2008) demonstrated that tumorigenesis requires 

complement activation and complement C5a signaling; and they suggested complement 

inhibition as a potential treatment for cancer. STMN2 encodes a member of the stathmin 

family of phosphoproteins involved in microtubule dynamics and signal transduction. 

Recently, Guo et al. demonstrated that high expression of phosphorylated STMN2 mediated 

by the p21-activated kinase 4 (PAK4) is highly correlated with an aggressive phenotype of 

clinical gastric cancer (Guo et al., 2014).
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Loss of expression correlated with metastatic progression score

Next, we systematically searched for genes whose expression patterns in the 94 primary 

SKCM RNASeqV2 samples were correlated with the metastatic progression scores of those 

tumor samples. We identified 186 such genes whose expression levels were highly inversely 

correlated with the score (ρ≤− 0.7, Spearman correlation) (Supplementary Table S2). No 

genes with high positive correlation were identified. The expression pattern of the top 65 

genes (ρ≤−0.8) as a function of metastatic progression score across the 94 primary SKCM 

tumors is shown in Figure 6 where loss of expression is inversely correlated with 

progression score. Gene ontology analysis showed that the top 186 genes are highly 

enriched in biological processes of ectoderm and epidermis development, keratinocyte and 

epithelial cell differentiation, and cell adhesion and defense response to a lesser degree 

(Supplementary Table S3). The level of enrichment is higher than those selected based on 

the distinction between primary and metastatic SKCM tumors (see above). Those results 

underpin our finding that those primary SKCM tumors with high metastatic progression 

scores had undergone a large scale loss of characteristic epithelial cell gene expression.

Top-ranked miRNAs

Mir-205 was the most frequently selected miRNAs occurring in nearly all of the 10,000 

feature sets (Fig. 1b). It was nearly 8 times more frequently selected than the next top 

miRNA. The other top-ranked miRNAs included mir-539, mir-509, and mir-514. The 50 

top-ranked miRNAs are listed in Supplementary Table S4.

Mir-205 was down-regulated in metastatic SKCM tumors compared to primary SKCM 

tumors (Fig. 5f) consistent with reports in the literature (Xu et al., 2012, Gregory et al., 

2008, Dar et al., 2011). Among primary tumors, the miRNA-seq-based metastatic 

progression score and the mir-205 expression were strongly inversely correlated (ρ=−0.89, 

Spearman correlation) (Fig. 5f). Conversely, among the metastatic tumors, the same 

correlation was also relatively high (ρ=−0.71). These results suggest that the mir-205 

expression level might be indicative of the metastatic progression of SKCM tumors.

Mir-205, a tumor suppressor, is significantly down-regulated in melanoma tumors and cell 

lines (Xu et al., 2012, Gregory et al., 2008, Dar et al., 2011). Gregory et al. (Gregory et al., 

2008) showed that mir-205 and the mir-200 family of miRNAs are significantly down-

regulated in cells that had undergone EMT, an essential early step in tumor metastasis and 

suggested that those miRNAs are involved in establishing epithelial cell lineages during 

development. Dar et al. (Dar et al., 2011) demonstrated that mir-205 suppresses melanoma 

cell proliferation and induces senescence via regulation of E2F1 protein. Mir-205 has been 

shown to play a role in cell adhesion (Li et al., 2013). Mir-205 has also been implicated in 

breast cancer (Piovan et al., 2012), prostate cancer (Cai et al., 2013, Srivastava et al., 2013, 

Pennati et al., 2014), esophageal squamous cell carcinoma (Matsushima et al., 2011), non-

small cell lung cancer (Larzabal et al., 2014) and many other malignancies (Wang et al., 

2013). Another microRNA, mir-126, has also been implicated in the metastatic progression 

(Halberg et al., 2012).
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Discussion

Metastatic melanoma is the most aggressive form of skin cancer with a median survival of 

around one year. Both genetics (Hodis et al., 2012) and environmental exposures are the 

major contributing factors in developing malignant melanoma (reviewed in (Miller and 

Mihm, 2006, Bandarchi et al., 2010, Damsky et al., 2011)). Gene and environment 

interaction appears to augment disease progression (Viros et al., 2014). Studies have 

identified several genes and gene pathways that play a role in melanoma etiology. 

Understanding the molecular mechanism by which melanoma progresses is critical for 

therapeutic intervention. Reliable biomarkers that are indicative of metastatic progression of 

melanoma could be clinically beneficial.

Advances in sequencing technologies have led to the generation of many large-scale 

genomic data sets for multiple tumor types from TCGA. Integrated analyses of these high-

dimensional data (Omberg et al., 2013, Cancer Genome Atlas Research et al., 2013) have 

facilitated the generation of novel hypotheses and led to new discoveries. Here we have 

developed an iterative stochastic search algorithm that systematically mines the gene 

expression and miRNA expression data for 456 melanoma specimens from TCGA to 

uncover potential biomarkers indicative of metastatic progression in melanoma. Unlike 

conventional methods that take the clinical classification as fixed when seeking gene 

signatures that distinguish primary from metastatic SKCM tumors, our method is rooted in 

the clinical classification but allows for switching between groups when a specimen is 

clearly discordant with other group members based on its expression profile. This idea is 

built upon the observation that the primary and metastatic tumors were difficult to separate 

using expression data and the belief that clinical pathology and the underlying gene 

expression of primary SKCM tumors in particular may not always be concordant.

The switch between groups was carried out carefully in that the group assignment was 

largely based on the clinical classification and that each sample in the same clinical group 

was given the same chance of switching groups. The quality of the grouping was determined 

by the number of specimens correctly classified. When this procedure was repeated 

independently multiple times, the frequency with which each sample was assigned to the 

metastatic group could be analyzed. We showed that both gene selection and specimen 

assignment were highly non-uniform. Primary tumors varied widely in their tendency to be 

reassigned to the metastatic group whereas the metastatic tumors largely remained in the 

metastatic group. These results demonstrate that our method is capable of uncovering 

intrinsic differences among primary tumors and assessing their similarity to the metastatic 

tumors at the gene and miRNA expression levels.

The top-ranked genes are those that best discriminate primary from metastatic SKCM 

tumors with allegiance switching. Gene ontology analysis showed that the 200 most 

frequently selected genes are largely enriched in biological processes such as ectoderm and 

epidermis development, epithelial cell and keratinocyte differentiation, organismal 

development, and immune response. Genes implicated in cell adhesion (AJAP1, AOC3, 

CD36, CLCA2, COL8A1, COL29A1, COMP, CRNN, CTNNA2, DSG1, DSG3, KAL1, 

LYVE1, MUC4, and SIGLEC11), cell matrix degradation (MMP1, MMP3, MMP9, and 
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MMP10), and the WNT receptor signaling pathway (WNT2, RSPO4, SFRP2, and SFRP4) 

were also among the top 200. These results suggest that the expression of genes involved in 

diverse biological processes may be altered between the primary and metastatic SKCM 

tumors. Although we cannot totally rule out the possibility that the signatures we identified 

might reflect some level of stromal tissue contamination, we believe that such contamination 

is unlikely to explain the observed degree of heterogeneity in gene expression among the 94 

primary tumors because contamination, if present, should be similar among the 94 primary 

samples.

Our comparisons of metastatic progression scores based on gene expression data of the 

primary SKCM tumors with clinical prognostic factors indicate that the progression scores 

are significantly associated with the patient’s clinical staging of the lymph nodes (N 

classification). The top-ranked genes in the KRT family (e.g., KRT17, KRT6B, and KRT6C), 

S100 family (S100A7, S100A7A, and S100A8), SERPINB family (SERPINB4 and 

SERPINB3), and SPRR family (SPRR1B, SPRR2G, and SPRR3) (not all data shown) were 

not only differentially expressed between primary and metastatic SKCM tumors but also 

exhibited expression levels in primary tumors that were correlated with the predicted 

metastatic progression scores of the tumors. Loss of expression of many of those 

characteristic epithelial lineage genes in primary SKCM tumor samples was highly 

correlated with metastatic progression scores of these tumors. Those results suggest that 

those genes might serve as putative biomarkers for metastatic progression of primary SKCM 

tumors.

Analysis of the miRNA expression data identified mir-205 as the top-ranked miRNA for 

distinguishing primary from metastatic SKCM tumors. Mir-205 expression level was also 

highly inversely correlated with the metastatic progression scores based on miRNA 

expression data. In primary SKCM tumors, these metastatic progression scores were 

significantly associated with the Clark’s level, a measure of histologic invasion of melanoma 

in the skin and subcutis.

The paucity of statistically significant associations between our metastatic progression score 

and the clinical characteristics forces us to be more circumspect in our conclusions than we 

would have been had all the associations been strong. In only a few instances did the 

observed associations reach statistical significance. We would point out, however, that the 

failure to reach statistical significance is not necessarily evidence that an association is 

absent. Fewer than 100 primary tumor samples were available (94 and 98 for RNA-seq and 

miRNA-seq, respectively) but even fewer had clinical data available (between 50 and 71, 

depending on clinical feature and genomic platform). For ulceration, the median metastatic 

progression score was indeed larger for tumors that exhibited ulceration than for those that 

did not, but variability in metastatic progression score was large for both sets of tumors 

(Supplementary Figures S3 and S4). The same kind of observation can be made for other 

categorical clinical characteristics. Surprisingly, Breslow’s depth showed perhaps the least 

evidence for association with our metastatic progression score of all the clinical 

characteristics that we examined (Supplementary Figures S3 and S4). A potential 

contributor is the fact that most primary tumors in the data set had relatively high values of 

Breslow’s depth – 75% were larger than 5 mm. We suspect that collection of primary 
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SKCM tumors in the TCGA database are skewed toward larger more advanced tumors (for 

example, all but one primary tumor with clinical data were tumor stage II or higher; all 

primary tumors with clinical data had Clark’s level III or higher; similarly, more than 80% 

of primary tumors with clinical data showed ulceration). The dearth of early/low stage 

tumors with clinical characteristics in the TCGA data contributes to difficulties in detecting 

associations and raises issues regarding how conclusions might change if the samples 

spanned the entire clinical spectrum. Consequently, interpretation of our detailed results 

must remain tentative. Nevertheless, the fact that the genomic features that we identified as 

important for metastasis have also been identified by others supports the conclusion that our 

proposed algorithm shows promise as a way to assess metastatic potential based on 

genomics alone and to uncover genes related to metastasis.

Methods

RNA-seq/miRNA-seq data

We downloaded 448 UNC RNASeqV2 and 449 BCGSC miRNASeq SKCM level 3 

expression data from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga). The numbers 

of primary and metastatic specimens are listed in Table 4. We log2-transformed the 

normalized reads count (per million reads mapped) for both RNA-seq and miRNA-seq data 

(all values less than 1 were assigned to 1 before transformation) but carried out no further 

normalization.

Clinical data

We supported our contention that our genomic-derived metastatic progression scores had 

potential clinical relevance using TCGA clinical data, which provide information on 

characteristics of patients (e.g., demographics, vital status at time of report, treatment 

regimens, and clinical follow-up) and of their tumors (e.g., disease-specific diagnostic/

prognostic factors). TCGA extracts melanoma clinical data from two forms that were 

completed by the participant or participant’s physician: Melanoma Enrollment Form and 

Melanoma Follow-up Form. We were particularly interested in prognostic factors associated 

with the primary tumors: tumor stage, regional lymph node stage (N classification), level of 

invasion (Clark’s level), cell proliferation (mitotic rate), presence of ulceration, and tumor 

thickness (Breslow’s depth). We downloaded the clinical data from https://tcga-

data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/skcm/bcr/biotab/clin/. 

The Biospecimen Core Resource of TCGA uploads new files as new clinical data become 

available. At the time of our analysis, of the primary tumor samples available (94 for RNA-

seq and 98 for miRNA-seq), clinical information was available for only between 50 and 71 

of them, depending on the clinical feature and the genomic platform.

Modified GA/KNN algorithm

To address the possibility that the clinical classification might only imperfectly be reflected 

in the underlying genomic differences, we devised a modified GA/KNN algorithm that 

allowed a small probability for tumors to randomly “switch allegiance”. Our modified 

GA/KNN algorithm, based on the original GA/KNN algorithm (Li et al., 2001a, Li et al., 

2001b), has as its goal to search simultaneously for near-optimal discriminative features 
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(genes/miRNA in this case) and for a near-optimal sample partitioning (which samples 

belong to metastatic tumor group and which to primary tumor group). The original 

GA/KNN algorithm searches for near-optimal feature sets that can separate different classes 

of samples based on fixed sample class labels; whereas the modified GA/KNN performs the 

same task while allowing a few samples to switch classes.

This “allegiance switching” was carried out carefully, in that each sample of one phenotype 

had the same small probability of being switched to the other. At the beginning of each 

GA/KNN run, the clinically classified metastatic tumors were assigned to the metastatic 

group whereas the clinically classified primary tumor samples were assigned to the primary 

group. At each “generation” of the GA/KNN run, we gave each of the primary tumors a 

small but equal chance (0.001) to be reassigned to the metastatic group. Similarly, we gave 

each of the metastatic tumors an equal but smaller chance (0.0001) to be reassigned to the 

primary group. In practice, for each sample in a group, we generated a random number 

between 0 and 1. If the random number was smaller than the chance of switching for the 

group, the sample was reassigned to the other group. We gave the primary tumor a bigger 

chance of switching to mimic the actual transition – primary tumors may eventually 

metastasize but metastatic tumors do not revert to primary. We could restrict all metastatic 

tumors to the metastatic group, but reasoned that our alternative would provide the 

flexibility to account for potential misclassifications among those tumors. Furthermore, we 

examined how changing the chances of switching might affect results using two additional 

pairs of probabilities (0.005 for primary and 0.0005 for metastatic and 0.01 for primary and 

0.001 for metastatic) while fixing the minimum group size (see below) to 80%.

We also required the number of samples in each group (after switching) to exceed a 

minimum at each “generation.” The minimal group size was imposed to maintain a minimal 

number of samples in a group (primary or metastatic) after switching. Since there were 94 

primary SKCM tumors, we experimented with minimums being 75%, 80% and 85%, 

respectively, of the primary tumor total while keeping all other parameters fixed. These 

percentages correspond to 70, 75, or 80 tumors for RNA-seq and 75, 78, or 83 tumors for 

miRNA-seq.

In a typical GA, the “chromosomes” contain candidate solutions, e.g., genes in our previous 

GA/KNN algorithm. In the modified GA/KNN algorithm, chromosomes are paired, one for 

genes (feature chromosome) and one for sample class labels (sample chromosome). The 

paired chromosomes evolve together through the genetic algorithm. The near-optimality of 

switching is determined by the genetic algorithm. If such a switch improved the 

classification, it would be tend to be maintained by the genetic algorithm; otherwise, it 

would tend to switch back. The final reassignment with the highest classification accuracy is 

recorded. This winning (near-optimal) chromosome pair at the final generation contains the 

gene set in the current “population” that gives best classification of samples based on the 

sample grouping in the corresponding sample chromosome, which contains labels after 

allegiance switching. The gene feature set was initially randomly selected from all genes 

whereas the sample labels were initially based on the clinical classification as mentioned 

above. The chromosome size for the gene feature set was fixed at 20 as before (Li et al., 

2001b) whereas the chromosome size for the sample label was the number of samples (448 
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for the RNA-seq data). Mutation operations were applied to both gene features as before (Li 

et al., 2001b) and sample labels as indicated above. Because the modified GA/KNN 

searches both feature and sample space, both the “population” size and the number of 

“generations” were set large (300 and 1000, respectively).

This entire algorithm was repeated many times (10,000, in this case) independently. We 

counted the proportion of times a particular melanoma tumor was assigned to the metastatic 

group and regarded that proportion as quantifying metastatic progression for that tumor.

Gene ontology analysis was carried out using the online DAVID Bioinformatics Resources 

6.7 (Huang da et al., 2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Despite the overall resemblance between primary and metastatic melanomas in gene 

expression, we were able to assess a putative metastatic progression status for each 

tumor. We showed that loss of expression of characteristic epithelial cell lineage genes 

was highly correlated with our predicted metastatic progression scores for the primary 

tumors and the scores were significantly associated with clinical prognostic factors 

(staging of lymph nodes for RNA-seq data and Clark’s level for miRNA-seq data). Our 

unique approach is promising step toward allowing clinicians to assess the likelihood of 

metastatic progression of primary melanoma based on gene expression measurements.
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Figure 1. 
Frequencies with which the genes (A) and miRNA (B) were selected into near-optimal 

feature sets among the 10,000 runs based on RNA-seq gene expression data. Each run 

selected 20 unique near-optimal genes. The frequency was computed based on how often a 

gene occurred in the 10,000 sets of 20 genes.
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Figure 2. 
Predicted metastatic progression scores for all samples based on RNA-seq (A) and miRNA 

(B) expression data based on 10,000 runs. At the end of each run, we monitored which 

samples were assigned to the primary tumor group and which samples were assigned to the 

metastatic tumor group. The predicted metastatic progression scores were the frequencies 

with which each tumor assigned to the metastatic group.
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Figure 3. 
Correlation between metastatic progression scores obtained from RNA-seq data and 

miRNA-seq data for 88 primary tumors. For each platform, 10,000 runs were carried out and 

the metastatic progression scores were obtained based on the 10,000 runs as shown in Figure 

2.
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Figure 4. 
Heat map display of the expression patterns of the top 50 genes across (A) the 94 primary 

and (B) 448 metastatic SKCM tumors. Each row (gene) was centered by the mean 

expression value across all samples. A hierarchical clustering analysis was carried out for 

both samples and genes. At the top of the heat map, the metastatic samples were colored in 

red whereas the primary tumor samples were colored in blue with the darkness 

corresponding to their metastatic progression scores.
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Figure 5. 
Box plots comparing expression levels in primary and metastatic tumors (left) and 

correlation between expression and metastatic progression score for clinically classified 

primary SKCM tumors (right). The gene expression levels were log2 transformed. C7 (A), 

KRT17 (B), S100A7 (C), S100A7A (D), STMN2 (E), and mir-205 (F).
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Figure 6. 
Heat map display of the expression patterns of the top 65 genes (ρ<−0.7) with the highest 

negative correlation with metastatic progression score across the 94 primary SKCM tumors. 

No genes with high positive correlation (ρ>0.7) were found. The genes were arranged by the 

absolute correlation coefficient with the highest being at the top. For each gene, the 

Spearman correlation was computed by matching the expression levels of the gene in the 94 

primary tumor samples and the predicted metastatic progression scores for the 94 primary 

tumors. The gene expression level was colored in red and yellow with red being the highest 

expression and yellow the lowest expression. The triangular bar at the top of the figure was 

drawn proportionally to the progression score. The primary tumor samples were arranged 

with the lowest score on the left and highest on the right. It can be seen that, for each gene, 

the tumor’s metastatic progression score is negatively correlated with the gene’s expression 

level.
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Table 1

Association of clinical prognostic factors with metastatic progression scores¶

Clinical
RNA-seq data miRNA-seq data

No. samples with clinical data p-value No. samples with clinical data p-value

Tumor stage 68 0.65 73 0.22

N classification 58 0.03 64 0.18

Clark’s level 50 0.15 51 0.04

Ulceration 68 0.87 71 0.35

Breslow’s depth 65 0.66 67 0.69

¶
The number of samples on each clinical factor is less than the total number of tumors analyzed using the platform.
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Table 2

Significant GO terms (GOTERM_BP_ALL) for the top 200 genes from RNA-seq data

GO term Number of genes Multiple testing adjusted p-value

ectoderm development 20 9.6E-10

epidermis development 18 1.4E-8

developmental process 64 1.5E-4

epithelial cell differentiation 12 1.2E-4

keratinocyte differentiation 9 1.7E-4

epidermal cell differentiation 9 2.8E-4

tissue development 23 8.2E-4

multicellular organismal development 57 8.3E-4

multicellular organismal process 75 9.3E-4

anatomical structure development 52 8.9E-4

cell differentiation 38 2.0E-3

response to external stimulus 26 2.8E-3

immune response 22 2.6E-3

organ development 39 2.5E-3

immune system process 27 3.4E-3
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Table 3

Correlation coefficients between computed metastatic progression score and gene expression level for the top 

5 genes

Top Gene 94 primary tumors 448 metastatic tumors

C7 0.22 0.16

KRT17 −0.92 −0.51

S100A7 −0.95 −0.70

S100A7A −0.91 −0.75

STMN2 −0.28 −0.10

Mir-205 −0.89 −0.71
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Table 4

Number of available specimens for each tumor class and combination of genomic measurement platforms

Number of specimens Analysis platform

Primary Metastatic Total RNA-seq miRNA-seq

88 338 426 ✓ ✓

6 16 22 ✓

10 13 23 ✓

Platform-specific primary 94 98

Platform-specific metastatic 354 351

Platform-specific overall 448 449
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