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Abstract

We are living exciting times in the field of beta cell replacement therapies for the treatment of 

diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel 

approaches are needed to make cell-based therapies more reproducible and leading to long-lasting 

success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain 

this goal, by targeting immunity, promoting engraftment and sustained functional potency. We 

discuss herein the emerging technologies applied to beta cell replacement therapies.
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1. Introduction

1.1. Diabetes Mellitus

Diabetes is a metabolic disorder characterized by elevated glucose levels in the blood 

(hyperglycemia). Type 1 diabetes mellitus (T1DM) is caused by an autoimmune-mediated 

destruction of the insulin-producing β-cells in the pancreatic islets [1]. Type 2 diabetes 
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mellitus (T2DM) is associated with dyslipidemia, obesity, initial hyperinsulinemia and 

insulin resistance in target tissues (fat, liver and muscle), resulting in progressive islet cell 

dysfunction and ultimately in insulinopenia and need for exogenous insulin therapy [2]. 

Glycemic metabolism can be controlled, at least to a certain extent, by daily administration 

of exogenous insulin, frequent monitoring of blood sugar levels combined with diet and 

exercise. Achieving tight glycemic control is desirable in patients with diabetes [3]. 

Unfortunately, even with a careful insulin treatment based on the use of improved insulin 

formulations, infusion systems and continuous glucose monitoring systems, daily glycemic 

excursions are difficult to keep tightly in the normal range. Thus, chronic and degenerative 

complications, such as retinopathy, nephropathy, neuropathy, and atherosclerosis, still occur 

in a considerable fraction of patients with diabetes, contributing to the poor quality of life, 

reduced life expectancy and to the elevated medical costs associated with diabetes.

1.2. Restoration of Physiologic Metabolic Control

Restoration of physiologic glucose metabolic control is highly desirable in patients with 

diabetes. Replacement of islet β-cells can be performed either by whole pancreas or isolated 

pancreatic islet transplantation. The experience of the last three decades supports the 

positive impact on metabolic control of the biologic replacement of β-cells via allogeneic 

islet and whole pancreas transplantation. Notably, islet transplantation requires less risky 

implantation approaches than invasive surgery. Moreover, the possibility of engineering the 

islet transplant to promote its engraftment and long-term function makes of islet 

transplantation an appealing therapeutic approach to restore β-cell function.

1.2.1. Islet Transplantation—The islet transplantation procedure is currently performed 

with a minimally invasive approach consisting of a percutaneous cannulation of the portal 

vein, through which islets are infused into the recipient’s liver [4–7]. This technique has 

been utilized since the 1970’s mainly to prevent or ameliorate metabolic control in patients 

with chronic pancreatitis requiring pancreatectomy (autologous islet transplantation) [8,9], 

and to restore metabolic control in patients with unstable T1DM associated with frequent 

severe hypoglycemic episodes [7,10]. Recently, autologous islet transplantation has also 

been proposed for patients with resectable neoplastic lesions of the pancreas [11–14]. 

Clinical islet allogeneic transplantation trials performed in patients with brittle T1DM 

demonstrated restoration of metabolic control with complete independence from (when 

adequate islets are implanted) or dramatic reduction of exogenous insulin requirements (i.e., 

transplantation of suboptimal islet numbers or development of graft dysfunction), as well as 

prevention of severe hypoglycemic episodes paralleled by improved quality of life 

[10,15,16]. Interestingly, preliminary data suggest improvement of diabetes complications 

following islet transplantation [10,17–19].

1.2.2. Current Challenges of Islet Transplantation—Even though islet 

transplantation has become a promising clinical therapeutic option in recent years, several 

challenges currently limit its application to the most severe cases of unstable diabetes 

characterized by hypoglycemia unawareness and frequent debilitating, severe hypoglycemia, 

at times life-threatening. Amongst the key hurdles recognized to the widespread application 

of islet transplantation is the variable long-term success of intra-hepatic implantation, which 
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may result from a combination of variables likely secondary to lack of vasculature in the 

early peri-transplant period and to nonspecific inflammation triggered by islet isolation and 

transplantation procedures, collectively resulting in reduced islet engraftment (β-cell death 

and functional impairment), as well as in triggering of adaptive immunity affecting graft 

survival.

Cadaveric human donor pancreata represent an unsustainable source of transplantable islets 
since variables related to donor (i.e., age, sex, cause of death and duration of intensive care) 

and organ characteristics (i.e., warm and cold ischemia, preservation technique utilized, 

presence of intra-parenchymal fat infiltration, etc.), islet isolation (i.e., enzyme and 

purification methods) and culture conditions may yield quite disparate results in terms of 

islet integrity, numbers, potency and immunogenicity, all ultimately determining graft 

outcome after transplantation [20].

Development of reliable tests and algorithms able to predict the success of islet isolation and 

transplantation based on donor variables [20–22] or final cell product assessment [23–31] 

may be of assistance in achieving higher success rates after islet transplantation more 

reproducibly. However, even by refining and expanding donor selection criteria (i.e., use of 

organ donation after cardiac arrest and marginal donors) and improving the efficiency of 

organ recovery, the number of pancreata suitable for transplant may fall short of the needs of 

the large patient population potentially benefiting of a biologic replacement of β-cell 

function.

Another challenge is the immunosuppression utilized in islet transplant recipients, which 

relies on agents that may impair tissue remodeling and neovascularization (e.g., mTOR 

inhibitors) as well as affect β-cell function over time (e.g., calcineurin inhibitors, amongst 

other). Moreover, the immunosuppression required to prevent rejection may not adequately 

target autoreactive immune responses, in turn allowing progressive loss of graft function to 

autoimmunity recurrence in patients with T1DM. Development of novel approaches to 

promote and enhance islet engraftment and long-term function, as well as to modulate 

immunity are needed to make islet transplantation a more reproducible therapeutic option in 

the near future.

1.3. Alternative Sources for Transplantable Islet Cells

Undeniably, there is an urgent need for unlimited source of transplantable ‘islets’, which 

may come from xenogeneic donors (e.g., porcine islet cells), conversion of adult or 

embryonic stem cells into endocrine pancreatic cells. Islet transplantation of islets obtained 

from xenogeneic donors is appealing. Porcine islets may represent a readily available source, 

and pilot human clinical trials have been attempted, with demonstration of transient function 

of implanted islets without adventitious effects related to zoonotic diseases (i.e., porcine 

endogenous retrovirus infections, PERV) [32–35]. Moreover, remarkable progress has been 

documented with the development of specific pathogen-free herds, as well as of genetically 

modified strains that aim at overcoming the immunological barriers [36,37], which may 

enable achieving long-term restoration of metabolic control in combination of safe 

immunotherapies and bioengineering of the transplant microenvironment (i.e., 

immunoisolation).
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Embryonic stem cells (ESCs) are a promising alternative cell source for treating diabetes. 

They are pluripotent stem cells capable of unlimited replicative capacity and the potential to 

differentiate into different cell phenotypes. Differentiation of insulin-producing cells from 

mouse and human ESCs has been demonstrated. A milestone in the field was the work by 

D’Amour et al. demonstrating the differentiation of human ESCs into endocrine cells able to 

produce insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin using a five step 

protocol mimicking the pancreatic development in vitro through a series of endoderm 

intermediates [38]. However, the release of C-peptide by these cells in response to glucose 

in vitro was marginal. Interestingly, these immature cells can subsequently differentiate in 

vivo into endocrine cells capable to support metabolic function in chemically-induced 

diabetic mice [39]. These studies have stimulated the field and led to a phase 1/2 clinical 

trial in patients with T1DM currently underway (Table 1).

Conversion of pancreatic exocrine cells into insulin-producing cells in adult mouse 

pancreas has been achieved by specific combination of transcription factors (namely, Ngn3, 

Pdx1, and Mafa) [40]. Moreover, pancreatic acinar cells can be converted into somatostatin 

and glucagon cells by Ngn3 and Ngn3+Mafa respectively [41]. It has also been 

demonstrated that pancreatic ductal structure may contain precursor cells that can yield to 

insulin-producing cells [42–45]. Collectively, these studies point to the potential of 

developing protocols for the large scale production of pancreatic endocrine cells for 

transplantation in vitro from tissue that is currently considered waste product of islet 

isolation processing. Additionally, it may lead to optimization of approaches to promote 

endocrine cell differentiation and/or expansion in vivo targeting impure (e.g., containing 

acinar and ductal structures) islet preparations transplanted in engineered sites that can be 

targeted selectively with the appropriate treatment for controlled (time and amounts) 

delivery.

1.4. Cell-Based Immunomodulation

Immunity represents one of the critical hurdles for islet grafts, particularly since their fate 

depends on the combination of allogeneic and autoreactive immune responses in patients 

with T1DM [46,47]. Restoration of self-tolerance and/or donor-specific hyporesponsiveness/

tolerance is the desirable goal of diabetes and transplant immunobiology. Different 

approaches have been proposed that may be of assistance in achieving this ambitious 

objective, likely by combining immunotherapy and cell-based treatments. A growing body 

of literature supports the potential beneficial impact of the use of hematopoietic stem cells 

(HSC) and of regulatory immune cell subsets (i.e., T regulatory cells, Tregs; Mesenchymal 

Stromal Cells, MSC; Dendritic Cells, DC; amongst others) to achieve such goal in patients 

with T1D [48–52] and in organ transplant recipients [53–60]. In the context of clinical islet 

transplantation, the use of donor-specific HSC was shown to associate with the achievement 

of graft function and transient hematopoietic chimerism, though the discontinuation of 

immunosuppression by protocol (in the absence of tests predictive of immunomodulation) 

invariably resulted in loss of graft function [4,54,61]. Combination of islets with MSC 

treatment was shown to improve islet engraftment in rodents [62–65] and large animal 

models [66], and is currently under evaluation in the clinical settings (Table 1).
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The initial reports on the use of cell-based immunotherapies are quite encouraging, though 

current challenges include the lack of reliable immune markers predictive of patient 

response, as well as the fact that different trials rely on quite different protocols for cell 

isolation and concomitant immunotherapy utilized, rendering cumbersome the comparison 

of outcomes. A coordinated effort amongst Centers is desirable, along with the use of 

standardized approaches and readouts is paramount towards the development of successful 

cell-based therapies for the treatment of diabetes and their widespread clinical application.

1.5. Bioengineering Approaches for Islet Grafts

The critical importance of creating a microenvironment suitable for islet cell has prompted 

many tissue engineering approaches for the development of a bioartificial pancreas, which 

can ensure an optimal site of implantation to favor both engraftment and long-term function 

of islet cells. Ultimate goal of engineering the transplant microenvironment is to enhance 

islet cell viability, to promote prompt neo-angiogenesis, and to modulate immunity.

1.5.1. Extra-Hepatic Islet Transplantation—The choice of the site of implant for islet 

grafts may ultimately influence clinical outcomes. For the last three decades, clinical islet 

transplantation has relied on their embolization in the hepatic sinusoids of the portal system 

(intra-hepatic islet transplantation) [67]. It has been recognized that the liver 

microenvironment may not be ideal for islet cells. The portal system is exposed to high 

concentrations of immunosuppressive drug levels that may result in impaired islet cell 

potency [68]. Moreover, glycemic levels are higher than in the liver than in the pancreas, 

which may contribute to increase endocrine cell basal activity leading to exhaustion. Contact 

of islets with blood induces an instant blood-mediated inflammatory reaction (IBMIR) that 

results from the activation of coagulation and complement cascades, neutrophils and 

leukocyte recruitment [69,70] that contributes to amplifying the activation of transplant 

microenvironment via endothelial cell and macrophage activation associated with islet 

embolization in the hepatic sinusoids [71] and hypoxia negatively affecting islet cell 

viability and engraftment. Notably, prompt neovascularization of islet grafts is essential to 

achieve functional competence after transplantation. The isolation process results in damage 

of intrainsular vascular structures [72] that may contribute to immunogenicity and delayed 

neovascularization of transplanted islets, which may require weeks to be fully re-established 

[73,74]. It is conceivable also that the microvascular complications of diabetes may altered 

endothelial repair capabilities in the transplant microenvironment [75]. Progressive loss of 

functional islet mass has been reported also in large animal models of intrahepatic 

autologous islet transplantation in the absence of chronic rejection and autoimmunity 

recurrence or toxicity of immunosuppressive drugs [76], further supporting the need for the 

development of alternative, extra-hepatic sites for islet grafts.

An ideal site for islet transplantation may include: sufficient capacity to host large volumes 

of tissue containing impure (non-endocrine) fractions, portal drainage, ease of access using 

minimally invasive techniques, potential of microenvironment manipulation (tissue 

engineering), and accessible for noninvasive imaging and biopsy [77]. In recent years, 

different studies have explored extrahepatic implantation sites for islet cells in experimental 

models [77,78]. Implantation sites such as the omentum may meet the requirements of ideal 
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portal venous drainage and space pliable for tissue engineering approaches [79–84]. Also, 

the intestinal subserosa [85–87], excluded vascular structures [88], amongst other sites, were 

shown to represent an interesting implantation site for islet grafts (Figure 1).

Evaluation of the feasibility and efficacy of extrahepatic sites in the clinical setting is also 

underway. Allogeneic and xenogeneic islets incorporated in immunoisolating microcapsules 

have been implanted in the peritoneal cavity of patients with diabetes, but the achievement 

of sustained function has been difficult to attain so far in the clinical settings, which may 

require better characterization of the suitability of the site for islet cells [89,90]. The 

subcutaneous space is easily accessible with minimally invasive surgery, and initial attempts 

with implantable devices have been reported [34,91,92]. Engraftment and functional 

competence of autologous islets implanted in the intramuscular site (forearm) has also been 

reported in human subjects and may represent a viable approach [93–96]. More recently, the 

feasibility of intra-bone marrow islet transplantation has been demonstrated in a pilot series 

of human islet autografts in patients with contraindication for intrahepatic route, in which 

successful engraftment without adverse events were reported [77,97]. Collectively, it is 

likely that future clinical trials will increasingly rely on extrahepatic implantation sites to 

enhance the long-term success of β-cell replacement therapies (Table 1).

1.5.2. Scaffolds—Given the high metabolic demand of islets, it would be desirable to 

design a device that allows for both intra-device vascularization and to achieve spatial 

distribution of the cells within the device to avoid clumping and generation of hypoxic 

conditions. The use of a biomaterial to spatially distribute the cells would allow for a more 

desirable three-dimensional arrangement of the cells and result in a more efficient delivery 

of nutrients. Moreover, devices may be engineered to incorporate drugs, generate oxygen 

and several biomaterials have been used, both for in-vitro and in-vivo studies, to generate 

macroporous scaffolds, including collagen, chitosan, hydroxyapatite, poly(α- hydroxy 

esters) like poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and poly(lacticco- glycolic 

acid) (PLGA).

In general, natural materials have the benefit of high cellular recognition and tissue 

compatibility, but are costly, variable, biodegradable, and require high levels of purification 

[98]. Synthetic materials, on the other hand, can be fabricated with uniformity between 

batches, precise control over rates of degradation, and modified chemical properties.

Progressive nonimmunologic loss of functioning islets may be related to the lack of a 

functional islet microenvironment after isolation from the whole pancreas. Developing 

technologies that provide a better microenvironment for islet grafts may represent a viable 

strategy to extend islet longevity as well as reduce the islet mass required to achieve insulin 

independence [99]. Problems associated with the hepatic transplantation of islets may 

preclude the broad application of islet transplantation. Thus, new approaches to the 

extrahepatic transplantation of islets using a synthetic biodegradable polymer scaffold have 

been developed.

Several basic requirements for cell transplantation on macro- and micro-porous scaffolds 

have been identified, including biocompatibility, a high surface area/volume ratio with 
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sufficient mechanical integrity, and a suitable environment for new tissue formation that can 

integrate with the surrounding tissue [100]. Porous polymer-based scaffolds are and not 

intended to serve as an immune barrier, like macro- and micro-encapsulation. Rather, they 

were specifically designed to provide a solid support for islets that would allow cellular 

infiltration and formation of a vascular network within the transplant graft. Scaffolds with a 

high surface area/volume ratio not only have sufficient surface area to support cell adhesion, 

but can also support nutrient transport by diffusion from surrounding tissue. Moreover, they 

can be fabricated from material that has sufficient mechanical properties to resist collapse 

while maintaining an interconnected pore structure that allows for cell infiltration from the 

surrounding tissue. This is important not only for integration of the engineered tissue with 

the host, but also for development of a vascular network throughout the tissue to supply the 

needed metabolites once the transplanted cells are engrafted.

Reversal of diabetes in diabetic rodents was shown after seeding islets onto a highly porous 

Poly(D,L14 lactide-co-glycolide) (PLG) scaffold implanted in the intraperitoneal fat [101]. 

Similar results were obtained using porous scaffolds fabricated in biocompatible 

poly(dimethylsiloxane) (PDMS) that supported adequate neovascularization and functional 

potency of syngeneic islets in rodents [84,102]. These findings indicate that a synthetic 

polymer scaffold can serve as a platform for islet transplantation. Notably, the scaffold may 

also be useful to deliver bioactive molecules such as oxygen, trophic factors (i.e., 

proangiogenic molecules) or immunomodulatory agents to modify the microenvironment 

surrounding the transplanted islets and, thus, enhance islet survival and function [102–104].

Synthetic biodegradable polymers have been extensively utilized in tissue engineering [100], 

as their degradation kinetics and mechanical properties can be tailored to meet the needs of a 

specific application [105]. Successful engraftment of islets loaded on a synthetic (VICRYL 

(Polyglactin 910) and PDS (poly-P-Dioxanon) biodegradable scaffold implanted an omental 

pouch of diabetic monkeys supported the feasibility in preclinical settings [81].

In recent years, there has been a growing interest in developing biocompatible scaffolds 

containing extracellular matrix (ECM) components to improve islet culture and 

transplantation [106]. Cultured on collagen, fibrin or surrogate matrices, islets show a 

decrease in apoptosis, better survival in culture and improved and prolonged function in 

vitro [107]. A key factor in choosing this compound is that fibrin is already available as a 

clinical grade tissue sealant. Alternatively, sufficient quantities of fibrinogen-rich plasma 

can potentially be obtained from islet recipients prior to transplantation [82]. In addition, 

fibrin scaffolds have been shown to be beneficial for islets in culture: they increase human 

islet cell mass in vitro [108], stimulate endothelial cell proliferation [109], and have been 

used successfully in experimental islet transplantation [110]. An additional and appealing 

source for extracellular matrices applicable to islet grafts are decellularized pancreata 

(human or from other species) that may be used as 3-D structures for implantation or as 

lyophilized matrices for co-implantation with islet cells [111– 113].

1.5.3. Macrodevices—Macrodevices may be designed to support engraftment and 

physical containment of the cellular grafts. Prevascularization of the islet implantation site 

may be achieved by using spacers (e.g., Polytetrafluoroethylene, PTFE) containing or not 
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pro-angiogenic factors to prime the environment and that are replaced before islet 

transplantation. While this approach does not confer immune isolation, it may help 

mitigating the local inflammation and allow adequate engraftment of the cellular implants 

[34,91,114–123].

Amongst devices that provide a physical barrier to the graft is the TheraCyte™ 

macroencapsulation system, a planar pouch featuring a bilaminar PTFE semipermeable 

membrane. The outer layer promotes tissue integration, whereas an inner, cell impermeable, 

membrane has a 0.4µm pore size. Its subcutaneous placement allows cells to be transplanted 

in a minimally-invasive manner and retrieved if necessary. The device is biologically inert 

and when transplanted into human patients for a year, there were no adverse effects reported 

[124]. This type of device has been utilized to protect cells from immune reaction, but also 

to prevent dissemination of the cell implant in the recipient body. Feasibility of this 

approach was demonstrated for the implantation of genetically engineered cells specially 

designed for the in vivo delivery of therapeutic proteins, such as endostatin, which 

circumvents the problem of limited half-life and variation in circulating levels [125]. This 

device limits direct contact of host immune cells with the implanted cells, which could 

reduce or delay rejection while allowing the exchange of subcellular materials. The use of 

TheraCyte device has yielded some degree of successes reported with stem cell derived 

endocrine cells [126], as well as with allogeneic and xenogeneic pancreatic islet 

transplantation in experimental animals [127], including in the presence of autoimmunity in 

NOD mice [128]. Immunoisolation of pancreatic islets using the TheraCyte device has 

shown to protect against allograft rejection in non-immunized recipients [129]. A similar 

device, aimed at both confining and immunoprotecting human embryonic stem cell-derived 

endocrine cells is under evaluation for clinical testing (Table 1).

1.5.4. Islet Encapsulation—Islet encapsulation offers a means to create a physical 

barrier around islet clusters to shield them from the immune system, while allowing free 

exchange of insulin and nutrients throughout the cells [comprehensive review [130]]. 

Amongst the challenges in this field is the selection of materials that protect islets from the 

immune system. The encapsulation material must perform two vital functions: permit 

diffusion of insulin and waste products, and isolate the encapsulated islets from the immune 

system (i.e., macrophage and lymphocyte infiltration)[131]. Different approaches have been 

proposed that rely on macrodevices and microdevices containing multiple islets or thin-layer 

(conformal) coating of individual islets [132,133]. One of the materials widely used for 

islets encapsulation is alginate, an anionic polysaccharide produced by seaweed, whose 

biocompatibility and gelling properties make it useful for macro- and micro-encapsulation 

[126,134]. To maximize biocompatibility and elimination of potential pyrogenic 

contaminants (e.g., endotoxin), rigorous purification of the naturally occurring compound is 

required [135]. In addition to alginate, polysulphone (PSU) has also been proposed as a 

possible encapsulation material because it does not limit the secretion and diffusion of 

insulin in macroencapsulated islets [136,137]. Other hydrogels, such as poly-ethylene glycol 

(PEG) [138] or methacrylate copolymers, have been proposed for islets encapsulation 

[131,139].
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Many materials in different configurations have been tested in experimental models of islet 

transplantation in recent years, but only few have been evaluated in humans. Thus, little is 

known on their effective biocompatibility and suitability for long-term implantation as part 

of islet transplantation approaches in the clinical settings. New approaches are focused on 

the conjugation or incorporation of biomolecules, such as extracellular matrices that may 

reduce anoikis and stabilize cell membranes, to the biomaterials for encapsulation [140,141].

Intravascular macrocapsules consist of a synthetic hollow fiber semipermeable membrane 

that passes through a compartment seeded with pancreatic islets [142,143], where blood 

flows through the lumen of the hollow fibers allowing islets to promptly sense changes in 

glucose homeostasis and timely release of insulin, while they are protected from immunity 

by the membrane. This kind of device provides transport of nutrients and oxygen to the 

islets, but with a trade-off increased risk of damaging a blood vessel during surgery.

Extravascular macrocapsules are referred to macroencapsulated cells that are implanted 

outside the vasculature (e.g., in the peritoneal cavity as well as subcutaneously). The easy 

implant and explant relying on minimally invasive techniques reduce the risk of the 

procedure. The major drawback is the limitation of oxygen diffusion and nutrients transport 

related to the thickness of the device and tissue reaction around the foreign material. 

Encouraging results have been reported on the use of immunoisolation macrodevices in 

preclinical models of diabetes, supporting the ability to immune protect xenogeneic islets 

and improve metabolic control for extended periods of times [144–146]. Another approach 

consisting of the incorporation of an oxygen delivery system to the immunoisolation 

macrodevice to support the graft and help overcoming potential diffusion limitation from 

surrounding tissue, showed sustained human islet function in a pilot clinical case [92,147].

In microcapsules, islets are immobilized inside microspheres of a biocompatible material, 

usually alginate, coated with a semipermeable membrane, and implanted in the recipient – 

generally, as free intraperitoneal grafts. This kind of device has been the most studied thus 

far because of the simplicity of manufaturing and flexibility for modifying key components, 

which allowed researchers to play with key parameters like wall thickness or pore size to 

overcome significant nutrient and oxygen diffusion limitations seen in all extravascular 

implantation sites. Drawbacks of microencapsulation are mainly related to their size (500 – 

>1000um) that limits oxygen diffusion to the core of the capsule and in turn favors the 

survival of islets close to its surface. Also, the large volume of the capsules requires a large 

implantation site such as the peritoneal cavity, where generally the capsules are injected and 

tend to pellet in the pelvis by gravity expoosing the islets to unfavorable hypoxic conditions. 

Also, removal of the implants from the peritoneal cavity is cumbersome.

The concept of microencapsulated islets was first introduced in 1980 by Lim and Sun [148], 

who encapsulated pancreatic islets inside calcium-gelated alginate microcapsules: alginate 

microcapsules were cross-linked with polycationic poly-L-lysine (PLL) and an outer layer of 

alginate. However, these capsules were found to cause fibrosis when engrafted inside an 

animal. Islet encapsulation based on Ba2+ ions as the gelating cation combined with 

protamine sulfate (PS) residues as alginate cross linker have been tested. Ba2+ ions have a 

higher affinity than Ca2+ ions, so the mixing barium and alginate produces a stronger 
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barium-alginate hydrogel and it supported a higher cell viability as compared to 

conventional alginate caspules [149]. Interestingly, unlike calcium–gelled capsules, barium 

capsules are intrinsically radiopaque, which could be easily imaged in vivo with micro-

computed tomography. Improved survival of xenogeneic islets was demonstrated in the 

stringent NOD mouse model by combining bariumgelled alginate microcapsules with co-

stimulation blockade [150,151].

Drawbacks of macrocapsules include loss of islet cells to hypoxia due to poor diffusion of 

vital molecules such as oxygen and nutrients into the central core of the constructs, and the 

unfavorable transplants volumes for the clinically preferred intraportal route of 

transplantation [152]. Incorporation of emulsions with oxygen carrying moieties, such as 

perfluorinated chemicals has been proposed to help overcoming oxygen diffusion within 

macro- and microcapsules, [153,154].

As an alternative approach that may overcome the limitations of macro- and 

microencapsulation, conformal coating of pancreatic islets may represent a viable strategy to 

allow for a more physiologic release of insulin into the bloodstream, while improving 

oxygen and nutrient diffusion supporting their survival and function after implantation. The 

use of polyhetylene glycol (PEG) coating obtained by photopolymerization for islet 

immunoisolation showed great promise in rodents [155] and nonhuman primate models of 

diabetes [130]. Multilayered nanofilms can be applied directly to the surface of the islet 

clusters to confer immunoislation after transplantation [135,156]. Improved islet allograft 

survival has been reported for conformally-coated islets in experimental animal models in 

recent years [157].

Novel techniques are needed in order to improve the efficiency of conformal coating of 

pancreatic islets, which are challenging due to the variability of size of the clusters 

comprised in the final preparation. The use of fluid dynamics approach may be of assistance 

to address such limitations, and encouraging initial results have been recently reported using 

PEG hydrogels [138]. Translation of these approaches to the clinical setting is appealing, 

and hopefully will allow attaining sustained graft function with lower or no requirement for 

lifelong immunosuppression.

1.6. Conclusions

We are living exciting times in the field of beta cell replacement therapies for the treatment 

of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, 

novel approaches are needed to make cell-based therapies more reproducible and leading to 

long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary 

approach to attain this goal, by targeting immunity, promoting engraftment and sustained 

functional potency.

For stem cell based therapies to become a definitive solution to the shortage of 

transplantable endocrine cells, it may be desirable to fully recapitulate the complex structure 

and function leading to the tight regulation of human islets, which are in fact micro-organs. 

This goal should parallel the long-term safety of stem cell-based therapies (namely, no 

tumor formation).
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Exploring novel sites for islet implantation that are accessible and pliable to modification of 

the microenvironment may allow for targeted interventions to enhance engraftment, reduce 

immune cell activation and islet cell loss at the time of transplant. The choice of the ideal 

site for islet implantation should take into account safety concerns and sustainability of 

implanted cell function. With the emerging evidence that non-endocrine pancreatic tissue 

represents a potential source for precursor cells able to maintain functional beta cell mass, it 

may be desirable to transplant impure islet cell preparations. This would require the 

availability of implantation sites that can accommodate relatively large volumes of tissues 

while avoiding competition for nutrients and oxygen.

The use of scaffolds or macrodevices is appealing for the potential to modify the local 

transplant microenvironment. The choice for biodegradable or non-biodegradable materials 

should be weighted, since the immune reaction for degradation and persistence of foreign 

material, respectively, may affect the fate of the graft long-term.

Physical modifications of the islet surface using biologics, gene therapy or polymers may be 

of assistance in also preventing immune mediated destruction, and allow lowering the 

immunotherapy needs to sustain graft function, and even enable the success of protocols 

aimed at immune tolerance. The use of transient coating of islet surface with polymers 

and/or ECM products may contribute to stabilize the graft (i.e., addressing ainoikis) and 

possibly protect it during the early post-transplant period, resulting in reduced attrition and 

microenvironment activation ultimately leading to improved outcome. Thus far, 

immunoisolation approaches have not met the desirable goal of a long-term function of 

transplanted islets. This may be the result of attrition over time due to inadequate adaptation 

of the graft to the implant conditions (i.e., lack of vascularization, inadequate nutrients and 

oxygen, waste products accumulation inside the constructs, amongst others).

Encouraging experimental data supports the potential value of strategies that combine 

different cellular types (i.e., mesenchymal stromal cells, endothelial cell precursors, or 

others) to promote engraftment and modulate immunity, which may synergize with the 

bioengineering approaches discussed herein. In fact combination products (e.g., comprising 

biomaterials, cell products and drugs) along with rationale systemic immunotherapy may 

lead to a permanent restoration of beta cell function in people with insulin-requiring 

diabetes. Only through a sequential, integrated approach, and a collective effort of the 

research community this ambitious goal can be achieved.
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Abbreviations

DC Dendritic Cells

ECM Extracellular matrix

ESC Embryonic Stem Cells

HSC Hematopoietic Stem Cells

MSC Mesenchymal Stromal Cells

PDMS Poly(dimethylsiloxane)

PEG Poly-ethylene glycol

PERV Porcine Endogenous Retrovirus

PGA Poly(glycolic acid)

PLA Poly(lactic acid)

PLGA Poly(lacticco- glycolic acid)

PLL Polycationic poly-L-Lysine

PS Protamine sulfate

PSU Polysulphone

PTFE Polytetrafluoroethylene

T1DM Type 1 Diabetes Mellitus

T2DM Type 2 Diabetes Mellitus

Tregs T regulatory cells
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Figure 1. Implantation sites for islet cells
Several implantation sites have been proposed for islet cells, besides the intrahepatic portal 

system. An ideal site may be spacious, easily accessible for minimally invasive implantation 

and explant, have portal venous drainage, modifiable to enhance engraftment and modulate 

immunity, and allow for graft monitoring via noninvasive or minimally invasive approaches. 

The sites in the boxes have been tested in humans.

Fotino et al. Page 22

Pharmacol Res. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Schematic representation of immunoisolation approaches
Macrodevices may house large amount of islet cell products and may be implanted 

subcutaneously or intraabdominally (i.e., intraomental pouch). Macro- and Micro-

encapsulation devices are 400–1000um in diameter and may accommodate different 

numbers of islet clusters within each capsule. The diameter and overall volume of the graft, 

limits the possibility of implantation to the intraperitoneal cavity. Conformal (thin) coating 

consists of a thin polymer layering (e.g., hydrogel) on the islet clusters’ surface to confer 

immunoprotection.
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Figure 3. Differences between conformal coating and microencapsulation
Effective immunoisolation should rely on biocompatible materials to protect the islets from 

immune cells and humoral factors (i.e., antibodies), while allowing adequate exchange of 

oxygen and nutrients from the surrounding microenvironment, elimination of cellular waste, 

and timely inflow of glucose and outflow of insulin. In conformal coating immunoisolation 

(Left panel), a thin layer of polymer is applied on each islet cluster. The thickness of the 

coating is considered to represent an advantage when compared to micro- and macro- 

encapsulation where the distance between islet surface and the outer environment may 

hamper or delay inflow diffusion of oxygen and nutrients, as well as the outflow of cellular 

waste that may result in death or impairment of islet cell function (Right panel). Novel 

formulations of polymers able to enhance intracapsular oxygen generation or diffusion, and 

incorporation of oxidative scavenging molecules may be of assistance in overcoming the 

current limitations of larger constructs.
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Table 1

Islet Clinical Trials (clinicaltrials.gov, accessed Jan 31, 2015)

Sponsor Title of Trial Phase Registry No.*

Viacyte, San Diego, CA, USA ESC in Macrodevice I/II NCT02239354

University of Miami/Diabetes 
Research Institute, Miami, FL, USA

Allogeneic Islet Transplant into the Omentum I/II NCT 02213003

Vrije Universiteit Brussel, Brussels, 
Belgium

Long Term Function of Beta Cell Allografts in 
Non-Uremic T1D Patients

I/II NCT00798785

Ospedale San Raffaele, Milan, Italy Bone Marrow as an Alternative Site for Islet 
Transplantation

I NCT01345227

Ospedale San Raffaele, Milan, Italy Bone Marrow vs Liver as Site for Islet 
Transplantation (IsletBOM 2)

I/II NCT01722682

The Nordic Network For Clinical 
Islet Transplantation, Sweden and 
Norway

Intraportal or Intramuscular Site for Islets in 
Simultaneous Islet and Kidney Transplantation

II NCT01967186

Uppsala University Hospital, 
Sweden

Autologous Mesenchymal Stem Cell 
Transplantation

II NCT02057211

Uppsala University Hospital, 
Sweden

Beta/Air Device for Encapsulation of 
Transplanted Human islets

I/II NCT02064309

Cliniques Universitaires Saint-Luc-
Université Catholique de Louvain, 
Leuven, Belgium

Encapsulated Human Islets in a "Monolayer 
Cellular Device"

I NCT00790257

Novocell, Irvine, CA, USA Allogeneic Cultured Islet Cells (Human); 
Encapsulated

I/II NCT00260234

Living Cell Technologies, Auckland, 
New Zealand

Alginate-Encapsulated Porcine Islets for 
Xenotransplantation

I/II NCT00940173
NCT01736228
NCT01739829

Vrije Universiteit Brussel, Brussels, 
Belgium

Transplantation of Encapsulated Beta Cells II NCT01379729

Fuzhou General Hospital, Xiamen 
University, China

Cotransplantation of Islet and Mesenchymal 
Stem Cell

I/II NCT00646724

University of Alberta, Edmonton, 
BC, Canada

Sernova Cell Pouch I/II NCT01652911

University of Perugia, Italy Transplantation of Immunoprotected 
Pancreatic Islets for the Therapy of Type 1 
Diabetes Mellitus (T1DM)

I ISRCTN43557935

Technische Universität Dresden, 
Germany

Beta O2 Immunoisolation Device “individual treatment attempt” PMID24167261

*
NCT: clincialtrials.gov; ISRCTN: isrctn.com; PMID: ncbi.nlm.nih.gov/PubMed
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