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Abstract

The etiology of complex traits likely involves the effects of genetic and environmental factors, 

along with complicated interaction effects between them. Consequently, there has been interest in 

applying genetic association tests of complex traits that account for potential modification of the 

genetic effect in the presence of an environmental factor. One can perform such an analysis using 

a joint test of gene and gene-environment interaction. An optimal joint test would be one that 

remains powerful under a variety of models ranging from those of strong gene-environment 

interaction effect to those of little or no gene-environment interaction effect. To fill this demand, 

we have extended a kernel-machine based approach for association mapping of multiple SNPs to 

consider joint tests of gene and gene-environment interaction. The kernel-based approach for joint 

testing is promising, since it incorporates linkage disequilibrium information from multiple SNPs 

simultaneously in analysis and permits flexible modeling of interaction effects. Using simulated 

data, we show that our kernel-machine approach typically outperforms the traditional joint test 

under strong gene-environment interaction models and further outperforms the traditional main-

effect association test under models of weak or no gene-environment interaction effects. We 

illustrate our test using genome-wide association data from the Grady Trauma Project, a cohort of 

highly traumatized, at-risk individuals, which has previously been investigated for interaction 

effects.
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INTRODUCTION

In recent years, many genetic studies of complex human traits have employed genome-wide 

association studies (GWAS) to enable near-comprehensive assessment of common genetic 

variation across the genome. Empirical evidence suggests that common genetic variation 

plays an important role in many complex traits and diseases, with common variants 

estimated to explain 25-33% of risk to schizophrenia [International Schizophrenia, et al. 

2009; Lee, et al. 2012], 40% of risk for bipolar disorder [Lee, et al. 2011], and 50% of risk 

for autism spectrum disorder [Gaugler, et al. 2014], among other traits. However, even in 

studies involving tens of thousands of study subjects, the identification of specific common 

trait-influencing variation remains elusive. One potential reason for the lack of replicable 

GWAS hits is that a single-nucleotide polymorphism (SNP) may influence a trait but the 

effect is modified by an interaction with an environmental factor [Ioannidis 2007] such as 

age [Province, et al. 1989; Shi, et al. 2009; Simino, et al. 2014]. If one ignores the gene-

environment interaction effect and considers only the marginal effect of the SNP, the causal 

SNPs might regrettably be disregarded. Additionally, the differences in the distribution of 

the environmental factor between the initial and validation studies could impede replication 

of the initial SNP finding. This possibility, along with the observation of gene-environment 

interactions in various genetic studies [Caspi, et al. 2002; Caspi, et al. 2003; Duncan and 

Keller 2011; Jarvik, et al. 1997; Ober and Vercelli 2011; Shaffer, et al. 2015; Uher 2014; 

Wilhelm, et al. 2006] has spurred interest in performing genome-wide association studies of 

complex traits that accounts for possible genetic modification of effect by environment 

[Gauderman, et al. 2013; Kim, et al. 2014; Xu, et al. 2013].

To account for possible modification of genetic effects by environment in candidate-gene 

and GWAS projects, one can apply a joint test of SNP main effect and SNP-environment 

interaction effect on phenotype. Such a joint test can be more powerful than a test of SNP 

main effect alone if an interaction exists [Chatterjee, et al. 2006; Kraft, et al. 2007]. A 

typical joint test involves fitting a regression model that accounts for the main effect of a 

single SNP, main effect of the environment, and a two-way interaction between the SNP and 

environment. One then constructs from the fitted regression model a two degree-of-freedom 

test of the joint null hypothesis that there is no SNP and no SNP-environment interaction 

effect, typically using a Wald or likelihood-ratio statistic [Kraft, et al. 2007; Wang, et al. 

2008].

While some recent interaction findings using methods like the joint test as well as other 

procedures have been reported (e.g. [Binder, et al. 2008; Bradley, et al. 2013; Gauderman, et 

al. 2013; Kim, et al. 2014; Liao, et al. 2013; Shaffer, et al. 2015]), by and large the field has 

not matured in a way to match its propitious beginnings [Duncan and Keller 2011; Munafo, 

et al. 2014]. A possible explanation lies with an inherent motivation behind interaction 

studies: one reason to include a modifying effect of environment within a genetic analysis is 

to find subgroups of individuals where the genetic effects are of larger magnitude than the 

overall group as a whole, and thus gain power over genetic studies that fail to account for 

the environmental modifier. This gain in power occurs when the interaction effect is much 

larger than the main effect, such as when a genotype has an effect on phenotype in the 

presence of environmental effect but no effect in the absence of the exposure (termed 
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“complete” interaction: see model M1 in Figure 1). However, when the interaction effect is 

of equal magnitude or smaller than the main SNP effect (see models M3-M5 in Figure 1), a 

main effect test (which has 1 degree of the freedom less than the joint test) might perform 

similarly or even better than the joint test [Kraft, et al. 2007; Zammit, et al. 2010].

When there is interest in considering the modifying effects of genotype on phenotype in the 

presence of interaction with environment, an optimal joint association test would then be 

one that remains powerful under a variety of interaction models, ranging from those of 

strong interaction effect to little or no interaction effect [Hunter and Kraft 2007; Sullivan 

2007; Zammit, et al. 2010]. To fill this demand, we present an approach to performing a 

joint test of gene and gene-environment interaction for common SNPs that builds upon the 

kernel-based methods introduced by Kwee et al. [Kwee, et al. 2008] and Wu et al. [Wu, et 

al. 2010] to test for genetic main effects. Our kernel-based approach for joint analysis begins 

by grouping SNPs into SNP sets based on prior biological knowledge. We then apply a 

kernel function that quantifies the pairwise similarity between subjects based on the 

genotypes of the SNPs falling within the set, as well as environmental exposure. By 

introducing a garrote parameter into the kernel function (as considered in Maity and Lin 

[Maity and Lin 2011] for microarray analysis), we can then construct a score statistic to 

assess whether pairwise genetic similarity in the presence of possibly modifying effects of 

environment correlates with phenotypic similarity.

The kernel-based approach to joint gene and gene-environment interaction testing is 

promising for three reasons. First, examining sets of SNPs rather than each SNP 

independently (as done in the methods of Kraft et al. [Kraft, et al. 2007] and Wang et al. 

[Wang, et al. 2008]) will greatly reduce multiple-testing burden. For example, in a GWAS, 

while the traditional single-SNP regression approach could result in millions of tests [Wang, 

et al. 2005], grouping all typed SNPs into genes and then implementing the kernel-based 

approach will result in ~20,000 tests [International Human Genome Sequencing Consortium 

2004]. Second, since multiple typed markers are likely to be in linkage disequilibrium (LD) 

with the causal variant, joint consideration of these markers will capture the effect of a true 

causal variant more effectively than independent marker testing. Third, the kernel approach 

readily allows for inclusion of prior information (such as biological plausibility or 

association signals from prior association studies) in the form of weights to assist in the 

formation of the kernel matrix. SNP set methods have proved to be more powerful than 

univariate testing of main genetic effects [Kwee, et al. 2008; Tzeng, et al. 2011; Wu, et al. 

2010] and we anticipate similar trends when considering joint tests of gene and gene-

environment effects.

The remainder of this manuscript is organized as follows. We first describe our joint SNP 

set analysis framework, including how to form SNP sets and how to test SNP sets for 

association using a kernel framework that allows for potential modifying effects by an 

environmental factor. Next, we present simulation results comparing our joint approach both 

to traditional joint tests of gene and gene-environment interaction as well as to traditional 

tests of main genetic effects only. We then illustrate the kernel-machine approach using 

quantitative measures of post-traumatic stress disorder and depression collected as part of 
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the Grady Trauma Project. We finish with concluding remarks and discuss potential 

extensions of our approach.

MATERIALS AND METHODS

Assumptions and Notation

Assume a population-based study that samples N unrelated subjects. For each subject j = 1,

…,N, we let Yj denote the continuous phenotype and Xj be a vector of covariates. We further 

define Ej to be a continuous or categorical environmental exposure of interest. Assume also 

that each subject has been genotyped at a collection of M common SNPs in a genetic region 

of interest. Define Gj = (Gj,1, Gj,2, …, Gj,m ) as the genotypes at the M SNPs for subject j, 

where Gj,m is coded as the number of copies of the minor allele that subject j possesses at 

variant m. The SNPs included in G will be referred to as the “SNP set.” Wu et al. [Wu, et al. 

2010] suggest several ways for constructing SNP sets. A natural strategy is to group together 

all genetic variants that are located on or near a gene. However, we note that this strategy is 

reliant on the quality of the database used to define the SNPs that fall within the gene and 

may also result in the set harboring SNPs that are not necessarily in LD. Consequently, it 

may be advantageous to consider other SNP sets such as haplotype blocks or sliding 

windows. For illustration purposes in this manuscript, we will form SNP sets based on genes 

and consider all genotyped SNPs between the start and end of transcription, as well as 

variants within 2kb up- and down-stream from the gene to capture nearby regulatory 

regions.

Traditional Single-SNP Tests

We first describe two traditional tests that consider the analyses on the level of an individual 

SNP. First, if we believe a SNP has modest-to-no interaction with environment to influence 

outcome (see Models M4-M5 in Figure 1), we would typically apply a main-effects only 

model that implements a linear regression of the form

(1)

where Y is an N x 1 vector of phenotypes, X is an N x c vector of c covariates (including an 

intercept) with regression parameter vector γ, E denotes an N x 1 vector of the 

environmental exposure (considered a covariate and not an effect modifier) with regression 

coefficient βENV, and Gm denotes an N x 1 vector of SNP genotypes at SNP m with 

regression parameter βSNP. Finally, the residual error e follows a MVN distribution, 

e~MVN(0,σ2I), where I denotes the NxN identity matrix. We then implement a likelihood 

ratio test to assess the null hypothesis of H0 : βSNP=0 for each SNP m. To adjust for multiple 

testing of M correlated SNPs, we could apply procedures like PACT [Conneely and Boehnke 

2007] or use a permutation procedure that randomly shuffles the M genotypes of each 

subject as a unit (preserving the LD structure).

If we instead suspect sizable SNP-environment interaction (see models M1-M2 in Figure 1), 

we might then apply a joint test of SNP and SNP-environment interaction using the 

following modified model from (1)
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(2)

where the notation is the same as defined in equation (1). The difference between model (2) 

and model (1) is the inclusion of a two-way interaction between Gm and E with regression 

parameter βSNP*ENV. Using a likelihood ratio test, we can assess the null hypothesis H0: 

βSNP = βBNP*ENV = 0. We repeat model (2) and obtain likelihood-ratio tests for each of the 

M genotyped SNPs. To adjust for multiple testing we require permutations, since PACT is 

only applicable to studies of main SNP effect. In performing permutations under the null 

hypothesis, one must take care to preserve the relationship between phenotype Y with the 

covariates X and the environmental predictor E; failure to preserve this relationship can lead 

to invalid inference [Buzkova, et al. 2011]. We preserve this relationship while also 

maintaining LD structure among SNPs by randomly permuting the M genotypes of each 

subject as a unit, acknowledging that such permutation assumes that the genotypes are 

uncorrelated with the environmental predictors in the population.

Two-way Interaction Kernels

Using kernel regression, Kwee et al. [Kwee, et al. 2008] and Wu et al. [Wu, et al. 2010] 

implemented mixed models for testing the effect of variant sets on complex human 

phenotypes. These approaches use a kernel function K(Gj ,Gk) to quantify the genetic 

similarity between subjects j and k across the M SNPs in the SNP set. We modify the 

methods described by Kwee et al. [Kwee, et al. 2008] and Wu et al. [Wu, et al. 2010] to 

permit joint gene and gene-environment interaction testing as follows. First, we select a 

kernel that appropriately models interactions. While many kernels are available [Schaid 

2010], we explore the use of the joint weighted 2-way interaction kernel (W2WK) in this 

work. We define Zj = (Gj, Ej) as the combined genetic and environmental information on 

each subject. We then define the weighted 2-way interaction kernel for subjects j and k as

(3)

Under this kernel, weight for the mth variant, wm, reflects the relative contribution of that 

variant to our estimate of local genetic similarity between subjects j and k. Ideally, causal 

variants would receive a large weight, and noncausal SNPs would receive a weight close to 

zero, making the weight of these SNPs negligible. Although by nature we do not know 

which SNPs are causal, a careful weighting scheme can result in more power. Wu et al. 

[Wu, et al. 2010] and Schifano et al [Schifano, et al. 2012] provide nice discussions on 

relevant weighting approaches for common SNP analyses. For all simulations and analyses 

reported here, we implement a weighting scheme based on the minor-allele frequency 

(MAF) of each assayed SNP that weights rarer variants over more common ones; the 

particular weight we apply for the mth variant is wm = 1/√MAFm.

Based on the chosen kernel function, we can then define the kernel matrix K as the NxN 

matrix, where the (j,k)th element is equal to K(Zj, Zk). The resulting K matrix represents 

genomic and environmental likeness, as well as interaction between genotype and 

environment, between all pairs of individuals across the M variants in the SNP set. Once we 
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construct K, we incorporate this kernel matrix within a mixed model that, for each pair of 

subjects, compares the genetic and environmental similarity to phenotypic similarity, 

adjusting for covariates. For continuous phenotypes, we can fit the mixed model as

(4)

As with the traditional models described above, γ denotes a vector of regression parameters 

for fixed-effect covariates X and e is a vector of independent random errors that follows a 

normal distribution. U denotes a random effect affiliated with the variant set that follows the 

multivariate normal (MVN) distribution with a mean 0 and covariance matrix τK. Within 

this random effect, τ denotes the component of variance due to the effects of the 

environment, variants within the variant set, and the interactions between these factors.

When an interaction kernel is applied to the linear mixed model in equation (4) the 

environmental risk factors are a component of the random effects portion (U) of the model. 

Therefore, a null hypothesis of τ = 0 would correspond to testing if none of the genetic, 

environmental, or interaction factors within the kernel influences the trait. This null is not 

particularly interesting in genetic studies, since the test would be significant if only the 

environmental factors, and no genetic or gene-environment interaction factors, were 

associated with the phenotype of interest. We therefore modify the kernel such that a 

significant finding is due only to a genetic effect in the presence of a potential interaction 

with the modeled environmental factors. To do so, we use a strategy employed by Maity and 

Lin [Maity and Lin 2011] for microarray analysis and attach an extra “garrote” parameter, δ, 

to the genetic effects in the kernel function such that the weighted two-way interaction 

kernel becomes

(5)

With this reparameterization, we can then test for the effect of the gene in the presence of 

potential interactions with the environmental factors by considering the null hypothesis H0 : 

δ=0 [Breiman 1995]. Maity and Lin [Maity and Lin 2011] demonstrate that the appropriate 

score test is

(6)

where  denotes the derivative of K with respect to δ 

under the null hypothesis. ( ) are estimators of (β,τ,σ2) under the null 

hypothesis, which can be estimated by applying restricted maximum likelihood (REML) 

procedures to the reduced form of the linear mixed model [Liu, et al. 2007]. The asymptotic 

distribution of the test S follows a complicated mixture of χ2 distributions. We approximate 

the distribution using Welch-Satterthwaite’s method [Satterthwaite 1946], although we 

could also use Davies’ method [Davies 1980].
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Simulations

To validate our method in terms of appropriate type I error and to assess its power compared 

to traditional joint and main-effect tests, we carry out simulation studies under a range of 

configurations. We perform simulations based on SNPs and LD patterns found 2 kb up- and 

down-stream from signal transducer and activator of transcription 3 (STAT3), a gene on 

chromosome 17q21.31. We show the pairwise LD structure of SNPs in STAT3 in 

Supplementary Figure 1. To incorporate observed LD patterns from HapMap samples, we 

used the HAPGEN package [Spencer, et al. 2009] to generate simulated SNP data. 

HAPGEN generates simulated genotype information for all SNPs identified in HapMap 

within the STAT3 gene; however, to better replicate real GWAS conditions, we applied the 

testing approaches only to those SNPs that would be typed on standard genotyping arrays. 

Although 27 common SNPs fall within the STAT3 gene, only 14 of the 27 are genotyped on 

the Illumina HumanOmni1-Quad genotyping platform. Thus, the 14 typed SNPs form the 

SNP set for the kernel approach, and only the 14 typed SNPs are tested for association using 

the traditional main and joint tests. Under simulations where the causal SNP is not 

genotyped, power to detect an association relies on LD between the causal SNP and typed 

SNPs.

Size and Statistical Power

We conducted simulations under four types of null linear models to verify that the joint 

W2WK approach properly controls the type I error rate. We assumed a model of Yj = 

βENVEj+ej, where the error term, ej, follows a standard normal distribution. Ej models an 

environmental exposure under a Bernoulli(0.5) distribution. We let βENV, the main effect 

size of the environment, be set to 0, 0.33, 0.67, and 1 (corresponding to R2 values of 

approximately 0, 0.03, 0.11, and 0.25 respectively). For null simulations, we set sample size 

to N=250, 500, and 1000. For each of the four null models, we evaluated size using 5000 

replicates of the data.

We next performed power calculations to compare the kernel approach to the traditional 

joint and main-effect tests under different levels of SNP-environment interaction. We 

simulate data for subject j under the model

(7)

where Ej again models the environmental exposure under a Bernoulli(0.5) distribution, ej 

follows a standard normal distribution, and Gj,m is the allele count of the causal SNP in 

subject j. We set the values of ζ to the 5 different values (0.00, 0.05, 0.10, 0.15, and 0.20), 

which corresponds to simulation Models M1-M5, respectively (see Table 1). As ζ (and the 

model number) increases, the interaction effect decreases while the main effect increases. 

For instance, in Model 1, where ζ=0, we assume ‘complete’ interaction: the causal SNP 

affects phenotype exclusively through gene-environment interaction. Model 3 assumes that 

the genotypic effect is twice as large in exposed individuals compared with unexposed 

individuals. Model 5 assumes that the subgroups have the same mean genotypic effect; that 

is, there is no gene-environment interaction. For each of the 5 models, we allowed each of 
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the 27 common SNPs in STAT3 to be causal in turn. We model genotypic effect acting first 

in an additive then in a dominant manner. For power simulations, we set sample size to 

N=500. As with the size simulations, we assumed only genotype information for the 14 

SNPs on the Illumina HumanOmni1-Quad platform was available, and used only these 

SNPs to compute the test statistics. Power was estimated as the proportion of P-values <0.05 

and was evaluated based on 500 replicates of the data per model.

RESULTS

Table II shows the empirical size for common variant analyses at α=0.05. Our simulations 

confirm that our 2-way interaction kernel approach maintains appropriate type-I error, 

regardless of main effect size of environment. The type-I error of the traditional main effect 

and traditional joint test were also appropriate.

Figures 2-4 show the power results for models M1, M3, and M5, the effect of the SNP on 

outcome originated under either an additive genetic model (left) or a dominant model 

(right). Similar power results for models M2 and M4 are shown in Supplemental Figures 2 

and 3, respectively. Power is plotted as a function of causal SNP, where the causal SNPs are 

ordered by genomic location. The genotyped SNPs (denoted by the ‘x’ on the bottom of the 

plots) were used to compute the test statistics, but each HapMap SNP (regardless of whether 

it is typed) is treated as causal in turn. Thus, in situations where the causal SNP is not typed, 

we rely on the correlation of the causal SNP with observed typed SNPs in the set to gain 

statistical power. The MAF of the SNPs is plotted below the power plot in the grey line. For 

example, SNP 9 (rs9909659) has a MAF 0.21 and is not genotyped on the Illumina array. 

However, as shown in Supplementary Figure 1, it is in strong LD with several SNPs that are 

typed (R2>0.9 for SNP 3 (rs3198502), SNP 4 (rs1053005), and SNP 6 (rs3744483)). Power 

to detect an effect of SNP 9 relies on LD among these genotyped SNPs.

In our simulations, the traditional joint test did not always outperform the main-effect test, 

even when a significant interaction effect was present. Implementation of the traditional 

joint test resulted in considerable increases in power relative to the traditional main test only 

under models of complete interaction (model M1, Figure 2). Under the M2 model shown in 

Table I, despite the fact that the interaction effect is 4-fold larger than the genetic main 

effect in this model, the traditional joint test provides only a modest power gain over the 

traditional main effect test (Supplementary Figure 2). When the interaction effect is equal to 

or smaller than the genetic main effect (model M3-M5, Figures 3 & 4 and Supplementary 

Figure 3), the traditional main effect tests are consistently more powerful than the traditional 

joint tests.

Across all five models, for both additive and dominant assumptions, the joint W2WK 

approximately matches or outperforms the optimal traditional test. Under the complete and 

strong interaction models (models M1 and M2, Figure 2 and Supplementary Figure 2), the 

joint W2WK kernel matches or outperforms the traditional joint test across all SNPs. In 

models M3 and M4, although the main effect test outperforms the traditional joint test, the 

joint W2WK outperforms the main effect test (Figures 3 and Supplementary Figure 3). Even 

under the assumption of no gene-environment interaction occurring (M5, Figure 4), our joint 
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W2WK approach remains somewhat more powerful or of approximately equal power when 

compared with the traditional main-effect test for the large majority of SNPs.

The power of our joint W2WK approach relies on LD existing between the causal SNP and 

genotyped SNPs in the sample. To examine the relationship between LD and power in our 

simulated datasets, we calculated the median squared correlation (median R2) of the causal 

SNP with genotyped SNPs in our SNP set across simulated datasets for a specific model. As 

shown in Supplementary Figure 4, our joint W2WK approach is least powerful compared 

with the traditional approaches when median R2 between causal SNP and genotyped SNPs 

is close to 0 but becomes increasingly more powerful than these other approaches as the 

median R2 increases. Our findings regarding the relationship between median R2 and power 

for our joint W2WK test yield similar conclusions to those reported by Wu et al. [Wu, et al. 

2010] and Schifano et al. [Schifano, et al. 2012] for SNP set analysis of main effects on 

phenotype.

The joint W2WK approach offers more power than the optimal traditional approach across a 

considerable range of causal SNP minor allele frequencies. Although all approaches are 

more powerful as the causal SNP’s MAF increases, there is no clear relationship between 

MAF and relative strength of our approach (Supplementary Figure 5). The weighting 

scheme we selected for the bulk of our simulations is an inverse relationship with MAF; this 

weighting scheme is most beneficial when the MAF of the causal SNP is rarer relative to the 

genotyped SNPs in the set. To examine if power of the joint W2WK approach is affected by 

the choice of MAF weight, we also performed an unweighted analysis that assumes equal 

contribution from all genotyped SNPs in the SNP set. We present these results in 

Supplementary Figure 5. Overall, power using the unweighted version of our approach was 

somewhat lower than from using the joint W2WK approach, except for causal SNPs that 

were quite common (MAF > 0.35). For these SNPs, the unweighted approach offered 

slightly more power to detect an effect than the joint W2WK.

Application to Grady Trauma Project Data

Depression is a moderately heritable disorder (h2≈0.30), yet, despite substantial interest in 

identifying genetic causes of the disorder, its genetic underpinnings remain largely 

unidentified [Flint, et al. 2008]. Research indicates a potential association between 

depression and genes in the cannabinoid receptor 1 (CB1) pathway [Agrawal, et al. 2012; 

Barrero, et al. 2005; Monteleone, et al. 2010; Vinod and Hungund 2006]. The relationship 

between depression and CB1 may be modified, however, by gender [Castelli, et al. 2013; 

Riebe, et al. 2010].

We applied our joint W2WK approach to a GWAS study of depression to assess the 

relationship between CB1 genes and outcome, allowing for interaction with gender, and 

contrasted our results with those found under the traditional single-SNP tests. Data used in 

our analysis were collected as part of a larger study, called the Grady Trauma Project (GTP), 

which investigates the role for psychiatric disorders such as post-traumatic stress disorder 

and depression [Bradley, et al. 2008; Ressler, et al. 2011]. Participants in the GTP are served 

by the Grady Hospital in Atlanta, Georgia, and are predominantly urban, African American, 

and of low socioeconomic status. GTP staff approach subjects in the waiting rooms of Grady 
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Primary Care and Obstetrics and Gynecology and obtain their written consent to participate. 

GTP staff conduct an extensive verbal interview, which includes demographic information, 

a history of stressful life events, and several psychological surveys. The GTP queries 

participants on the Beck Depression Inventory (BDI), a 21-item multiple-choice 

questionnaire that assesses symptoms of depression [Beck, et al. 1996]. Summing the 

responses yields a score ranging from 0-63, with scores higher than 28 being indicative of 

moderate to severe depression. We selected this score as a continuous outcome variable, 

transforming each individual’s BDI scores to yi=ln(BDIi + 1), where ln is the natural log, to 

uphold the normality assumption required for the traditional tests.

The GTP genotyped participants on the Illumina HumanOmni1-Quad array to permit 

GWAS analyses. For this work, we studied the Cannabinoid Receptor 1 gene (CNR1), on 

chromosome 6q14-q15, which encodes for the CB1 receptor, and the Fatty Acid Amide 

Hydrolase gene (FAAH), on chromosome 1p35-p34, which breaks down the primary 

endocannabinoid in humans, as genes of interest. The HumanOmni1-Quad array genotypes 

11 common SNPs within 2kb up- and downstream from CNR1, and 7 common 

polymorphisms in and near the FAAH gene. Additionally, we obtained the top 10 principal 

components (PCs) from the GWAS data, which we included as covariates in all models to 

account for population stratification. We obtained BDI scores, genotype, PCs, and gender 

information on 3475 subjects.

We applied our joint W2WK test, along with traditional joint and traditional main-effect 

tests, to the dataset. We observed that both the traditional main-effect and traditional joint 

tests indicated a nominal association between CNR1 and BDI scores, whether gender was 

included only as a covariate or as an effect modifier (P-values 0.007 and 0.024 respectively). 

The P-value testing this association using the joint W2WK approach yielded similar trends 

as the two other test but yielded a p-value that was at least 4-fold smaller than either 

traditional approach (P-value 0.0016). Evidence suggests that the association between CNR1 

and BDI scores might be due to a blend of genetic main effect and interaction between 

CNR1 and gender, but is unlikely to be an example of complete or very strong interaction, 

since the P-values of the traditional main effect test is smaller than that of the traditional 

joint test). None of the three tests found a significant association between variants in the 

FAAH gene and BDI scores (Table III).

DISCUSSION

We have presented a kernel machine based framework for SNP set analysis for continuous 

outcomes when an interaction between genotype and an environmental insult is suspected. 

The proposed test is a variance component score test, which relies on fitting the null linear 

regression model to compute the test statistic. Since the P-values are computed analytically, 

our method allows faster analyses on a genomewide scale than the traditional regression 

approaches, which might rely on permutation procedures to establish significance. Analysis 

of simulated STAT3 data for 500 and 1000 subjects takes 30 seconds and 3.5 minutes, 

respectively, on a MacBook Pro possessing a 2.2 GHz processor and 8 GB of memory. If 

one were to parallelize the approach across 50 CPUs, one could complete a GWAS analysis 

of 20,000 gene sets with a sample size of 1000 in approximately one day. We provide R 
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software implementing the approach on our website (see Web Resources) which can be run 

through PLINK, if desired.

In general, our joint W2WK approach has more power than the either the joint or main-

effect traditional approaches. Since the magnitude and prevalence of interactions is largely 

unknown, we considered several models of gene and gene-environment interaction effects. 

When the underlying model is one of complete interaction, the joint W2WK outperforms the 

traditional joint test across a range of minor allele frequencies and LD patterns. Our 

approach performs particularly well relative to either traditional test when the underlying 

causal model involves a blend of both interaction and main genetic effects. We consider the 

power gains under these models to be especially noteworthy, since they are considered to be 

more biologically plausible than a model of complete interaction [Zammit, et al. 2010]. We 

lastly considered the scenario that no gene-environment interaction is occurring; that is, all 

the genotypic effect occurs through genetic main effect. Using traditional joint testing under 

this model would result in costly loss of power relative to the traditional main-effect test. 

However, across all modeled causal SNPs, the joint W2WK approach maintains power that 

rivals or even modestly outperforms the traditional main-effect test. We have also 

demonstrated that the joint W2WK approach has more power relative to the traditional 

approaches across all interaction models when the genetic effects are acting in a dominant 

fashion, but tested assuming an additive effect.

Our joint W2WK is explicitly designed to test for a joint effect of genetic main effect and 

interaction between gene and environment. If instead one is interested in testing exclusively 

for a gene-environment interaction effect using SNP sets, one can apply a related kernel 

procedure created by Lin et al. called GESAT. [Lin, et al. 2013]. Like W2WK, GESAT is a 

variance-component score test that utilizes a kernel function for analysis. However, while 

our joint W2WK procedure models genetic, environment, and gene-environment interaction 

effects as random effects via a kernel function in the mixed-model framework, GESAT only 

models the gene-environment interaction term as random and models the main genetic and 

environmental effects parametrically as fixed effects (estimated under the null using ridge 

regression). GESAT is useful when an interaction-only test is more desirable than a joint 

test, such as for detecting a crossover interaction (i.e. when the genetic effects change as a 

function of environment, such that the genotype conferring lowest risk in one environment 

confers highest risk in another environment).

Although the results presented here are focused on interaction between environment and 

common SNPs, the approach is readily extendible to rare variant gene-environment 

interaction analysis. The approach can also be used to simultaneously model multiple 

environmental exposures, which would be useful in cases where several environmental 

measurements might be expected to correlate with a true latent exposure that is interacting 

with genotype to influence outcome. We will explore these ideas more in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A range of possible gene and gene-environment models, from M1 (complete interaction) to 

M5 (no interaction). The red line represents genotypic effect among individuals who have 

been exposed to the environmental insult. The 5 blue lines represent possible genotypic 

effects for individuals who were not exposed to the environmental insult, resulting in models 

that range from complete interaction (M1) to no interaction (M5).
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Figure 2. 
Power for the W2WK (red), traditional joint (blue), and traditional main effect (green) 

approaches by causal SNP under the M1 model. An “x” marks the 14 SNPs that were 

modeled as genotyped in our simulations. The MAF of each SNP (grey line) is along the 

right Y-axis. Plot on the left assumes an additive model; the plot on the right assumes the 

underlying model is dominant, but was tested as additive. Inset plot shows the underlying 

model (M1): solid black line represents genotypic effect among individuals who have been 

exposed to the environmental insult. Dotted black line shows genotypic effect of individuals 

who were not exposed to the environmental insult under the M1 model. Dotted grey lines 

indicate alternate models that are considered elsewhere in this manuscript.
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Figure 3. 
Power for the W2WK (red), traditional joint (blue), and traditional main effect (green) 

approaches by causal SNP under the M3 model. An “x” marks the 14 SNPs that were 

modeled as genotyped in our simulations. The MAF of each SNP (grey line) is along the 

right Y-axis. Plot on the left assumes an additive model; the plot on the right assumes the 

underlying model is dominant, but was tested as additive. Inset plot shows the underlying 

model (M3): solid black line represents genotypic effect among individuals who have been 

exposed to the environmental insult. Dotted black line shows genotypic effect of individuals 

who were not exposed to the environmental insult under the M3 model. Dotted grey lines 

indicate alternate models that are considered elsewhere in this manuscript.
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Figure 4. 
Power for the W2WK (red), traditional joint (blue), and traditional main effect (green) 

approaches by causal SNP under the M5 model. An “x” marks the 14 SNPs that were 

modeled as genotyped in our simulations. The MAF of each SNP (grey line) is along the 

right Y-axis. Plot on the left assumes an additive model; the plot on the right assumes the 

underlying model is dominant, but was tested as additive. Inset plot shows the underlying 

model (M5): solid black line represents genotypic effect among individuals who have been 

exposed to the environmental insult. Dotted black line shows genotypic effect of individuals 

who were not exposed to the environmental insult under the M5 model. Dotted grey lines 

indicate alternate models that are considered elsewhere in this manuscript.
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Table I

Models of gene-environment interaction

Total Genetic Effect

Model ζ Exposed Subgroup Unexposed Subgroup

M1 0.00 0.20 0.00

M2 0.05 0.20 0.05

M3 0.10 0.20 0.10

M4 0.15 0.20 0.15

M5 0.20 0.20 0.20

The five models of interaction considered in our simulations. Under M1, we assume that unexposed individuals have no genotypic effect. In M2, 
the genotypic effect in unexposed individuals is ¼ that of exposed individuals. In M3, unexposed individuals have on average half the genotypic 
effect of exposed individuals. In M4, unexposed individuals have ¾ the mean genotypic effect as the exposed subgroup. Finally, in M5, mean 
genotypic effect is equal across subgroups; no interaction effect is occurring.
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Table III: Analysis of the Grady Trauma Project Data

Gene

CNR1 FAAH

W2WK 0.002 0.406

Traditional Joint 0.024 0.407

Traditional Main 0.007 0.603

P-values using the joint W2WK, traditional joint, and traditional main-effect only tests on the Grady Trauma Project dataset. The joint W2WK and 
traditional joint analyses considered interactions with gender.
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