

HHS Public Access

Author manuscript *Gynecol Oncol*. Author manuscript; available in PMC 2016 July 01.

Published in final edited form as:

Gynecol Oncol. 2015 July ; 138(1): 62–69. doi:10.1016/j.ygyno.2015.04.037.

Risk Stratification and Outcomes of Women Undergoing Surgery for Ovarian Cancer

Sonali Patankar, MD, MPH¹, William M. Burke, MD^{1,4,5}, June Y. Hou, MD^{1,4,5}, Ana I. Tergas, MD^{1,3,4,5}, Yongmei Huang, MD¹, Cande V. Ananth, PhD, MPH^{1,3}, Alfred I. Neugut, MD, PhD^{2,3,4,5}, Dawn L. Hershman, MD^{2,3,4,5}, and Jason D. Wright, MD^{1,4,5}

¹Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons

²Department of Medicine, Columbia University College of Physicians and Surgeons

³Department of Epidemiology, Mailman School of Public Health, Columbia University

⁴Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons

⁵New York Presbyterian Hospital

Abstract

Objective—Cytoreduction for ovarian cancer is associated with substantial morbidity. We examined the outcome of patients undergoing surgery for ovarian cancer to determine if there are sub-groups of patients who may benefit from alternative treatments.

Methods—The National Surgical Quality Improvement Program database was used to identify women who underwent surgery for ovarian cancer from 2005–2012. Multivariable logistic regression models were used to examine the effect of age, race, functional status, ASA class, preoperative albumin and performance of extended cytoreductive procedures on morbidity, mortality and resource utilization.

Results—A total of 2870 women were identified. The perioperative complication rate increased from 9.5% in women <50 years, to 13.4% in those age 60–69 years, and 14.6% in women 70 years (P<0.0001). Similarly, complications rose from 7.3% in those who did not require any extended procedures to 12.9% after 1 procedure, 28.4% for those who had 2, and 30.0% in women who underwent 3 extended procedures (P<0.0001). In a series of multivariable models, the number of extended cytoreductive procedures performed and preoperative albumin were the

Conflict of Interest

The authors have no conflicts of interest.

^{© 2015} Published by Elsevier Inc.

Corresponding Author: Jason D. Wright, M.D., Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, 161 Fort Washington Ave, 8th Floor, New York, NY 10032, Telephone: (212) 305-3410, Fax: (212) 305-3412, jw2459@columbia.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

factors most consistently associated with morbidity. Using a series of model fit statistics, compared to chance alone, the ability to predict any complication increased by 27.4% when procedure score was analyzed, 22.0% with preoperative albumin, 11% with age, and 4% with functional status.

Conclusions—While preoperative clinical and demographic factors may help predict the risk of adverse outcomes for women undergoing surgery for ovarian cancer, performance of extended cytoreductive procedures is the strongest risk factor for complications.

Introduction

Primary cytoreduction followed by platinum-based combination chemotherapy is the standard of care for the treatment of advanced stage, epithelial ovarian cancer.¹ Surgical cytoreduction entails salpingo-oophorectomy, typically with hysterectomy, omentectomy and resection of gross tumor within the abdominal cavity. Resection of tumor may require small or lrge bowel resection as well as removal of other solid organs, including the liver and spleen.^{2–4} Multiple studies have demonstrated that the amount of residual tumor after completion of the surgery is associated with long-term prognosis.^{4–7} Patients who are suboptimally cytoreduced prior to chemotherapy have decreased survival.^{2,8,9}

Although cytoreductive surgery has numerous benefits, the operation is associated with significant morbidity.^{10–13} A number of prior studies have attempted to define factors that are associated with excessive morbidity in women undergoing cytoreduction.¹² Several reports have noted that advanced age is associated with adverse outcomes.^{11,12,14} However, some studies have suggested that chronologic age alone should not be a contraindication to cytoreduction and that measures of performance status and functional reserve are of greater importance.^{15,16}

In addition to age, the extent of cytoreductive surgery appears to influence outcomes. Prior work has shown that complications increase with the number of radical procedures performed.¹² Given the increased morbidity associated with factors such as the requirement for more extensive cytoreductive surgery and advance age, some reports have suggested that patients with these factors may benefit from alternative treatment strategies such as neoadjuvant chemotherapy.

The objective of our study was to examine the influence of age, functional status, and extent of cytoreduction on perioperative morbidity in women with ovarian cancer. Specifically, we utilized a large, population-based database that prospectively collects detailed clinical characteristics and outcomes for patients from throughout the United States.

Materials and Methods

Data source and patient selection

We examined the American College of Surgeons' National Surgical Quality Improvement Program (NSQIP) database.^{17,18} The NSQIP database is a risk-adjusted, nationally validated and prospectively maintained surgical outcomes registry. It contains more than 240 clinical variables, including preoperative patient characteristics, intraoperative variables and 30-day

postoperative outcomes. All data is abstracted from medical records by trained registrars using a highly structured sampling schema. The Columbia University Institutional Review Board deemed the study exempt.

Women 18 years of age with ovarian cancer (ICD-9 183.x) recorded from 2005–2012 were included. The study cohort was limited to only those patients who underwent an ovarian cancer directed surgery defined hysterectomy, oophorectomy, cystectomy or tumor cytoreduction (Supplemental Table 1).

The type and number of additional extended procedures each patient underwent were recorded. The procedures of interest included lymphadenectomy, small bowel resection, colectomy, rectosigmoid resection, hepatic resection, bladder resection, diaphragm resection and cytoreduction. In addition to individual procedures, a composite score based on the number of the above extended procedures each patient underwent was calculated. The procedure score was categorized as: 0 procedures, 1 procedure, 2 procedures, and 3 procedures.¹²

Clinical and demographic characteristics

Patients were classified based on age at surgery into the following groups: <50 years of age, 50–59 years, 60–69 years and 70 years. Race was categorized as white, black, other or unknown. Body mass index was calculated as the weight (kg) divided by height (m²) and recorded as: normal ($<25 \text{ kg/m}^2$), overweight (25–29.9 kg/m²), obese (30 kg/m^2), and unknown.

Covariates potentially associated with performance status including American Society of Anesthesiology (ASA) classification score (1, 2, 3, 4, 5, or unknown), preoperative functional status (independent, partially dependent, totally dependent, and unknown) and preoperative albumin (<3.5 g/dL, 3.5–4 g/dL, and >4 g/dL), were recorded for each patient.¹⁷ The presence of a number of preoperative medical comorbidities including diabetes mellitus (insulin dependent or non-insulin dependent), tobacco use, chronic obstructive pulmonary disease, congestive heart failure, hypertension, corticosteroid use, and the presence of ascites were noted for each patient.¹⁹

Outcome variables

The primary outcomes of the study were perioperative morbidity and mortality. Any complication was defined as a composite measure if the patient was noted to have any of the following postoperative complications: pneumonia, acute renal failure, urinary tract infection, cerebrovascular accident, coma, sepsis, shock, cardiac arrest, myocardial infarction, pulmonary embolism, deep venous thrombosis, prolonged mechanical ventilation, unplanned re-intubation, or progressive renal insufficiency.¹⁹ Severe complications were analyzed based on Clavian class IV complications and included shock, cardiac arrest, myocardial infarction, pulmonary embolism, prolonged intubation or unplanned re-intubation.^{20–22} Wound complications included superficial or deep surgical site infections or an organ space surgical site infection.¹⁹

Prolonged length of stay was defined as hospitalization after surgery of >8 days while nonroutine discharge was defined as discharge to a rehabilitation or skilled nursing facility. Intraoperative or postoperative transfusion of blood products and readmission within 30days of the intervention were noted for each patient. Return to the operating room after the primary procedure was defined as reoperation. Perioperative mortality was defined as death within 30-days of the index surgical procedure.¹⁹

Statistical analysis

Frequency distributions between categorical variables were compared using χ^2 tests. Clinical and demographic data are reported descriptively stratified by age while outcomes are reported stratified by age and procedure score. Multivariable logistic regression models were developed to examine the association between the clinical and demographic characteristics and the number of extended procedures performed and outcomes. Results are reported with risk ratios and 95% confidence intervals.

A number of model fit statistics were estimated to examine the strength of the model to predict the outcome based on clinical characteristics (age, functional status, preoperative albumin, and procedure score) and outcomes. The area under the receiver operating characteristics (ROC) curve of a plot of the true positive rate (sensitivity) versus the false positive rate was estimated with the c-statistic. The c-statistic represents the ability of a model to accurately predict the outcome. Values for the c-statistic range from 0.5 (model no better than chance in discriminating outcome) to 1 (perfect prediction of the outcome).

The pseudo- \mathbb{R}^2 is an indicator of the variability in outcome that is explained by the model and is analogous to \mathbb{R}^2 derived from least squares linear regression. Likelihood ratio tests (LRT) compare the fit of a model with the covariates of interest to a null model (no covariates included). A higher LRT suggests a greater importance of the variable or variables. The Akaike information criterion (AIC) measures the goodness of fit of a model in the context of the overall complexity of the model. A lower AIC suggests greater importance for a variable.

We estimated the ability of a given covariate or set of covariates to distinguish the outcomes of interest. We first assumed that the c-statistic of a null model was 0.5 and the calculated the predictive ability of covariates as: (c-statistic of model with one or more variables)/(c-statistic of null model).²³ Data analysis was performed using SAS version 9.4 (SAS Institute Inc, Cary, North Carolina). All statistical tests were two-sided. A P-value of <0.05 was considered to be statistically significant

Results

A total of 2870 women with ovarian cancer were identified. The cohort included 547 (19.1 %) women < 50 years of age, 784 (27.3 %) women age 50–59, 838 (29.2 %) women age 60–69, and 701 (24.4 %) women 70 years of age (Table 1). Compared to their younger counterparts, the older women were more often white, had normal BMIs, had higher ASA class, had lower preoperative albumin and were more likely to be partially dependent. Furthermore, older women were more likely to have preoperative medical comorbidities,

such as non-insulin dependent diabetes mellitus, COPD and hypertension (P < 0.05 for all). Women 60–69 and 70 were more likely to undergo cytoreduction, small bowel resection and colectomy but less likely to undergo lymphadenectomy (P value < 0.05 for all).

The rate of any perioperative complications increased from 9.5% in women <50 to 9.7% in those 50–59, 13.4% in those aged 60–69, and 14.6% in women 70 years of age (P<0.0001). Compared to women <50 years of age, patients 70 were at increased risk for prolonged hospitalization (16.5 % vs. 32.5%; P<0.0001), non-routine discharge (2.2 % vs. 16.8 %; P<0.0001), transfusion (26.1% vs. 39.2%; P<0.0001), and death (0.9 % vs. 2.7 %; P<0.001) (Table 2).

When stratified by the number of radical procedures performed during the surgery (0 vs. 1 vs. 2 vs. 3), the overall complication rate rose from 7.3% in those who did not require any extended procedures to 12.9% for those who underwent 1 procedure, 28.4% for those who had 2, and 30.0% in women who underwent 3 extended procedures (P < 0.0001) (Table 3). Perioperative mortality increased from 0.7% to 2.0% in subjects who underwent 3 or more radical procedures. Prolonged hospitalization, non-routine discharge, transfusion, readmission and reoperation all increased with the number of radical procedures performed (P < 0.05 for all).

In a series of multivariable models corrected for clinical and demographic characteristics, the number of extended cytoreductive procedures performed and preoperative albumin were the factors most consistently associated with perioperative morbidity (Table 4). While advanced age alone was not associated with perioperative complications, women 70 years of age and those with higher ASA scores were more likely to require prolonged hospitalization and non-routine discharge (P<0.05), while functional status was associated with prolonged hospitalization, non-routine discharge, and complications. Performance of 3 cytoreductive procedures was associated with any complication (RR=4.06; 95% CI, 2.34-7.03), severe complications (RR = 5.07; 95% CI, 2.47-10.41), wound complications (RR=3.80; 95% CI, 1.88–7.69), prolonged hospitalization (RR=4.68; 95% CI, 3.22–6.80), non-routine discharge (RR=2.82; 95% CI, 1.11–7.19) and transfusion (RR=3.15; 95% CI, 2.14–4.63). Similarly, preoperative albumin levels were associated with any complication, severe complications, prolonged hospitalization, nonroutine discharge, transfusion and reoperation (P<0.05 for all). Similarly, preoperative albumin levels were associated with any complication, severe complications, prolonged hospitalization, non-routine discharge, transfusion and reoperation (P<0.05 for all).

We then estimated a number of model fit statistics to determine the importance of each factor in predicting outcomes (Table 5). Compared to chance alone, the ability to predict any complication was increased by 27.4% when procedure score was analyzed, 22.0% with preoperative albumin, 11.0% with age, and 4.0% with functional status. Combining these four measures increased predictive ability to 37.6%, while the full model with all the clinical and demographic characteristics enhanced the predictive ability to 40.4%. The procedure score and preoperative albumin were the most important individual predictors of severe complications, wound complications, readmission, and reoperation, while age was the most important factor in distinguishing readmission.

Discussion

These findings suggest that the perioperative complication rate for surgery for ovarian cancer is substantial. While age and functional status are associated with outcomes, among patient factors, preoperative albumin level is the strongest predictor of perioperative morbidity. However, the number of extended procedures performed is the most important factor associated with adverse outcomes.

The importance of perioperative surgical complications is now well recognized.^{24–26} In a study of over 100,000 patients who underwent major surgery, the occurrence of a complication in the 30-day postoperative period was more important in determining survival than preoperative patient and intraoperative factors.²⁴ For cancer patients, perioperative complications can lead to delay in the initiation of chemotherapy and increase the risk of omission of chemotherapy that may ultimately impact survival from cancer. In a population-based analysis of women with ovarian cancer, women who experienced a perioperative complication were over 60% more likely to not initiate chemotherapy within 6 weeks of surgery.²⁶

Somewhat surprisingly, neither age nor functional status was independently associated with morbidity or mortality. In contrast, preoperative albumin levels, a marker of functional reserve, were highly associated with perioperarive outcomes. Other reports have noted similar findings. Langstratt and colleagues found that an albumin level 3 was an important predictor of poor perioperative outcomes in women 65 undergoing primary debulking surgery for ovarian cancer.²⁷ Similarly, a second report noted that serum albumin levels 3.5g/dL adversely affected survival by a statistically significant level across all stages of ovarian cancer, independent of stage at diagnosis, serum cancer antigen-125 and previous treatment history.²⁸

The number of extended cytoreductive proceudres performed was the factor most predictive of perioperative morbidity. Prior work has demonstrated similar findings. In an analysis of over 28,000 women with ovarian cancer the complication rate increased from 20% in patients who underwent no extended procedures to 34% in patients who required one additional procedure and 44% in those requiring 2 or more extended procedures.¹² We noted similar trends for the overall rate of complications, wound complications, severe complications, prolonged hospitalization, transfusion and non-routine discharge.

Given that those women who require multiple extended procedures are at highest risk, these data suggest that alternative treatment strategies should be considered in women who may require extended cytoreductive surgery. However, identification of women who may require extended cytoreduction has often proven difficult. Reports examining the ability of various imaging modalities to predict resectable have reported mixed results.^{29–31} More recently, there has been greater interest in laparoscopic assessment of intraabdominal disease prior to laparotomy.³²

Given the substantial morbidity associated with cytoreductive surgery for ovarian cancer, there has been great interest in strategies to reduce perioperative complications. A number of studies of neoadjuvant chemotherapy have suggested that preoperative chemotherapy

reduces the extent of surgery required for women with ovarian cancer as well as complications.^{10,33–36} In an institutional series of 172 patients with advanced stage ovarian cancer, radical organ resections were required in 25% of women who underwent primary cytoreduction compared to only 6% of those who received neoadjuvant chemotherapy.³³ In a prospective trial comparing neoadjuvant chemotherapy and primary cytoreduction, the rate of hemorrhagic (4% vs. 7%) and infectious (8% vs. 2%) complications were lower in women in women who received neoadjuvant chemotherapy.¹⁰ Perhaps most importantly, the perioperative mortality rate was nearly four times higher among women who underwent primary cytoreduction.¹⁰

While neoadjuvant chemotherapy is associated with decreased perioperative morbidity, whether this strategy is associated with reduced long-term survival remains an area of active debate.^{10,11,37–39} A randomized phase III trial of neoadjuvant chemotherapy compared to cytoreductive surgery noted equivalent survival for the two strategies. The amount of residual tumor after surgery, but not the timing of surgery, was predictive of survival.¹⁰ This trial has been criticized in that survival was lower than in many contemporaneous groups of patients treated in the U.S. and the overall rate of optimal cytoreduction was low. Given the substantial risk of morbidity for patients who require multiple organ resections at the time of cytoreduction, these women may derive particular benefit for neoadjuvant chemotherapy.³⁸

We recognize a number of important limitations. First, we lack data on tumor characteristics, prior surgical history, and extent of disease. Tumor stage as well as the volume and distribution of tumor implants within the abdomen likely impact not only extent of surgery, but also perioperative outcomes. Second, we are only able to capture 30-day perioperative outcomes. While data on long-term outcomes would be of interest, a priori the goal of our analysis was to examine how clinical and demographic factors influenced near term outcomes. As described, prior work has shown the association with perioperative complications and receipt of chemotherapy and survival.^{24–26} Third, we cannot exclude the possibility that some complications were not captured. However, a strength of the NSQIP dataset is the thorough capture of perioperative events. As such, the dataset is well suited to the current study. Although a variable for preoperative chemotherapy exists within the dataset, this variable was missing for a large number (46.0%) of the patients in our cohort. We therefore cannot accurately distinguish primary from interval cytoreduction. Lastly, as with any study of administrative data, we were unable to capture data on individual patient and physician preferences that undoubtedly influenced surgical planning and outcomes.

In sum, these findings suggest that the number of extended surgical procedures and preoperative albumin are the strongest predictors of adverse perioperative outcomes in women with ovarian cancer. As such, those women who may require extended cytoreduction, particularly those with poor performance status and low albumin levels, may benefit from alternative treatment strategies such as neoadjuvant chemotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Dr. Wright (NCI R01CA169121-01A1) and Dr. Hershman (NCI R01 CA166084) are recipients of grants and Dr. Tergas is the recipient of a fellowship (NCI R25 CA094061-11) from the National Cancer Institute.

References

- Ozols RF, Bundy BN, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003; 21:3194–3200. [PubMed: 12860964]
- Hoskins WJ, McGuire WP, Brady MF, et al. The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol. 1994; 170:974–979. discussion 9–80. [PubMed: 8166218]
- Hoskins WJ. Epithelial ovarian carcinoma: principles of primary surgery. Gynecol Oncol. 1994; 55:S91–S96. [PubMed: 7835815]
- Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002; 20:1248–1259. [PubMed: 11870167]
- Aletti GD, Dowdy SC, Gostout BS, et al. Aggressive surgical effort and improved survival in advanced-stage ovarian cancer. Obstet Gynecol. 2006; 107:77–85. [PubMed: 16394043]
- 6. Chi DS, Franklin CC, Levine DA, et al. Improved optimal cytoreduction rates for stages IIIC and IV epithelial ovarian, fallopian tube, and primary peritoneal cancer: a change in surgical approach. Gynecol Oncol. 2004; 94:650–654. [PubMed: 15350354]
- Eisenkop SM, Friedman RL, Wang HJ. Complete cytoreductive surgery is feasible and maximizes survival in patients with advanced epithelial ovarian cancer: a prospective study. Gynecol Oncol. 1998; 69:103–108. [PubMed: 9600815]
- Chi DS, Eisenhauer EL, Lang J, et al. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol Oncol. 2006; 103:559–564. [PubMed: 16714056]
- 9. Winter WE 3rd, Maxwell GL, Tian C, et al. Prognostic factors for stage III epithelial ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007; 25:3621–3627. [PubMed: 17704411]
- Vergote I, Trope CG, Amant F, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010; 363:943–953. [PubMed: 20818904]
- Schorge JO, Clark RM, Lee SI, Penson RT. Primary debulking surgery for advanced ovarian cancer: are you a believer or a dissenter? Gynecol Oncol. 2014; 135:595–605. [PubMed: 25316177]
- Wright JD, Lewin SN, Deutsch I, et al. Defining the limits of radical cytoreductive surgery for ovarian cancer. Gynecol Oncol. 2011; 123:467–473. [PubMed: 21958535]
- Gerestein CG, Damhuis RA, Burger CW, Kooi GS. Postoperative mortality after primary cytoreductive surgery for advanced stage epithelial ovarian cancer: a systematic review. Gynecol Oncol. 2009; 114:523–527. [PubMed: 19344936]
- Thrall MM, Goff BA, Symons RG, Flum DR, Gray HJ. Thirty-day mortality after primary cytoreductive surgery for advanced ovarian cancer in the elderly. Obstet Gynecol. 2011; 118:537– 547. [PubMed: 21860281]
- Aletti GD, Eisenhauer EL, Santillan A, et al. Identification of patient groups at highest risk from traditional approach to ovarian cancer treatment. Gynecol Oncol. 2011; 120:23–28. [PubMed: 20933255]
- Langstraat C, Aletti GD, Cliby WA. Morbidity, mortality and overall survival in elderly women undergoing primary surgical debulking for ovarian cancer: a delicate balance requiring individualization. Gynecol Oncol. 2011; 123:187–191. [PubMed: 21794902]
- American College of Surgeons National Surgical Quality Improvement Program. at http:// site.acsnsqip.org/.

- Lawson EH, Hall BL, Louie R, et al. Association between occurrence of a postoperative complication and readmission: implications for quality improvement and cost savings. Ann Surg. 2013; 258:10–18. [PubMed: 23579579]
- Dessources K, Hou JY, Tergas AI, et al. Factors associated with 30-day hospital readmission after hysterectomy. Obstet Gynecol. 2015; 125:461–470. [PubMed: 25569007]
- Adams P, Ghanem T, Stachler R, Hall F, Velanovich V, Rubinfeld I. Frailty as a predictor of morbidity and mortality in inpatient head and neck surgery. JAMA otolaryngology-- head & neck surgery. 2013; 139:783–789. [PubMed: 23949353]
- Karam J, Tsiouris A, Shepard A, Velanovich V, Rubinfeld I. Simplified frailty index to predict adverse outcomes and mortality in vascular surgery patients. Annals of vascular surgery. 2013; 27:904–908. [PubMed: 23711971]
- Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Annals of surgery. 2004; 240:205– 213. [PubMed: 15273542]
- Lawson EH, Hall BL, Louie R, Zingmond DS, Ko CY. Identification of modifiable factors for reducing readmission after colectomy: a national analysis. Surgery. 2014; 155:754–766. [PubMed: 24787101]
- Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005; 242:326–341. discussion 41-3. [PubMed: 16135919]
- Hendren S, Birkmeyer JD, Yin H, Banerjee M, Sonnenday C, Morris AM. Surgical complications are associated with omission of chemotherapy for stage III colorectal cancer. Dis Colon Rectum. 2010; 53:1587–1593. [PubMed: 21178851]
- Wright JD, Herzog TJ, Neugut AI, et al. Effect of radical cytoreductive surgery on omission and delay of chemotherapy for advanced-stage ovarian cancer. Obstet Gynecol. 2012; 120:871–881. [PubMed: 22996105]
- Langstraat C, Aletti GD, Cliby WA. Morbidity, mortality and overall survival in elderly women undergoing primary surgical debulking for ovarian cancer: A delicate balance requiring individualization. Gynecologic oncology. 2011; 123:187–191. [PubMed: 21794902]
- 28. Gupta DLC, Vashi PG, Dahlk S, Grutsch JF, Lis CG. Is Serum Albumin an Independent Predictor of Survival in Ovarian Cancer? Clin Ovarian Cancer. 2009; 2:52–56.
- 29. Suidan RS, Ramirez PT, Sarasohn DM, et al. A multicenter prospective trial evaluating the ability of preoperative computed tomography scan and serum CA-125 to predict suboptimal cytoreduction at primary debulking surgery for advanced ovarian, fallopian tube, and peritoneal cancer. Gynecol Oncol. 2014; 134:455–461. [PubMed: 25019568]
- Glaser G, Torres M, Kim B, et al. The use of CT findings to predict extent of tumor at primary surgery for ovarian cancer. Gynecol Oncol. 2013; 130:280–283. [PubMed: 23672930]
- Nick AM, Coleman RL, Ramirez PT, Sood AK. A framework for a personalized surgical approach to ovarian cancer. Nat Rev Clin Oncol. 2015; 12:239–245. [PubMed: 25707631]
- Fagotti A, Vizzielli G, De Iaco P, et al. A multicentric trial (Olympia-MITO 13) on the accuracy of laparoscopy to assess peritoneal spread in ovarian cancer. Am J Obstet Gynecol. 2013; 209:462 e1–462 e11. [PubMed: 23891632]
- Hou JY, Kelly MG, Yu H, et al. Neoadjuvant chemotherapy lessens surgical morbidity in advanced ovarian cancer and leads to improved survival in stage IV disease. Gynecol Oncol. 2007; 105:211– 217. [PubMed: 17239941]
- Worley MJ Jr, Guseh SH, Rauh-Hain JA, et al. Does neoadjuvant chemotherapy decrease the risk of hospital readmission following debulking surgery? Gynecol Oncol. 2013; 129:69–73. [PubMed: 23375727]
- 35. Glasgow MA, Yu H, Rutherford TJ, et al. Neoadjuvant chemotherapy (NACT) is an effective way of managing elderly women with advanced stage ovarian cancer (FIGO Stage IIIC and IV). J Surg Oncol. 2013; 107:195–200. [PubMed: 22648987]
- Thrall MM, Gray HJ, Symons RG, Weiss NS, Flum DR, Goff BA. Neoadjuvant chemotherapy in the Medicare cohort with advanced ovarian cancer. Gynecol Oncol. 2011; 123:461–466. [PubMed: 21945309]

- Chi DS, Bristow RE, Armstrong DK, Karlan BY. Is the easier way ever the better way? J Clin Oncol. 2011; 29:4073–4075. [PubMed: 21931018]
- Vergote I, Trope CG, Amant F, Ehlen T, Reed NS, Casado A. Neoadjuvant chemotherapy is the better treatment option in some patients with stage IIIc to IV ovarian cancer. J Clin Oncol. 2011; 29:4076–4078. [PubMed: 21931032]
- 39. Wright JD, Ananth CV, Tsui J, et al. Comparative effectiveness of upfront treatment strategies in elderly women with ovarian cancer. Cancer. 2014; 120:1246–1254. [PubMed: 24443159]

Research Highlights

- Surgery for ovarian cancer is associated with substantial morbidity.

- While preoperative clinical and demographic factors may help predict the risk of adverse outcomes for women undergoing surgery for ovarian cancer,
- performance of extended cytoreductive procedures is the strongest risk factor for complications.
- Alternative treatment strategies may be considered in women with ovarian cancer at high risk for complications.

Clinical and demographic characteristics of the cohort stratified by age at surgery.

	<50	<50 years	50-5	50-59 years	60-6	60–69 years	70	70 years	P-value
	z	(%)	z	(%)	z	(%)	z	(%)	
	547	(19.1)	784	(27.3)	838	(29.2)	701	(24.4)	
Year of procedure									0.08
2005-2006	5	(0.9)	٢	(0.9)	5	(0.6)	10	(1.4)	
2007	8	(1.5)	23	(2.9)	22	(2.6)	25	(3.6)	
2008	33	(6.0)	49	(6.3)	41	(4.9)	46	(9.9)	
2009	68	(12.4)	70	(8.9)	88	(10.5)	51	(7.3)	
2010	74	(13.5)	98	(12.5)	107	(12.8)	81	(11.6)	
2011	166	(30.4)	241	(30.7)	251	(30.0)	221	(31.5)	
2012	193	(35.3)	296	(37.8)	324	(38.7)	267	(38.1)	
Race									0.0003
White	388	(70.9)	575	(73.3)	661	(78.9)	540	(0.77.0)	
Black	52	(6.5)	56	(7.1)	37	(4.4)	45	(6.4)	
Other	27	(4.9)	30	(3.8)	19	(2.3)	15	(2.1)	
Unknown	80	(14.6)	123	(15.7)	121	(14.4)	101	(14.4)	
BMI									< 0.0001
Normal	202	(36.9)	275	(35.1)	275	(32.8)	276	(39.4)	
Overweight	136	(24.9)	195	(24.9)	258	(30.8)	238	(34.0)	
Obese	197	(36.0)	302	(38.5)	300	(35.8)	185	(26.4)	
Unknown	12	(2.2)	12	(1.5)	5	(0.6)	2	(0.3)	
ASA Class									< 0.0001
1	43	(6.7)	33	(4.2)	15	(1.8)	ю	(0.4)	
2	287	(52.5)	399	(50.9)	347	(41.4)	228	(32.5)	
3	204	(37.3)	330	(42.1)	440	(52.5)	433	(61.8)	
4	12	(2.2)	21	(2.7)	36	(4.3)	37	(5.3)	
Unknown	1	(0.2)	1	(0.1)	0	(0.0)	0	(0.0)	
Functional status									0.02
Independent	531	(97.1)	770	(98.2)	824	(98.3)	668	(95.3)	

Partially dependent Totally dependent Unknown <i>Modified frailty index</i> Median (IQR)	2								
Partially dependent Totally dependent Unknown Modified frailty index Median (IQR)	Z	(%)	Z	(%)	Z	(%)	Z	(%)	
Totally dependent Unknown <i>Modified frailty index</i> Median (IQR)	Ξ	(2.0)	11	(1.4)	13	(1.6)	29	(4.1)	
Unknown Modified frailty index Median (IQR)	4	(0.7)	ю	(0.4)	1	(0.1)	4	(0.0)	
<i>Modified frailty index</i> Median (IQR)	-	(0.2)	0	(0.0)	0	(0.0)	0	(0.0)	
Median (IQR)									
	0	(0-0) 0	0) (0	0 (0-0.09)	0.09	0.09 (0-0.2)	0.09	0.09 (0-0.2)	
Preoperative albumin									<0.0001
⊲.5	82	(15.0)	117	(14.9)	144	(17.2)	153	(21.8)	
3.5-4	120	(21.9)	179	(22.8)	220	(26.3)	207	(29.5)	
*	164	(30.0)	237	(30.2)	216	(25.8)	158	(22.5)	
Unknown	181	(33.1)	251	(32.0)	258	(30.8)	183	(26.1)	
Preoperative conditions									
Insulin dependent diabetes mellitus	18	(3.3)	23	(2.9)	21	(2.5)	18	(2.6)	<0.0001
Non-insulin dependent diabetes mellitus	18	(3.3)	43	(5.5)	82	(8.6)	86	(12.3)	<0.0001
Tobacco use	116	(21.2)	131	(16.7)	103	(12.3)	48	(6.9)	<0.0001
COPD	3	(0.6)	11	(1.4)	27	(3.2)	35	(5.0)	<0.0001
Ascites	104	(19.0)	151	(19.3)	213	(25.4)	154	(22.0)	0.03
CHF	0	(0.0)	4	(0.5)	7	(0.2)	9	(0.0)	0.06
Hypertension	84	(15.4)	242	(30.9)	405	(48.3)	457	(65.2)	<0.0001
Steroid use	11	(2.0)	19	(2.4)	30	(3.6)	28	(4.0)	0.02
Concurrent procedures									
Lymphadenectomy	248	(45.3)	359	(45.8)	320	(38.2)	215	(30.7)	<0.0001
Cytoreduction	224	(41.0)	371	(47.3)	458	(54.7)	351	(50.1)	0.0001
Small bowel resection	10	(1.8)	24	(3.1)	25	(3.0)	32	(4.6)	0.01
Colectomy	Ξ	(2.0)	17	(2.2)	37	(4.4)	41	(5.9)	<0.0001
Rectosigmoid resection	15	(2.7)	47	(6.0)	55	(9.9)	37	(5.3)	0.07
Hepatic resection	8	(1.5)	12	(1.5)	14	(1.7)	10	(1.4)	0.99
Bladder resection	-	(0.2)	1	(0.1)	2	(0.2)	0	(0.0)	0.52
Diaphragm resection	10	(1.8)	11	(1.4)	20	(2.4)	11	(1.6)	0.86
Extended procedure score									<0.0001
0	309	(56.5)	396	(50.5)	342	(40.8)	305	(43.5)	

<50	years	50-23	<50 years 50–59 years 60–69 years	60-69) years	70	70 years	P-value
z	(%)	Z	(%)	Z	(%) N (%) N (%) N (%) N	z	(%)	
201	(36.8)	300	(38.3)	394	201 (36.8) 300 (38.3) 394 (47.0) 319	319	(45.5)	
30	(5.5)	75	30 (5.5) 75 (9.6) 84	84	(10.0)	65	65 (9.3)	
7	(1.3)	13	(1.7)	18	(1.3) 13 (1.7) 18 (2.2) 12 (1.7)	12	(1.7)	

Table 2

Perioperative outcomes stratified by age at surgery.

N (%) N (%) N (%) N (%) Complications Any complication 52 (9.5) 76 (9.7) 112 (13.4) 102 (14.6) 0.0007 Any complication 36 (6.6) 45 (5.7) 67 (8.0) 45 (6.4) 0.61 Severe complication 30 (5.5) 40 (5.1) 63 (7.5) 63 9.0) 0.0023 Resource utilization 30 (5.5) 40 (5.1) 63 (7.5) 63 (9.0) 0.0023 Prolonged hospitalization/I 90 (16.5) 171 (21.8) 214 (25.5) 223 (30.0) 0.0003 Non-routine discharge ² 8 (2.2) 171 (31.3) 242 (35.5) 20.000 7000 Transfusion ³ 1113 (26.1) 199 (31.3) 242 (35.5) 20.20 20.00 70.00 Reoperation <th></th> <th><50</th> <th><50 years</th> <th>50-5</th> <th>50–59 years</th> <th>9-09</th> <th>60–69 years</th> <th>70</th> <th>70 years</th> <th>P-value</th>		<50	<50 years	50-5	50–59 years	9-09	60–69 years	70	70 years	P-value
lication 52 (9.5) 76 (9.7) 112 (13.4) 102 (14.6) plication 36 (6.6) 45 (5.7) 67 (8.0) 45 (6.4) plication 30 (5.5) 40 (5.1) 63 (7.5) 63 (9.0) ation 30 (5.5) 40 (5.1) 63 (7.5) 63 (9.0) pitalization 30 (5.5) 40 (5.1) 63 (7.5) 63 (9.0) ation 30 (16.5) 171 (21.8) 214 (25.5) 228 (32.5) pitalization 90 (16.5) 171 (21.8) 214 (25.5) 228 (32.5) sion ³ 113 (26.1) 199 (31.3) 242 (35.5) 223 (392.5) sion ² 35 (10.2) 56 (9.7) 56 (11.5) ation 24 (4.4) 30 (3.8) 25		z	(%)	z	(%)	z	(%)	z	(%)	
52 (9.5) 76 (9.7) 112 (13.4) 102 (14.6) 36 (6.6) 45 (5.7) 67 (8.0) 45 (6.4) 30 (5.5) 40 (5.1) 63 (7.5) 63 (9.0) 90 (16.5) 171 (21.8) 214 (25.5) 228 (32.5) 8 (2.2) 17 (3.2) 37 (6.4) 82 (16.8) 113 (26.1) 199 (31.3) 242 (35.5) 223 (39.2) 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) 244 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 56 (11.5)	Complications									
36 (6.6) 45 (5.7) 67 (8.0) 45 (6.4) 30 (5.5) 40 (5.1) 63 (7.5) 63 (9.0) 90 (16.5) 171 (21.8) 214 (25.5) 228 (32.5) 8 (2.2) 17 (3.13) 37 (6.4) 82 (16.8) 113 (26.1) 199 (31.3) 242 (35.5) 223 (39.2) 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) 244 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (3.7)	Any complication	52	(9.5)	76	(6.7)	112	(13.4)	102	(14.6)	0.0007
30 (5.5) 40 (5.1) 63 (7.5) 63 (9.0) 90 (16.5) 171 (21.8) 214 (25.5) 228 (32.5) 8 (2.2) 17 (3.2) 37 (6.4) 82 (16.8) 1113 (26.1) 199 (31.3) 242 (35.5) 223 (39.2) 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) 24 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (3.7)	Wound complication	36	(9.9)	45	(5.7)	67	(8.0)	45	(6.4)	0.61
90 (16.5) 171 (21.8) 214 (25.5) 228 (32.5) 8 (2.2) 17 (3.2) 37 (6.4) 82 (16.8) 113 (26.1) 199 (31.3) 242 (35.5) 223 (39.2) 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) 24 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (3.7)	Severe complication	30	(5.5)	40	(5.1)	63	(7.5)	63	(0.0)	0.0023
90 (16.5) 171 (21.8) 214 (25.5) 228 (32.5) 8 (2.2) 17 (3.2) 37 (6.4) 82 (16.8) 113 (26.1) 199 (31.3) 242 (35.5) 223 (39.2) 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) 24 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (3.7)	Resource utilization									
routine discharge ² 8 (2.2) 17 (3.2) 37 (6.4) 82 (16.8) Transfusion ³ 113 (26.1) 199 (31.3) 242 (35.5) 223 (39.2) Readmission ² 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) Reoperation 24 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (2.7)	Prolonged hospitalization ¹	90	(16.5)	171	(21.8)	214	(25.5)	228	(32.5)	<0.001
Transfusion ³ 113 (26.1) 199 (31.3) 242 (35.5) 223 (39.2) Readmission ² 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) Reoperation 24 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (2.7)	Non-routine discharge ²	×	(2.2)	17	(3.2)	37	(6.4)	82	(16.8)	<0.0001
Readmission ² 35 (9.8) 55 (10.2) 56 (9.7) 56 (11.5) Reoperation 24 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (2.7)	$\operatorname{Transfusion}^{\mathcal{J}}$	113	(26.1)	199	(31.3)	242	(35.5)	223	(39.2)	<0.0001
Reoperation 24 (4.4) 30 (3.8) 25 (3.0) 26 (3.7) 5 (0.9) 3 (0.4) 10 (1.2) 19 (2.7)	Readmission ²	35	(8.8)	55	(10.2)	56	(6.7)	56	(11.5)	0.48
5 (0.9) 3 (0.4) 10 (1.2) 19 (2.7)	Reoperation	24	(4.4)	30	(3.8)	25	(3.0)	26	(3.7)	0.57
	Death	S	(0.0)	ю	(0.4)	10	(1.2)	19	(2.7)	00000
	² Data only available from 20.	11-2013	5							
² Data only available from 2011–2012	3 Data only available from 2010–2012	10-2013	2							

Perioperative outcomes stratified by number of extended procedures performed.

	0 pro	0 procedures	1 pro	1 procedure	2 pro	2 procedures	3 pr	3 procedures	P-value
	z	(%)	z	(%)	z	(%)	z	(%)	
Complications									
Any complication	66	(7.3)	156	(12.9)	72	(28.4)	15	(30.0)	<0.0001
Wound complication	68	(5.0)	80	(9.9)	36	(14.2)	6	(18.0)	<0.0001
Severe complication	51	(3.8)	92	(1.6)	4	(17.3)	6	(18.0)	<0.0001
Resource utilization									
Prolonged hospitalization ¹	201	(14.9)	323	(26.6)	146	(57.5)	33	(66.0)	<0.0001
Non-routine discharge ²	46	(5.3)	72	(8.5)	21	(10.6)	ŝ	(13.2)	0.0006
Transfusion ³	224	(21.3)	368	(37.3)	155	(65.1)	30	(68.2)	<0.0001
Readmission ²	75	(8.6)	94	(11.1)	28	(14.1)	5	(13.2)	0.01
Reoperation	41	(3.0)	39	(3.2)	22	(8.7)	ю	(6.0)	0.001
Death (global death)	6	(0.7)	17	(1.4)	10	(3.9)	1	(2.0)	0.0002
^I Hospitalization 8 days									
² Data only available from 2011–2012	11-2013	0							
3 Data only available from 2010–2012	10-2013	6							
- mon and a man and a mon	101	,							

	Wound complication	Severe complication	Any complication	Prolonged hospitalization	Non- routine discharge ^I	Transfusion ²	Readmission ¹	Reoperation
Age								
<50	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
50-59	$0.77\ (0.49,1.19)$	0.84 (0.52, 1.35)	0.93 (0.65, 1.33)	1.24 (0.96, 1.60)	1.39 (0.60, 3.22)	$1.10\ (0.88,1.39)$	0.99 (0.65, 1.52)	$0.80\ (0.46,1.38)$
60–69	1.00 (0.66, 1.51)	1.09 (0.70, 1.71)	1.15 (0.82, 1.61)	1.27 (0.99, 1.63)	2.42 (1.12, 5.24)*	1.15 (0.92, 1.44)	0.92 (0.60, 1.42)	0.59 (0.33, 1.04)
70	$0.83\ (0.53,\ 1.31)$	1.14 (0.73, 1.79)	1.16 (0.82, 1.63)	$1.46(1.14,1.88)^{*}$	5.47 (2.62, 11.42)**	1.20 (0.95, 1.52)	1.08 (0.70, 1.67)	0.67 (0.37, 1.19)
Year of procedure								
2005–06	Referent	Referent	Referent	Referent	NA	NA	NA	Referent
2007	$0.63\ (0.15,\ 2.55)$	3.97 (0.51, 31.07)	1.95(0.43, 8.88)	1.30 (0.64, 2.67)	NA	NA	NA	1.95(0.40, 9.47)
2008	0.43 (0.11, 1.73)	1.09 (0.13, 9.18)	0.80 (0.17, 3.73)	0.57 (0.27, 1.20)	NA	NA	NA	0.43 (0.07, 2.49)
2009	0.37~(0.10, 1.43)	0.82 (0.10, 6.82)	0.88 (0.20, 3.94)	0.57 (0.28, 1.18)	NA	NA	NA	0.45 (0.08, 2.46)
2010	0.42 (0.12, 1.52)	0.91 (0.11, 7.37)	0.99 (0.23, 4.32)	0.54 (0.27, 1.10)	NA	Referent	NA	$0.31 \ (0.06, 1.63)$
2011	0.47 (0.14, 1.64)	0.97 (0.12, 7.67)	0.98 (0.23, 4.20)	$0.44 \ (0.22, 0.88)^{*}$	Referent	$1.10\ (0.88,\ 1.37)$	Referent	0.32~(0.06, 1.63)
2012	0.52 (0.15, 1.79)	0.77 (0.10, 6.07)	0.92 (0.21, 3.96)	0.48~(0.24, 0.97)*	0.86 (0.62, 1.20)	$1.10\ (0.89,\ 1.36)$	$0.86\ (0.65,1.13)$	$0.28\ (0.05,1.40)$
Race								
White	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
Black	1.04 (0.61, 1.79)	1.23 (0.74, 2.02)	1.15 (0.77, 1.70)	1.14 (0.87, 1.50)	1.08 (0.60, 1.96)	$1.19\ (0.91,\ 1.55)$	0.99 (0.56, 1.77)	0.66 (0.26, 1.64)
Other	1.32 (0.58, 3.03)	1.74 (0.88, 3.46)	1.35 (0.77, 2.38)	1.05 (0.67, 1.63)	0.46 (0.11, 1.92)	1.41 (0.99, 2.02)	1.75 (0.91, 3.38)	1.80 (0.77, 4.20)
Unknown	0.97 (0.61, 1.55)	$0.53\ (0.28,\ 0.98)^{*}$	$0.62\ (0.40,\ 0.95)^{*}$	0.72 (0.53, 0.96)*	0.62 (0.32, 1.21)	1.16(0.93, 1.44)	1.11 (0.72, 1.72)	0.61 (0.28, 1.34)
BMI								
Normal	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
Overweight	0.98 (0.66, 1.45)	1.06 (0.75, 1.51)	$1.08\ (0.83,1.40)$	0.98 (0.82, 1.18)	1.47 (0.96, 2.25)	0.88 (0.74, 1.05)	0.95 (0.66, 1.35)	0.73 (0.46, 1.18)
Obese	1.57 (1.12, 2.22)	1.00 (0.70, 1.42)	1.02 (0.78, 1.33)	0.92 (0.76, 1.10)	1.56~(1.02, 2.40)*	$0.80\ (0.68,\ 0.96)$	$1.14\ (0.81,1.59)$	$0.59\ (0.36,\ 0.96)^{*}$
Unknown	1.05 (0.25, 4.40)	$0.64\ (0.09,4.66)$	0.67 (0.16, 2.74)	1.47 (0.77, 2.80)	1.58 (0.21, 11.60)	0.77 (0.34, 1.73)	1.10 (0.27, 4.51)	$1.30\ (0.31, 5.49)$
ASA Class								
1	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
2	1.45 (0.45, 4.65)	1.73 (0.42, 7.13)	1.75 (0.64, 4.76)	1.38 (0.70, 2.70)		1.51 (0.87, 2.65)	2.04 (0.64, 6.49)	1.82 (0.44, 7.59)
ŝ	2.06 (0.64, 6.60)	2.51 (0.61, 10.30)	2.39 (0.88, 6.49)	2.06 (1.06, 4.03)*	1.79 (1.18, 2.71)*	1.84 (1.05, 3.22)	2.21 (0.69, 7.08)	1.89 (0.45, 7.96)

Gynecol Oncol. Author manuscript; available in PMC 2016 July 01.

Patankar et al.

Table 4

Multivariable models of perioperative morbidity and resource utilization.

Author Manuscript

Aut
thor
Man
uscr
þ

Ą	
utho	
or N	
lar	
NUSC	
<u> </u>	

	complication	complication	complication	hospitalization	routine discharge ¹	Transfusion ²	Readmission ¹	кеорегацон
4	2.40 (0.64, 8.91)	2.58 (0.56, 11.79)	2.27 (0.75, 6.85)	3.04 (1.49, 6.24)*	2.30 (1.13, 4.67)*	1.95 (1.02, 3.72)	1.42 (0.33, 6.05)	2.31 (0.43, 12.33)
Functional status								
Independent	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
Partially dependent	ı	1.93(1.06, 3.51)*	1.52 (0.90, 2.56)	1.43 (1.02, 2.02)	3.17 (1.75, 5.74)*	$0.89\ (0.55,1.44)$		0.86 (0.26, 2.82)
Totally dependent	·	$5.36(1.91, 15.00)^{**}$	4.01 (1.62, 9.96)*	2.51 (1.23, 5.12)*	3.65 (0.86, 15.40)	2.19 (0.70, 6.88)		2.14 (0.29, 15.88)
Preoperative albumin								
<3.5	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
3.5-4	0.85 (0.56, 1.28)	$0.70\ (0.49,\ 1.01)$	$0.73 \ (0.55, 0.98)^{*}$	$0.65\ (0.53,\ 0.79)^{**}$	0.87 (0.58, 1.31)	$0.73\ (0.60,\ 0.88)$	1.44 (0.93, 2.22)	$0.99\ (0.57,1.69)$
¥	$0.62\ (0.40,0.98)$	$0.29 (0.18, 0.48)^{**}$	0.47 (0.34, 0.66)**	$0.38~(0.30, 0.48)^{**}$	$0.28~(0.15, 0.53)^{**}$	$0.51 (0.41, 0.64)^{**}$	$1.09\ (0.69,\ 1.75)$	$0.50\ (0.26,\ 0.93)*$
Unknown	$0.99\ (0.67,1.48)$	$0.65\ (0.45,\ 0.95)^{*}$	$0.71 \ (0.53, 0.96)^{*}$	$0.57 (0.47, 0.70)^{**}$	$0.63\ (0.40,\ 1.01)$	$0.61 (0.50, 0.75)^{**}$	1.07 (0.67, 1.69)	$0.87\ (0.50,1.50)$
Procedure score								
0	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
1	1.26 (0.91, 1.76)	$1.88\ (1.33,\ 2.67)*$	$1.63 (1.26, 2.10)^{*}$	$1.65(1.38, 1.98)^{**}$	1.38 (0.95, 2.01)	$1.61 (1.36, 1.91)^{**}$	1.28 (0.94, 1.75)	1.06 (0.67, 1.65)
2	2.72 (1.79, 4.15)**	3.90 (2.55, 5.96)*	3.25 (2.37, 4.47)**	3.21 (2.56, 4.01)**	1.51 (0.89, 2.56)	2.55 (2.06, 3.15)**	$1.64\ (1.05,\ 2.56)$	2.98 (1.72, 5.16)**
ς	$3.80 (1.88, 7.69)^{**}$	5.07 (2.47, 10.41)**	4.06 (2.34, 7.03)**	$4.68(3.22, 6.80)^{**}$	2.82 (1.11, 7.19)*	3.15 (2.14, 4.63)** 1.58 (0.63, 3.93)	$1.58\ (0.63,\ 3.93)$	2.14 (0.65, 7.02)

Gynecol Oncol. Author manuscript; available in PMC 2016 July 01.

²Data only available from 2010–2012

Table 5

Model fit statistics.

		C-Statistic	Ability to distinguish	Pseudo-R ²	AIC	LRT
Wound complications (n=2870)	Age	0.537	7.4%	0.0012	1419.243	3.4369
	Functional status	0.511	2.2%	0.0008	1425.249	5.4310
	Preoperative albumin	0.561	12.2%	0.0034	1413.036	9.6434
	Procedure score	0.593	18.6%	0.0109	1391.343	31.3372
	Combination of age, functional status, albumin	0.588	17.6%	0.0067	1413.329	19.3506
	All four measures (age, functional status, albumin, procedure score)	0.642	28.4%	0.0169	1389.839	48.8411
	Full model	0.678	35.6%	0.0252	1397.325	73.3545
Severe complications (n=2870)	Age	0.567	13.4%	0.0038	1427.440	10.9687
	Functional status	0.533	6.6%	0.0022	1417.753	20.6553
	Preoperative albumin	0.651	30.2%	0.0199	1380.832	57.5768
	Procedure score	0.648	29.6%	0.0218	1375.213	63.1950
	Combination of age, functional status, albumin	0.665	33%	0.0266	1373.103	77.3050
	All four measures (age, functional status, albumin, procedure score)	0.720	44%	0.0441	1326.896	129.5123
	Full model	0.743	48.6%	0.0532	1331.600	156.8090
Any complication (n=2870)	Age	0.555	11%	0.0046	2091.445	13.1221
	Functional status	0.520	4%	0.0055	2088.809	15.7581
	Preoperative albumin	0.610	22%	0.0173	2054.415	50.1513
	Procedure score	0.637	27.4%	0.0320	2011.340	93.2270
	Combination of age, functional status, albumin	0.626	25.2%	0.0238	2047.416	69.1509
	All four measures (age, functional status, albumin, procedure score)	0.688	37.6%	0.0504	1974.189	148.3781
	Full model	0.702	40.4%	0.0580	1983.202	171.3646
Prolonged hospitalization (n=2870)	Age	0.582	16.4%	0.0164	3156.133	47.4187
	Functional status	0.526	5.2%	0.0161	3157.011	46.5404
	Preoperative albumin	0.664	32.8%	0.0718	2989.583	213.9682
	Procedure score	0.662	32.4%	0.0808	2961.806	241.7456
	Combination of age, functional status, albumin	0.690	38%	0.0911	2941.442	274.1096

$\mathbf{\Sigma}$
È
₫.
2
0

		C-Statistic	Ability to distinguish	Pseudo-R ²	AIC	LRT
	All four measures (age, functional status, albumin, procedure score)	0.753	50.6%	0.1540	2741.417	480.1349
	Full model	0.779	55.8%	0.1810	2680.337	573.2142
Non-routine discharge (n=1959)	Age	0.712	42.4%	0.0424	952.002	84.9319
	Functional status	0.549	9.8%	0.0177	1001.914	35.0197
	Preoperative albumin	0.666	33.2%	0.0250	987.309	49.6255
	Procedure score	0.578	15.6%	0900.0	1025.146	11.7883
	Combination of age, functional status, albumin	0.777	55.4%	0.0716	903.415	145.5188
	All four measures (age, functional status, albumin, procedure score)	0.785	57%	0.0752	901.838	153.0959
	Full model	0.802	60.4%	0.0877	893.031	179.5974
Transfusion (n=2319)	Age	0.556	11.2%	0.0093	2943.943	21.7242
	Functional status	0.505	1%	0.0021	2960.882	4.7846
	Preoperative albumin	0.626	25.2%	0.0513	2843.558	122.1086
	Procedure score	0.657	31.4%	0.0838	2762.649	203.0175
	Combination of age, functional status, albumin	0.642	28.4%	0.0584	2838.119	139.5482
	All four measures (age, functional status, albumin, procedure score)	0.714	42.8%	0.1234	2678.186	305.4804
	Full model	0.724	44.8%	0.1372	2665.431	342.2354
Non-routine discharge (n=2870)	Age	0.711	42.2%	0.0295	1064.521	85.8993
	Functional status	0.545	%6	0.0087	1125.304	25.1159
	Preoperative albumin	0.655	31%	0.0156	1105.310	45.1098
	Procedure score	0.592	18.4%	0.0059	1133.306	17.1145
	Combination of age, functional status, albumin	0.767	53.4%	0.0458	1027.978	134.4422
	All four measures (age, functional status, albumin, procedure score)	0.779	55.8%	0.0497	1021.978	146.4418
	Full model	0.869	73.8%	0.0980	904.377	296.0429
Readmission (n=1959)	Age	0.519	3.8%	0.0005	1307.245	1.0269
	Functional status	0.503	0.6%	0.0002	1305.856	0.4165
	Preoperative albumin	0.541	8.2%	0.0027	1302.939	5.3328
	Procedure score	0.549	9.8%	0.0033	1301.791	6.4815
	Combination of age, functional status, albumin	0.550	10%	0.0033	1311.807	6.4652
	All four measures (age, functional status, albumin, procedure score)	0.572	14.4%	0.0063	1311.936	12.3358

Patankar et al.

		C-Statistic	Ability to distinguish	Ability to Pseudo-R ² distinguish	AIC	LRT
	Full model	0.599	19.8%	0.0110	0.0110 1324.515 21.7572	21.7572
Reoperation (n=2870)	Age	0.538	7.6%	0.0007	906.815	1.9986
	Functional status	0.506	1.2%	0.0003	907.995	0.8179
	Preoperative albumin	0.577	15.4	0.0028	900.725	8.0886
	Procedure score	0.574	14.8	0.0056	892.674	16.1394
	Combination of age, functional status, albumin	0.591	18.2%	0.0038	909.918	10.8956
	All four measures (age, functional status, albumin, procedure score)	0.641	28.2%	0600.0	900.887	25.9263
	Full model	0.691	38.2%	0.0176	907.731	51.0820

value of 0.5 (null model) indicates that the model's predictions are no better than chance, whereas a value closed to 1 indicates that the model has a good prediction. Ability to distinguish is calculated from the model. A c-statistics (=((C-statistics - 0.5)/0.5)*100%). Higher Pseudo-R² indicates that the model explains more observed variation in the outcome. When only one variable is included in the model, the lower the AIC, the higher the importance of the variables in the model. The LRT compares the null model (no variables) to a model including one variable or one group of variables. Higher LRT indicates greater

improvement in fit when the specified group of variables is included.