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Abstract

Advances in DNA sequencing technology facilitate investigating the impact of rare variants on 

complex diseases. However, using a conventional case-control design, large samples are needed to 

capture enough rare variants to achieve sufficient power for testing the association between 

suspected loci and complex diseases. In such large samples, population stratification may easily 

cause spurious signals. One approach to overcome stratification is to use a family-based design. 

For rare variants, this strategy is especially appropriate, as power can be increased considerably by 

analyzing cases with affected relatives. We propose a novel framework for association testing in 

affected sibpairs by comparing the allele count of rare variants on chromosome regions shared 

identical by descent to the allele count of rare variants on non-shared chromosome regions, 

referred to as test for rare-variant association with family-based internal control (TRAFIC). This 

design is generally robust to population stratification as cases and controls are matched within 

each sibpair. We evaluate the power analytically using general model for effect size of rare 

variants. For the same number of genotyped people, TRAFIC shows superior power over the 

conventional case-control study for variants with summed risk allele frequency f < 0.05; this 

power advantage is even more substantial when considering allelic heterogeneity. For complex 

models of gene-gene interaction, this power advantage depends on the direction of interaction and 

overall heritability. In sum, we introduce a new method for analyzing rare variants in affected 

sibpairs that is robust to population stratification, and provide freely available software.
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Introduction

Rare variants with large relative risk are hypothesized to explain some of the missing 

heritability of complex diseases [Mardis et al., 2009]. Several studies have identified rare 
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variants underlying rare Mendelian diseases using next-generation sequencing technology 

[Wong et al., 2009, Tabor et al., 2010]. However, the conventional case-control design has 

low statistical power to detect the association between rare variants and complex diseases 

[Li and Leal, 2008, Cooper and Shendure, 2011]. To overcome the low power of single-

marker test on rare variants, researchers have proposed to combine variants in a gene or 

genomic region to test for association [Li and Leal, 2008, Zawistowski et al., 2010, Price et 

al., 2010]. However, such gene-based tests in population samples may still need >10,000 

individuals to identify the signal from rare variants [Nelson et al., 2012]; sequencing such 

large samples is still very expensive. Moreover, large samples are typically more 

heterogeneous in origin, increasing the risk of population stratification [Price et al., 2006]. In 

such large samples, even subtle stratification causes substantially increased false positive 

rate in rare variant tests [Zawistowski et al., 2010]. While methods to control for population 

stratification, such as principal components and genomic control [Devlin and Roeder, 1999, 

Price et al., 2006] have been successfully applied for common variants, it is unclear whether 

such methods are appropriate for rare variant tests [Mathieson and McVean, 2012, Liu, 

Nicolae and Chen, 2013].

As family members are naturally matched for genetic background, several recent gene-based 

methods for testing the association between rare variants and the phenotype adapt family 

data to control for population stratification [Guo and Shugart, 2012, De et al., 2013]. In 

addition, the allele frequency of rare risk variants in cases can be substantially increased by 

collecting cases with affected relatives [Fingerlin, Boehnke and Abecasis, 2004, Peng et al., 

2010, Zöllner, 2012]. While collecting families with multiple affected members is 

challenging, family-based studies of rare variants can leverage existing large collections of 

families that were originally generated for linkage analysis [Rao et al., 2003, Howson et al., 

2009, Guan et al., 2012]; for example, International Type 2 Diabetes Linkage Analysis 

Consortium contains >4000 affected sibpairs [Guan et al., 2012].

Methods have been proposed to extend the current collapsing tests to rare variants in family 

data. Guo and Shugart [2012] and De et al [2013], extended the family-based association 

test (FBAT) [Laird and Lange, 2006] to rare variants in the style of a collapsing test. 

Schifano et al. [2012] and Chen et al. [2013] used linear mixed models to extend the SNP-

set kernel association test (SKAT) [Wu et al., 2011] to families. Shugart et al. [2012] and 

Fang et al. [Fang, Sha and Zhang, 2012] proposed to estimate the relatedness between 

samples and adjust the test statistics for rare variant association accordingly. However, none 

of the existing methods directly leverage the benefit of studying families where the same 

rare variant is observed multiple times. By using such information, we can increase power to 

detect the association between rare variants and the phenotype.

Here, we propose a powerful framework for testing rare variant associations using affected 

sibpairs. We create a matched design by comparing the allele count of rare variants on 

shared identity by descent chromosome regions to the allele count on non-shared identity by 

descent chromosome regions across affected sibpairs in a region of interest. Sharing status 

of chromosome regions can be easily estimated using high density genotype data [Keith et 

al., 2008], and sharing status of alleles can be inferred conditional on the known 

chromosome region sharing status. Intuitively, we consider shared chromosome regions as 
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“case” chromosome regions and non-shared chromosome regions as “control” chromosome 

regions. Under the null hypothesis of no association, the probability of a shared chromosome 

region carrying an allele is identical to the probability of a non-shared chromosome region 

carrying an allele. Under the alternative that an allele increases/decreases the disease risk, 

the probability of a shared chromosome region carrying that allele is higher/lower than the 

probability of a non-shared chromosome region carrying that allele.

We evaluate this design by calculating the analytical power for a collapsing gene-based test 

[Li and Leal, 2008], assuming a general model of rare risk alleles that is specified by the 

summed allele frequency of all rare risk variants in the gene and the mean and variance of 

their effect size [Zöllner, 2012]. We show that given the same number of sequenced 

individuals, the power of the proposed affected sibpair test for rare-variant association with 

family-based internal control (TRAFIC) is higher than the conventional case-control design 

for rare risk variants (summed risk allele frequency < 0.05). Considering allelic 

heterogeneity, where risk variants have different effect sizes, TRAFIC doubles the power of 

a case-control study in many realistic parameter values. We also evaluate the power of the 

proposed method under various gene-gene interaction models and find that power depends 

on the type of interaction and the overall heritability of the disease. Using simulations, we 

also show that the proposed TRAFIC is generally robust to population stratification.

Materials and Methods

Test for rare-variant association with family-based internal control (TRAFIC)

We consider a set of affected sibpairs with known number of chromosome regions shared 

identical by descent (IBD). At a locus of interest (for example a gene), we compare the 

count of alleles of rare variants on chromosome regions shared IBD between the siblings to 

the count of alleles of rare variants on chromosome regions not shared IBD (non-IBD 

chromosome regions) across sibpairs. Let, pIBD be the frequency of IBD chromosome region 

carrying at least one allele and pNonIBD be the frequency of non-IBD chromosome regions 

carrying at least one allele. Alleles without effect on disease risk are equally likely to occur 

on any chromosome region regardless of IBD status. Thus, the null hypothesis under no 

association is H0 : pIBD = pNonIBD. Variants that are associated with the phenotype 

(protective or causative) would differ in frequency between IBD and non-IBD chromosome 

regions. Hence, we can test for departure from the null hypothesis either in a collapsing 

framework by considering the alternative Ha : pIBD ≠ pNonIBD or in a dispersion framework 

where this alternative is considered for each variant and the combined test statistic 

aggregates the evidence across all variants.

In a sibpair with known IBD status, identifying whether an allele of a variant is located on 

an IBD or a non-IBD chromosome region is straightforward for most genotypes as shown in 

Table 1; for example, when a sibpair does not share the chromosome region (0 IBD 

chromosome region), all observed alleles for that variant in two siblings are non-shared; for 

a sibpair who shares 1 IBD chromosome region, the alleles of a homozygous sibling must be 

one shared and one non-shared. Only when the sibpair shares one IBD chromosome region 

and the genotypes are heterozygous in both individuals, the IBD status of the allele is 

ambiguous (shaded in Table 1): this configuration could be either the result of a single rare 
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allele located on the IBD chromosome region or two copies of the rare allele inherited 

separately on the non-IBD chromosome regions (as illustrated in Appendix Figure 1). To 

resolve this ambiguous configuration, we implement an imputation algorithm and use 

simulations to show the false positive rate is controlled (see Appendix 1 for details).

Evaluating TRAFIC

The analytical power of the proposed TRAFIC based on a collapsing gene-based test 

depends on the difference between the expected allele count on shared IBD chromosome 

regions and the expected allele count on non-shared IBD chromosome regions. To calculate 

these expectations, we assume that all rare variants evaluated in a locus occur on different 

haplotypes. Let f be the sum of population allele frequencies of all risk variants (summed 

risk allele frequency). For each sibpair, we count the number of alleles HS ∈ {0,1,2} on the 

shared chromosome regions and the number of alleles HNS ∈ {0,1,2,3,4} on non-shared 

chromosome regions. Let AAR be an affected sibpair and P(HS,HNS|AAR,S) be the 

probability of HS,HNS conditional on the number of shared IBD chromosome regions S ∈ 

{0,1,2}.

Using Bayes’ rule, we can write this conditional probability as

where P(AAR|HS,HNS) depends on the underlying genetic and effect size model (see 

Appendix 2 for derivations). Based on previous work [Zöllner, 2012], we model the effect 

size (relative risk) of each risk haplotype as a random variable with the first two moments μ 

and σ2. Then, P(HS,HNS|AAR,S) is fully determined by the parameters μ, σ2, and f (See 

Appendix 2). We calculate the power for TRAFIC based on P(HS,HNS|AAR,S) for a range of 

relative risk parameter μ and σ2, and under different f assuming a simple collapsing method 

[Li and Leal, 2008] to test the association between rare variants and the dichotomous 

phenotype (Appendix 3). To maintain an overall false positive rate of 0.05 after testing 

20,000 genes in the genome, we set the false positive rate to 2.5×10−6. We compare our 

proposed TRAFIC with two other designs: (1) the conventional case-control study 

comparing a sample of cases to unaffected controls. (2) A selected cases design comparing 

cases that are ascertained to have an affected sibling to unaffected controls [Fingerlin, 

Boehnke and Abecasis, 2004, Zöllner, 2012]. All designs retain the nominal false positive 

rate under the null (Appendix Table 1).

Simulation setup for TRAFIC

To validate the derived analytical results, we simulate sibpair samples and apply our 

proposed TRAFIC. We first generate four independent parental haplotypes, each carrying a 

risk allele with probability f. Without considering recombination, we then generate two 

descendants, each randomly inheriting one chromosome region from each parent. Following 

Risch [1990], we define the contribution to prevalence K at the locus of interest as KL and 

the contribution of the remaining genome as KG. The prevalence among subjects with an 

affected relative with relation status R is KR; the contribution to KR at the locus of interest 
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and the remaining genome are then KLR and KGR respectively. We adjust KGKGR under the 

multiplicative model to maintain both K and the sibling relative risk (SRR).

Here KLKLR depends on P(AAR|HS,HNS) (more details in Appendix 2). The relative risk of 

the risk allele follows a gamma distribution with specified μ and σ2. Thus, the probability of 

having both siblings in the family affected is KLKLRKGKGR and is set to 1 if the simulated 

probability exceeds 1. We generate datasets of 1000 affected sibpairs in each replicate. To 

evaluate the performance of our multiple imputation algorithm, we generate sibpairs 

assuming the sharing status is known. Then we mask the true location for the double-

heterozygote sibpairs who share one IBD chromosome region and apply our multiple 

imputation algorithm.

Population stratification

Using the simulation design described above, we evaluate the impact of population 

stratification. We simulate two populations with summed risk allele frequency of 0.01 and 

0.05, respectively, and assign a ratio of prevalence π between two populations. Assuming 

two populations have the same sibling relative risk, the ratio of frequencies of affected 

sibpairs between the two populations is then π2. Assuming that both populations contribute 

equally, we generate case-control samples by sampling 1000 cases, a proportion of π / (1 + 

π) from population 1 and 1 / (1 + π) from population 2. We also sample 1000 controls with 

equal contribution from each population. To generate a stratified sample for TRAFIC, we 

generate a sample of 1000 affected sibpairs with a proportion of π2 / (1 + π2) from 

population 1 and a proportion of 1/(1 + π2) from population 2. We assume unknown sharing 

status for double-heterozygote sibpairs who share one IBD chromosome region and impute 

the sharing status through multiple imputation. To generate cases for the selected cases 

design, we sample affected sibpairs with a proportion of π2 / (1 + π2) from population 1 and 

1 / (1 + π2) from population 2; controls are sampled evenly from both populations. We 

generate 1000 datasets for each value of π and estimate the false positive rate.

Gene-gene interaction

Interaction between the locus of interest and the remaining genome can influence the power 

of association tests in family samples [Risch N, 2001, Zöllner, 2012]. We model gene-

genome interaction as two loci, L and G. L is the locus of interest while G represents genetic 

effects in the remainder of the genome. We define the joint effect as

where hm and hn represent the indicator of a risk allele at locus L; let gs and gt represent the 

indicator of a risk allele at locus G. In the absence of risk alleles at G, all risk alleles at locus 

L have the same relative risk βL. Moreover, we describe the extent of interaction in this 

model by the parameter γ as the relative risk when risk alleles are present at both loci L and 
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G, where γ = 1 indicates no interaction, γ < 1 indicates antagonistic interaction, and γ > 1 

indicates synergistic interaction.

Under this model, the marginal relative risk at locus L is

The marginal relative risk at locus G is expressed in a similar fashion. To explore the effect 

of gene-gene interaction, given the sibling relative risk, we vary γ while adjusting βL and βG 

to keep the marginal relative risks constant (see Appendix 4). This maintains a constant 

power for the conventional case-control study. We then calculate P(HS,HNS|AAR) at locus L 

and evaluate the power of TRAFIC for different values of γ.

An example to illustrate TRAFIC

To illustrate how to apply TRAFIC, we simulate 1000 sibpairs assuming the number of 

shared IBD chromosome region is known. We simulate sequence data by using coalescent-

model based simulator COSI [Schaffner et al., 2005] to generate a population of ten 

thousand 1kb haplotypes. From the 50 variants in the region, we randomly pick 10 variants 

with minor allele frequency (MAF) < 0.05 and assign each variant the relative risk as a 

function of MAF, −log10(MAF) [Wu et al., 2011]. In this setting, a variant with MAF = 0.05 

has relative risk of 1.33 and a singleton has relative risk of 4. Hence, in this dataset, f = 

0.025, μ = 2.52, and σ2 = 0.62. We then generate 1000 affected sibpairs and apply TRAFIC 

to that dataset.

The simulated data contains 254, 509 and 237 sibpairs who share 0, 1, and 2 chromosome 

regions, respectively; these equal to 983 shared chromosome regions and 2034 non-shared 

chromosome regions. Excluding 42 sibpairs who shared one chromosome region with 

ambiguous double-heterozygote genotypes, there are 51 shared and 67 non-shared 

chromosome regions carrying at least one allele (carrier). Using imputation to resolve the 

IBD status of allele from 42 sibpairs with ambiguous double-heterozygote genotypes, the 

mean count of carrier chromosome regions is 91.7 on shared chromosome regions and 67.6 

on non-shared chromosome regions. Using a χ2 test, we reject the null hypothesis that IBD 

and non-IBD chromosome regions are equally likely to carry at least one allele (p = 5.63 × 

10−11) indicating the presence of risk variants at this locus.

Results

We proposed a new gene-based method for analyzing affected sibpairs by comparing the 

risk alleles on shared IBD chromosome regions with the risk alleles on non-shared IBD 

chromosome regions. We evaluated the proposed TRAFIC design assuming a collapsing 

gene-based test by modeling allelic heterogeneity at the locus of interest based on a summed 

allele frequency of all risk variants f and a distribution of effect sizes with mean μ and 

variance σ2. For comparison, we also evaluated the conventional cases-control design 

(conventional) and a case-control design in which the cases are selected conditional on 
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having an affected sibling (selected cases) under the same genetic model. For all three 

designs, we assumed equal number of sequenced or genotyped individuals. To use 

consistent language, we referred to shared IBD chromosome regions in TRAFIC as cases 

and to non-shared IBD chromosome regions as controls.

First, we compared the expected summed minor allele frequency (sMAF) in cases and 

controls with and without allelic heterogeneity to illustrate how TRAFIC behaved relative to 

the conventional and selected cases designs. We then calculated the analytical power of 

three designs for comparisons. We also checked robustness to population stratification. 

Finally, we calculated the analytical power of TRAFIC while considering different 

directions of gene-gene interaction.

Frequency distribution of risk variants

To quantify the enrichment of risk variants in TRAFIC, we calculated the expected summed 

minor allele frequency (sMAF) of risk variants in cases and controls of TRAFIC for a range 

of genetic models (see Appendix 3 for details). Initially, we modeled a locus with constant 

genetic risk μ between 1 and 5 for all variants (σ2 = 0) (Figure 1) and a disease prevalence of 

0.01. In TRAFIC (Figure 1a), sMAF increased rapidly in cases (shared IBD chromosome 

regions) and also increased roughly linearly with μ in controls (non-shared IBD 

chromosome regions). In the conventional design (Figure 1b), sMAF increased in cases 

almost linearly with relative risk, only slightly faster than the sMAF in controls of TRAFIC. 

In the selected cases design (Figure 1c), sMAF in cases with affected siblings increased 

faster than cases in the conventional case-control design but slower than sMAF in cases of 

TRAFIC. Both in the conventional design and the selected cases design, sMAF in controls 

decreased slightly as μ increased, especially for more common variants f = 0.20. As a result, 

TRAFIC generated a larger difference in sMAF between cases and controls than the 

conventional case-control design in models with f = 0.01 and 0.05. This advantage of 

TRAFIC reduced with increasing f. For μ = 2, the difference in sMAF of TRAFIC compared 

to the conventional design was 190% (0.019 to 0.010) at f = 0.01 and reduced to 123% 

(0.166 to 0.135) at f = 0.20. For a higher disease prevalence of 0.20, the sMAF in controls 

decreased more rapidly as μ increased and the difference between cases and controls grew 

further in the conventional case-control and selected cases design (Appendix Figure 2).

To evaluate scenarios where genetic effect differs between risk variants, we considered a 

distribution of relative risks with σ2 > 0 while maintaining μ = 1.5 (Figure 2); for f = 0.01, a 

value σ2 = 0.1 represents e.g. a scenario of 20 tested variants with equal frequencies where 6 

of the tested variants are non-functional (relative risk = 1) and 14 of the tested variants have 

a relative risk of 1.71. A value σ2 = 0.2 would e.g. represent 9 non-functional variants and 

11 variants with relative risk 1.91. For σ2 = 0, the difference in sMAF between cases and 

controls increases with f in all three designs. Increasing σ2 did not affect sMAF in cases or 

controls in the conventional design, as in this design sMAFs only depended on μ (Figure 

2b). In TRAFIC, sMAF in cases increased with σ2 while the sMAF in controls remained 

constant. Similarly, in the selected cases design, sMAF in cases increased withσ2, albeit 

more slowly than for TRAFIC (Figure 2a and 2c). Even if the average effect of risk variants 
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is 1 (μ = 1), the difference in sMAF between cases and control increases with growing σ2 for 

TRAFIC and for the selected cases design (Appendix Figure 3).

Power Analysis

Based on the differences in expected sMAF, we calculated the analytical power for three 

study designs for the same number of individuals (n=2000): (1) 1000 affected sibpairs using 

TRAFIC, (2) 1000 cases and 1000 controls in the conventional cases-control design, and (3) 

1000 cases with affected siblings and 1000 controls in the selected cases design. Thus, we 

generated 4000 independent observations for the conventional and the selected design, and 

~3000 independent observations (~1000 cases and ~2000 controls) for TRAFIC. We also 

determined power empirically using simulations and observed no difference between 

empirical power and analytical power (Appendix Figure 4).

Assuming all risk variants had the same relative risk between 1 and 5 (σ2 = 0), the selected 

cases design was uniformly most powerful (Figure 3a) while the power ranking of TRAFIC 

and the conventional design depended on f. For rarer risk variants (f < 0.05), TRAFIC had 

substantially higher power than the conventional design across all relative risks analyzed. 

For example, for f = 0.01 and μ = 2.5, the power of the conventional design was 0.131 

compared to 0.532 for TRAFIC. With increasing f or increasing prevalence, the power 

difference between TRAFIC and the conventional design reduced. For sets of risk variants 

with f > 0.05, the power of the conventional design was larger than the power of TRAFIC. 

For prevalence 0.20, the conventional design was already more powerful than TRAFIC for f 

> 0.01 (Appendix Figure 5).

For a model with allelic heterogeneity (σ2 = 0), power of TRAFIC increased with rising σ2 

while the power of the conventional design was independent of σ2 and only depended on f 

(Figure 3b). For f = 0.01 and 0.05 at μ = 1.5, the power of TRAFIC was uniformly greater 

than the power of the c; = 1.5 onventional design. For f = 0.2, TRAFIC was more powerful 

than the conventional design forσ2 = 0.1. Even for high-prevalence diseases, TRAFIC is 

more powerful than the conventional design at modest levels of heterogeneity (Appendix 

Figure 5). Moreover, the selected cases design was no longer uniformly most powerful in 

the presence of moderate allelic heterogeneity. For example, when f = 0.01 and σ2 = 2, 

TRAFIC outperformed the selected cases design (with power of 0.412 and 0.306, 

respectively). For a model with no mean effect (μ = 1), TRAFIC was uniformly most 

powerful regardless of f (results not shown).

Population stratification

We modeled the level of population stratification by the parameter π which represents the 

ratio of prevalence between two populations (see methods). Under the null (μ = 1, σ2 = 0), 

the conventional case-control design and the selected cases design only achieved the 

nominal false positive rate at π =1 where equal proportion of cases and controls are sampled 

from the two populations. Both designs showed substantially increased false positive rate 

when moving away from π =1. Especially the selected cases design showed a high false 

positive rate for moderate levels of stratification. For π =1.22, the false positive rate was 

0.064 and 0.107 for the conventional case-control and selected cases designs; the inflation 
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increased to 0.725 and 0.973 when π = 4.06. TRAFIC maintained the false positive rate at 

the nominal level of 0.05 across the range of π (Figure 4) as long as we assumed either no 

linkage signal or a linkage signal of the same strength in the two populations. If we model a 

strong linkage signal in only one of the populations, we expect a slightly increased false 

positive rate in TRAFIC (Appendix 5).

Gene-gene interaction

We summarized the effect of the gene-gene interaction in a two-locus model by the 

parameter γ (see Methods) and quantified the joint effect of both loci on the disease 

heritability by sibling relative risk (SRR) (see Appendix 4). To ensure comparability across 

values of γ, we fixed the marginal relative risk at the locus of interest, and adjusted the 

marginal effect at the “remaining genome” locus to maintain SRR at 2, 4 and 8. We 

considered a locus of interest with f = 0.01 and set the marginal relative risk to 2.2 for 

models with no interaction (γ = 1) or synergistic interaction (γ > 1), and to 2.8 for models 

with antagonistic interaction (γ < 1) to illustrate the effect of antagonistic interaction with 

reasonable power. The quantitative impact of interaction on power was independent of these 

specific parameter choices (Results not shown).

Since the marginal effect at the locus of interest was constant, the power of the conventional 

case-control study was not affected by the considered interaction or by SRR. The power of 

TRAFIC increased with γ regardless of SRR across most interaction parameters considered 

(Figure 5). For synergistic interaction, the power rose quickly with γ; the exact trajectory 

depended on SRR of the model. The power for models with a higher SRR increased faster 

for a lower γ, but the rate of increase also decreased faster for a higher SRR. Hence models 

with a lower SRR reached maximal power faster. In models of antagonistic interaction (γ < 

1), TRAFIC rapidly lost power with decreasing γ. This loss of power was particularly 

pronounced for highly heritable disease (SRR = 8). For SRR at 2, 4, and 8, TRAFIC was 

less powerful than the conventional design for γ < 0.52, 0.74, and 0.76, respectively (Figure 

5a). However, the power started to increase when γ < 0.38, 0.31 and 0.26 for SRR=2, 4, and 

8, respectively. For this extreme model of antagonistic interaction, a variant that was causal 

in a population sample had a protective effect in a family sample. Hence, the minor allele 

frequency on shared chromosome regions became lower than the minor allele frequency on 

non-shared chromosome regions, generating power in a test for association.

Discussion

We introduce a new framework for gene-based association tests of rare variants leveraging 

affected sibpairs (TRAFIC). We compare the number of risk alleles located on chromosome 

regions shared IBD in an affected sibpair to the number of risk alleles located on 

chromosome regions that are not shared IBD. TRAFIC compares "cases" and "controls" 

within a sibpair as a matched design and is thus generally robust to population stratification. 

The test evaluates the null hypothesis of no association and can therefore generate a signal 

only in the presence of association and is powerful in the absence of linkage.

The proposed design of taking shared chromosome regions as new “cases” and non-shared 

chromosome regions as new “controls” can be applied to any published gene-based test. In 
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this study, we evaluated the design for a collapsing gene-based test as the power of this test 

can be calculated without specifying minor allele frequency or effect size distribution of 

each risk variant, and it is therefore easier to obtain general conclusions. However, TRAFIC 

can also be applied to dispersion tests such as SKAT [Wu et al., 2011].

We calculate the power of this new method using a general model for risk variants, which is 

specified by the summed allele frequency of risk variants, and mean and variance of relative 

risk for risk variants. We compared three study designs: (1) TRAFIC, (2) the conventional 

design of cases and controls, and (3) a design where cases are enriched for rare variants by 

selecting case individuals with affected relatives assuming the same number of sequenced/

genotyped samples. For diseases with prevalence ~1% and in the absence of gene-gene 

interaction, TRAFIC was more powerful than the conventional case-control design for 

variants with summed risk allele frequency less than 0.05, even though the conventional 

case-control design contained more independent observations. This power gain has two 

drivers. First, families ascertained to carry multiple affected individuals are more likely to 

segregate risk variants than random cases [Fingerlin, Boehnke and Abecasis, 2004, Peng et 

al., 2010, Zöllner, 2012]. Second, if such risk variants are rare, the founders of the pedigree 

are likely to only carry one copy. As the probability of carrying the risk variant is increased 

for each affected family member, this variant is more likely to be located on a shared 

chromosome. With increasing allelic heterogeneity, the probability for both affected siblings 

sharing an allele with a large effect size also rises, increasing the number of risk alleles 

located on shared IBD chromosome regions. Hence in the presence of allelic heterogeneity, 

the power of TRAFIC increased, while the power of the conventional case-control design 

was unchanged.

The power of a family-based design also depends on the interaction between variants at the 

locus of interest and the remaining genome. Sampling from families with multiple affected 

individuals increases the overall genetic load for all cases. Hence, if the genetic effect at the 

locus of interest increases with overall genetic load, the power advantage of family-based 

designs over population-based designs is larger than under a model of no interaction. On the 

other hand, if the genetic effect of risk variants at the locus of interest decreases with overall 

genetic load, the power in family-based designs is smaller than the power under a model of 

no interaction and population-based designs can be more powerful. This effect has been 

described before for additive gene-gene interaction, which is a special case of genetic effect 

at the locus of interest decreasing with overall genetic load [Risch N, 2001, Ionita-Laza and 

Ottman, 2011, Zöllner, 2012, Helbig, Hodge and Ottman, 2013].

Moreover, TRAFFIC is generally robust to population stratification, as it compares IBD 

chromosome regions to non-chromosome regions in every sibpair thus naturally matching 

the genetic background of samples. This robustness can be violated in regions where one of 

the populations has a strong linkage signal while the other population has no evidence for 

linkage. However, this unlikely scenario only results in minor increase of the false positive 

rate and has thus little impact on the utility of our method. As the efficacy of current 

methods to control for population stratification in population based designs for rare variant 

tests is not clear [Mathieson and McVean, 2012, Liu, Nicolae and Chen, 2013], family based 

designs may be necessary to avoid spurious association. TRAFIC achieves this robustness to 
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stratification by using non-shared chromosomes as controls at the cost of some reduction in 

power. As non-shared chromosomes have a higher risk allele frequency than chromosomes 

in population controls, a test comparing shared chromosomes against chromosomes from 

unaffected controls may be more powerful than TRAFIC. However, such a design would be 

very susceptible to population stratification, even more than the selected cases design shown 

in figure 4.

In conclusion, we have proposed TRAFIC using affected sibpairs for testing the association 

between a set of rare variants and the disease phenotype. TRAFIC is more powerful than the 

conventional case-control design under a wide range of models while being generally robust 

to population stratification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summed minor allele frequency (sMAF) of risk variants in cases (solid lines) and controls 

(broken lines) under different study designs. We show sMAF as a function of mean relative 

risk of risk variants for (a) TRAFIC, (b) the conventional case-control design, and (c) the 

selected cases design for summed allele frequencies (f) of 0.01, 0.05 and 0.2 and fixed 

variance of relative risk σ2 = 0.
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Figure 2. 
Summed minor allele frequency (sMAF) of risk variants in cases (solid lines) and controls 

(broken lines) under different study designs. We show sMAF as a function of variance of 

relative risk between risk variants for (a) TRAFIC, (b) the conventional case-control design, 

and (c) the selected cases design for summed allele frequencies (f) of 0.01, 0.05 and 0.2 and 

fixed mean relative risk μ = 1.15.
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Figure 3. 
The analytical power curve for TRAFIC, conventional case-control, and selected cases 

design for different summed allele frequencies (f). Row (a) displays the power as a function 

of mean relative risk evaluated at variance of relative risk σ2 = 0. Row (b) shows the power 

as a function of variance of relative risk evaluated at mean relative risk μ = 1.5. Results are 

shown for 2000 individuals (1000 sibpairs or 1000 cases and 1000 controls) at a significance 

level 2.5×10−6.
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Figure 4. 
False positive rate in the presence for population stratification for TRAFIC, selected cases 

and the conventional case-control design. The false positive rate is shown as a function of 

the prevalence ratio π between two sampled populations. Calculations are based on a 

summed allele frequency of 0.01 in population 1 and 0.05 in population 2, and a sample size 

of 2000 individuals (1000 sibpairs or 1000 cases and 1000 controls) at a significance level 

0.05.

Lin and Zöllner Page 16

Genet Epidemiol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Analytical power of TRAFIC and the conventional case-control design under different 

models of gene-gene interaction. The horizontal axis displays the interaction parameter γ; 

gray and black lines represent different overall heritability parameterized as sibling relative 

risk (SRR). Panel a represents the result for antagonistic interaction (γ < 1); panel b 

represents the result of synergistic interaction (γ > 1). Results are shown for 2000 

individuals (1000 sibpairs or 1000 cases and 1000 controls) at a significance level 2.5×10−6.
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Table 1

Identification of variant IBD status conditional on chromosome

0 IBD
chromosome
region

1 IBD chromosome
region

2 IBD chromosome
regions

Both siblings are homozygous minor allele 4 non-shared alleles 1 shared and 2 non-shared alleles 2 shared alleles

One homozygous minor allele and one heterozygote 3 non-shared alleles 1 shared and 1 non-shared alleles N/A

Both siblings are heterozygous 2 non-shared alleles Ambiguous configuration 1 shared allele

Assuming chromosome region IBD status is known, the number of shared and non-shared alleles can be inferred for all but one configuration of 
genotypes (shaded cell).

Genet Epidemiol. Author manuscript; available in PMC 2016 July 01.


