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Abstract

Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are 

unique in that they are comprised of repeating monomeric units and can exist in various degrees of 

polymerization. The degree of polymerization plays a role in determining the biological activities 

of procyanidins. However, generalizations cannot be made regarding the correlation between 

procyanidin structure and bioactivity, because the size-activity relationship appears to be system-

dependent. Our aim was to screen fractions of procyanidins with differing degrees of 

polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. 

Monomeric, oligomeric, and polymeric cocoa procyanidin fractions were screened using cell 

models of disrupted membrane integrity and inflammation in human colon cells. High molecular 

weight polymeric procyanidins were the most effective at preserving membrane integrity and 

reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric 

procyanidins appeared to be the least effective. These results suggest that polymeric cocoa 

procyanidins may be the most effective for preventing loss of gut barrier function and epithelial 

inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, 

inflammatory bowel disease, and colon cancer. Therefore, further investigations of the potential 

health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, 

particularly high molecular weight procyanidins, are warranted.
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1. INTRODUCTION

Flavan-3-ols, also referred to as flavanols or procyanidins (PCs), are a subclass of flavonoids 

comprised of monomers [(±)-catechin (C), (−)-epicatechin (EC), etc.], oligomers, and 

polymers. Flavanols are characterized by their degree of polymerization (DP, the number of 

monomeric residues in an oligomer or polymer) [1] and the mean DP (mDP), the average 

DP of all flavanols in a matrix. PCs are widely available in the diet, from sources such as 

cocoa, grapes, apples, and berries [2]. Examples of flavan-3-ols found in cocoa are shown in 

Figure 1. PCs have been widely studied for their biological activities related to prevention or 

amelioration of acute and chronic diseases. DP appears to play a role in determining PC 

efficacy in models of disease including inflammation [3–7] and cancer [8–14]. 

Unfortunately, no broad generalizations can be made regarding the correlation between PC 

structure and bioactivity because the DP-activity relationship appears to be system-

dependent. In some cases, activity is directly proportional to DP; in other cases the reverse is 

true [15]. Moreover, in some systems, there appears to be an “optimum DP”, above and 

below which activity is reduced.

Bioavailability, which is roughly inversely proportional to DP, represents one of the factors 

further complicating the interpretation of PC biological activity. Reported oral 

bioavailability is generally <10% for monomers (although up to 55% has been reported for 

cocoa catechins) [16, 17], much lower for small procyanidins, and essentially 0% for large 

procyanidins [17–20]. In vitro assays that predict a positive DP-activity relationship may not 

translate to in vivo feeding studies, where poor bioavailability may severely limit tissue 

exposure and subsequent bioactivity of large PCs. Interestingly, however, the relative 

bioactivity of PCs in vivo does not necessarily correspond to their relative bioavailability 

[21, 22].

In vitro screening assays may be most useful for predicting PC activities in the lumen or 

epithelium of the gastrointestinal tract, where direct contact with higher concentrations of 

PCs is possible. Such activities include, but are not limited to, inhibition of luminal and 

brush border digestive enzymes, modulation of intestinal barrier function and endotoxin 

uptake, and modulation of intestinal inflammation, proliferation, and apoptosis. These 

activities are critical mediators of obesity, diabetes, cancer, and inflammatory diseases that 

can be modulated by PCs [23, 24].

Cocoa is one of the most flavanol-rich food products and contains PCs of a wide range of 

DP [1, 25–29]. Recently, we successfully fractionated a cocoa PC extract into monomer-, 

oligomer-, and polymer-rich fractions and reported that the oligomeric fraction appears to 

provide enhanced protection against diet-induced obesity and type-2 diabetes compared to 

monomeric or polymeric procyanidins [22]. These data prompted us to screen these fractions 

of similarly sized cocoa procyanidins in vitro for anti-inflammatory activities in models of 
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colonic inflammation. We hypothesized that distinct cocoa procyanidin fractions (i.e. groups 

of similar PCs) containing distinct mDPs would exhibit distinct anti-inflammatory activities.

2. MATERIALS AND METHODS

2.1 Cocoa Procyanidin Fractions

A procyanidin-rich cocoa extract (CE) and fractions with distinct flavanol compositions 

(monomer-, oligomer-, and polymer-rich fractions) were produced from commercially 

available cocoa powder as described previously [22]. The concentrations and enrichment of 

specific cocoa procyanidins in each fraction is presented in Supplementary Table 1. The 

normal-phase HPLC flavanol profiles of CE and cocoa PC fractions are shown in 

Supplementary Figure 1. Additionally, a cocoa polymer fraction with greater enrichment of 

high MW PCs (92% by weight of DP7+) was a generous gift from The Hershey Co. 

(Hershey, PA the fraction was originally prepared for Hershey by Planta Analytica, 

Danbury, CT). The composition of this fraction is shown in Table 1.

2.2 Normal-phase HPLC Analysis

The PC composition of the DP7+ fraction was evaluated by normal-phase HPLC profiling 

[22, 30]. Analyses were performed on an Agilent Technologies (Santa Clara, CA) 1260 

Infinity HPLC equipped with a solvent degasser, quaternary pump, an autosampler with 

temperature control, a thermostat column compartment, and a fluorescence detector (FLD). 

Separations were carried out using a Develosil Diol column (100 Å, 250 × 4.6 mm, 5 μm 

particle size) equipped with a Luna HILIC guard column (4 × 3.0 mm ID SecurityGuard 

cartridge and cartridge holder) (both from Phenomenex, Torrance, CA). The column 

temperature was 35°C. Binary gradient elution employing 2% acetic acid (v/v) in ACN 

(phase A) and 2% acetic acid (v/v) and 3% ddH2O (v/v) in MeOH (phase B) was performed 

at a flow rate of 1 mL/min. The gradient was as follows: 93% A at 0 min, 93% A at 3 min, 

62.4% A at 60 min, 0.0% A at 63 min, 0.0% A at 70 min, 93.0% A at 76 min, 7.0% B at 0 

min, 7.0% B at 3 min, 37.6% B at 60 min, 100.0% B at 63 min, 100.0% B at 70 min, and 

7.0% B at 76 min. FLD excitation and emission wavelengths were 230 nm and 321 nm, 

respectively. The DP7+ fraction was prepared at 10 mg/mL in acetone: water: acetic acid 

(70:28:2, v/v/v) immediately prior to analysis. Samples were held at 5 °C in the autosampler 

before injection. Injection volume was 5 μL. Mixtures of authentic standards consisting of 

monomers (DP 1: C, EC, ECG), PC oligomers (dimers-hexamers), and PC polymers 

(heptamers-decamers) were prepared and used as a reference for comparison of elution 

profiles as described previously [22].

2.3 Cell Culture Conditions

Caco-2 and HT-29 human colon cancer cells (American Type Culture Collection, Manassas, 

VA) were maintained in sub-confluence in Dulbecco’s Modification of Eagle’s medium 

(DMEM) or McCoy’s 5A medium, respectively. All medium was supplemented with 10% 

fetal bovine serum, 100 IU/mL penicillin and 100 μg/mL streptomycin at 37°C under 5% 

CO2 atmosphere. Cells were subcultured by trypsinization.
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2.4 Colon Permeability Assay

The ability of cocoa fractions to mitigate colon permeability in vitro was examined by 

measuring the apical to basolateral flux of fluorescein isothiocyanate–dextran (FITC-D) 

across differentiated Caco-2 cell monolayers as described previously [31]. In brief, Caco-2 

cells were seeded in polycarbonate transwell inserts (0.33cm2 area and 0.4 μm pore size, 

Corning Life Sciences, Tewksbury, MA) and allowed to reach confluence and differentiate 

for 21 d. Only monolayers with a transepithelial electrical resistance (TEER) of greater than 

500 Ω cm2 were used for experiments [32]. Differentiated monolayers were treated with 

final concentrations of 100 μg/mL cocoa extract, 100 μg/mL cocoa procyanidin fractions, 

10–25 μg/mL DP7+ cocoa fraction, or vehicle only (dimethylsulfoxide, DMSO) 2 h prior to 

addition of 2% dextran sodium sulfate (DSS, avg. MW = 40,000 Da, MP Biomedicals, 

Solon, OH) to the media to induce loss of epithelial membrane integrity [33]. Cells were 

then co-incubated for an additional 48 h. Fluorescein isothiocyanate (FITC)-labeled dextran 

(MW = 4000 Da, Sigma-Aldrich, St. Louis, MO) was added to the apical compartment at a 

final concentration of 1 mg/mL, and cells were incubated for 6 h. Basolateral media (50 μL) 

were removed every 30 min and fluorescence determined using a Fluoroskan Ascent FL 

fluorescent plate reader (λex = 493 nm, λem= 517 nm, Thermo Scientific, Waltham, MA). 

The rate of increase in basolateral fluorescence was determined and normalized to the values 

derived from monolayers not treated with DSS. Representative FITC flux rates in cells are 

shown in Supplementary Figure 2.

2.5 Colon Inflammation Assay

HT-29 cells (1 × 106/well) were plated in 24-well plates and allowed to reach 80% 

confluence. Cocoa extract or PC fractions were added to each well at final concentrations of 

100 μg/mL, or 10–25 μg/mL for the DP7+ cocoa fraction. After pretreatment for 24 h, cells 

were stimulated with 5 ng/mL, tumor necrosis factor (TNF)-α (Peprotech, Inc., Rocky Hill, 

NJ) for 6 h. Interleukin (IL)-8 levels in the medium were determined by ELISA (R&D 

Systems, Minneapolis, MN).

2.6 Data and Statistical Analysis

Statistical analyses were performed using Prism (v 6.0, GraphPad Software, La Jolla, CA). 

Data were analyzed by one-way ANOVA with Tukey’s HSD post-hoc test to compare all 

treatment means. Statistical significance was defined as P < 0.05.

3. RESULTS

3.1 DP7+ Fraction Composition

The PC profile of the DP7+ fraction was analyzed by normal-phase HPLC, and is shown in 

Figure 2. This fraction is highly enriched for high MW (late-eluting) PCs compared to low 

MW (early-eluting) PCs [22]. This fraction is even more highly enrich for high MW PCs 

compared to the polymer-rich fraction prepared from cocoa extract (see Supplementary 

Figure 1), which we characterized previously [22].
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3.2 Epithelial Permeability Assay

The ability of cocoa PCs to protect intestinal epithelial cells from DSS-induced loss of 

membrane integrity is shown in Figure 3. DSS significantly increased apical → basolateral 

flux of FITC-dextran compared to vehicle (DMSO) treated cells. CE and all cocoa PC 

fractions significantly inhibited DSS-induced loss of barrier function. The polymer-rich 

fraction possessed the greatest protective activity, followed by the monomer-rich fraction. 

CE and the oligomer-rich fraction were least protective. The results for CE and the 

monomer-rich fraction correlate with our previous study, in which we found that these were 

the least and most effective at reducing serum levels of endotoxin, respectively, in high fat-

fed mice [22]. By contrast, the data from the oligomer- and polymer-rich fractions do not 

correlate well with our previous study.

3.3 Inflammation Assay

The anti-inflammatory activities of cocoa PCs are shown in Figure 4. Stimulation of cells 

with TNF-α induced a significant increase in IL-8 production compared to unstimulated 

cells. CE reduced IL-8 secretion to levels that were similar to unstimulated cells. Among the 

individual cocoa PC fractions, only the polymer-rich fraction significantly reduced IL-8 

secretion compared to vehicle. This result is consistent with data showing that polymeric 

PCs more effectively inhibited NF-κB activation and secretion of pro-inflammatory 

eicosanoids (PGE2) and cytokines (TNF-α) in endotoxin-stimulated mouse macrophages 

compared to oligomeric PCs [3]. This also agrees with data showing that only cocoa PCs 

with DP ≥ 4 were able to stimulate secretion of anti-inflammatory IL-4 in human peripheral 

blood mononuclear cells [6]. In terms of inflammatory-associated cancer, the present result 

is consistent with in vitro studies showing that cytotoxicity and anti-cancer activities of PCs 

are positively correlated with DP [10–12, 14].

3.4 Epithelial Permeability Assay (DP 7+)

In order to further confirm the impacts of high MW cocoa PCs in these models, a more 

concentrated extract (92% by weight PCs with DP 7+) was assayed for activity using the 

same models. Due to the greater enrichment for DP 7-12 compared to the polymer fraction 

previously assayed, lower concentrations (10–25 μg/mL) were employed for the DP 7+ 

fraction. The ability of this fraction to protect intestinal epithelial cells from DSS-induced 

loss of membrane integrity is shown in Figure 5. Similar to the previous experiment, the DP 

7+ enriched fraction inhibited the effects of DSS on membrane integrity in a dose 

dependent-fashion (10 μg/mL partly inhibited the effects of DSS, while 25 μg/mL 

completely blocked the effects of DSS).

3.5 Inflammation Assay (DP 7+)

The anti-inflammatory activities of the DP 7+ fraction are shown in Figure 6. The DP 7+ 

enriched fraction blunted increases in IL-8 secretion induced by TNF-α stimulation. The 

effects of the DP 7+ fraction were dose-dependent: 10 μg/mL did not significantly decrease 

IL-8 secretion compared to vehicle, while 25 μg/mL significantly decreased IL-8 secretion 

compared to vehicle control but not to the level of IL-8 in unstimulated cells. It should be 

noted that the basal (unstimulated) and stimulated vehicle control levels of IL-8 in the cells 
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were very different between the first and second experiments (25 vs. 0.1 ng/mL for 

unstimulated, 120 vs. 45 ng/mL for stimulated vehicle control, Figure 4 vs. Figure 6). These 

differences may be due to differences in cell passage number and/or degradation of the 

TNF-α stock used for stimulation. Nevertheless, TNF-α induced a significant increase in 

IL-8 in both experiments, which was inhibited to varying degrees by the cocoa extract or 

cocoa fractions.

4. DISCUSSION

The results of the present study suggest that high MW polymeric cocoa PCs may be the 

most effective for preventing loss of gut barrier function and epithelial inflammation, which 

are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease, 

and colon cancer. Previous studies have shown that cocoa possesses anti-cancer and anti-

inflammatory activities in the colon [34–37], but the present data indicate that the polymers 

are the most effective of the PC components of cocoa. These activities may be particularly 

translatable to in vivo situations, as they are epithelial activities that do not require systemic 

bioavailability for activity. Therefore, polymeric PCs may effectively modulate these key 

mechanistic targets, resulting in improved disease prevention or reduced disease severity. 

This may imply that enriching the polymeric PC content of cocoa (by altering horticultural 

practices, fermentation, drying, roasting, processing, etc.) or developing specific PC 

polymer-rich matrices may result in products with enhanced anti-inflammatory activities. 

Additional research is required in appropriate animal models of metabolic endotoxemia 

(high-fat feeding), colon inflammation (DSS-induced inflammation, or bacterial colitis in 

IL-10 null mouse models), and colon cancer [azoxymethane (AOM) or AOM+DSS models] 

in order to further elucidate the potential activities of polymeric PCs. However, such in vivo 

studies are difficult due to the time and cost associated with isolating sufficient quantities of 

individual PCs or purified PC fractions to conduct lengthy animal studies [22]. Efficient 

fractionation or other strategies are thus needed to facilitate these studies as well as 

translation to human clinical work.

Interestingly, although cocoa oligomers appeared to be the least effective at protecting 

epithelial membrane integrity and preventing inflammation in the present study, this fraction 

was the most effective at preventing weight gain and development of glucose intolerance 

and insulin resistance in mice fed a high fat diet in our previous study [22]. This highlights 

the fact that the activities of PCs, and the relationship between DP and activity, are highly 

context-dependent. Therefore, interventions using custom PC profiles to prevent or 

ameliorate chronic diseases should be carefully tailored to match composition to the desired 

activity. Nevertheless, this study and our previous work [38, 39] highlight the potential 

bioactivities of larger PCs, which have received little attention (compared to the monomeric 

and dimeric PCs) due to complexities associated with their qualitative and quantitative 

analysis, as well as scarcity of authentic standards. This work highlights the need for novel 

approaches to elucidate the activities of these complex compounds. Future work is needed to 

isolate, purify, characterize and test purified individual compounds within the high MW 

polymeric fraction, although this approach is difficult with existing technologies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

C (±)-catechin

EC (−)-epicatechin

AOM azoxymethane

CE cocoa extract

DP degree of polymerization

DSS dextran sodium sulfate

DMSO dimethylsulfoxide

FITC fluorescein isothiocyanate

LU fluorescence units

IL interleukin

mDP mean degree of polymerization

M monomer-rich fraction

O oligomer-rich fraction

P polymer-rich fraction

PCs procyanidins

TNF tumor necrosis factor
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Figure 1. 
Structures of selected representative flavan-3-ols found in cocoa: (−)-epicatechin monomer 

and procyanidin oligomers comprised of (−)-epicatechin monomers linked (4β → 8).
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Figure 2. 
Normal-phase HPLC chromatogram (with fluorescence detection) of a DP7+ cocoa PC 

fraction.
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Figure 3. 
Impact of cocoa extract (CE) and cocoa procyanidin fractions (monomer-, oligomer- and 

polymer-rich fractions: M, O, and P, respectively) (100 μg/mL) on the barrier integrity of 

differentiated Caco-2 cells exposed to dextran sodium sulfate (DSS), as measured by 

transmembrane permeability to FITC-dextran. Data represent the mean of two independent 

experiments (n = 3 per experiment) ± SEM. Different superscript letters indicate P < 0.05 by 

one way ANOVA with Tukey’s HSD post-test.
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Figure 4. 
Impact of cocoa extract (CE) and cocoa procyanidin fractions (monomer-, oligomer- and 

polymer-rich fractions: M, O, and P, respectively) on the secretion of IL-8 by HT-29 human 

colon cancer cells stimulated with TNF-α. Data represent the mean of two independent 

experiments (n = 2 per experiment) ± SEM. Different superscript letters indicate P < 0.05 by 

one-way ANOVA with Tukey’s HSD post-test.
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Figure 5. 
Impact of a high molecular weight polymeric cocoa procyanidin extract (DP 7+, 10 or 25 

μg/mL) on the barrier integrity of differentiated Caco-2 cells exposed to dextran sodium 

sulfate (DSS), as measured by transmembrane permeability to FITC-dextran. Data represent 

the mean ± SEM (n = 3). Different superscript letters indicate P < 0.05 by one way ANOVA 

with Tukey’s HSD post-test.
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Figure 6. 
Impact of a high molecular weight polymeric cocoa procyanidin extract (DP 7+, 10 or 25 

μg/mL) on the secretion of IL-8 by HT-29 human colon cancer cells stimulated with TNF-α. 

Data represent the mean ± SEM (n = 3). Different superscript letters indicate P < 0.05 by 

one-way ANOVA with Tukey’s HSD post-test.
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Table 1

Composition of a cocoa extract fraction enriched for high molecular weight polymeric procyanidins (DP 7+)

DP % (w/w)

7 21

8 20

9 20

10 15

11 9

12 7

other 8
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