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Abstract

Chemical exchange saturation transfer (CEST) MRI is a versatile imaging method that probes the 

chemical exchange between bulk water and exchangeable protons. CEST imaging indirectly 

detects dilute labile protons via bulk water signal changes following selective saturation of 

exchangeable protons, which offers substantial sensitivity enhancement and has sparked numerous 

biomedical applications. Over the past decade, CEST imaging techniques have rapidly evolved 

due to contributions from multiple domains, including the development of CEST mathematical 

models, innovative contrast agent designs, sensitive data acquisition schemes, efficient field 

inhomogeneity correction algorithms, and quantitative CEST (qCEST) analysis. The CEST system 

that underlies the apparent CEST-weighted effect, however, is complex. The experimentally 

measurable CEST effect depends not only on parameters such as CEST agent concentration, pH 

and temperature, but also on relaxation rate, magnetic field strength and more importantly, 

experimental parameters including repetition time, RF irradiation amplitude and scheme, and 

image readout. Thorough understanding of the underlying CEST system using qCEST analysis 

may augment the diagnostic capability of conventional imaging. In this review, we provide a 

concise explanation of CEST acquisition methods and processing algorithms, including their 

advantages and limitations, for optimization and quantification of CEST MRI experiments.

1. Introduction

The use of nuclear magnetic resonance (NMR) to detect chemical exchanges originated 

from the pioneering work of Forsen and Hoffman, who first proposed the double-resonance 

NMR method for measuring intermediate chemical exchanges (1,2). Their work eventually 

ushered in the field of chemical exchange saturation transfer (CEST) MRI, a sensitive 
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method for measuring the chemical exchanges and chemical kinetics of dilute 

macromolecules (3-9). CEST MRI has shown the ability to detect a variety of compounds 

(e.g., glucose, glycogen, lactate), proteins and enzymes for molecular imaging (10-24). 

Development of exogenous CEST agents, including diamagnetic CEST (DIACEST) and 

paramagnetic CEST (PARACEST) agents, greatly enhanced the sensitivity and specificity 

of CEST imaging (25-34). In addition, CEST MRI provides a novel imaging approach to 

track tumor cells, bacterial/viral infections, pH and temperature changes (35-41). Moreover, 

endogenous CEST effects attributable to labile proton groups from endogenous proteins, 

peptides and metabolites have been applied to study disorders such as acute stroke, renal 

injury, tumors and multiple sclerosis (MS) (42-47).

The CEST effect is sensitive to labile proton concentration and exchange rate and, hence, 

parameters that affect the exchange rate, such as pH and temperature. However, the CEST 

effect also depends on relaxation rate, magnetic field strength and more importantly, 

experimental parameters including repetition time, RF irradiation amplitude and scheme, 

and image readout, which confound CEST measurements (48). Mathematical tools have 

been established to quantify CEST experiments. With the development of novel CEST 

agents, it has become increasingly important to optimize CEST experiments for enhanced 

detectability. Importantly, recent work has demonstrated that the CEST agent concentration 

and exchange rate can be determined concurrently (49,50). Such advanced post-processing 

algorithms transform routine CEST-weighted information towards quantitative CEST 

(qCEST) analysis, which is promising in providing additional insights into underlying 

biomedical systems (51). Indeed, CEST imaging has seen rapid development due to 

innovative concepts and improvement in mathematical models, novel contrast agent designs, 

sensitive data acquisition schemes, post-processing algorithms, and qCEST analysis. 

Therefore, a comprehensive survey of these new developments is warranted to enhance 

general understanding of CEST imaging. Herein, we provide a summarized review of the 

CEST contrast mechanism and methods for optimization and quantification of CEST MRI.

2. Quantitative Description Of CEST MRI

Mathematical models, both numerical and analytical solutions, have been established to 

describe the CEST contrast mechanism (52-54). A solid mathematical description of the 

CEST phenomenon is pragmatically useful for optimization and quantification of the CEST 

effect.

a. Bloch-McConnell solution

The CEST contrast mechanism can be described using Bloch-McConnell equations, which 

are two sets of Bloch equations coupled by means of chemical exchange. For a typical 2-

pool chemical exchange model, assuming the irradiation RF field is applied along the x-axis, 

we have
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[1]

where  are the equilibrium magnetizations for bulk water (w) and solute pool (s); 

are bulk water and solute magnetizations along x, y and z directions; R1w,s and R2w,s are 

their longitudinal and transverse relaxation rates, respectively; and ksw and kws are chemical 

exchange rates of protons from pool s to pool w and vice versa. In addition, ω1 is the RF 

irradiation amplitude, and Δωw,s is the frequency difference between irradiation RF offset 

and bulk water, and labile proton chemical shifts, respectively. Bloch-McConnell equations 

enable not only simulation of CEST experiments but also numerical fitting of CEST 

measurements (54,55). Furthermore, extended Bloch-McConnell equations that describe 

multi-pool CEST phenomena can properly take into account concomitant RF irradiation 

effects, including nuclear overhauser effects (NOE) and magnetization transfer (MT) (56).

b. Modified Bloch-McConnell equations for quantifying the CEST effect

Although the CEST effect is commonly described using the simplistic 2-pool exchange 

model, CEST systems in reality often involve multiple exchangeable sites (57-59). The 

extended Bloch-McConnell equations that describe multi-pool CEST systems are 

mathematically tedious, as the coupling matrix scales with the number of exchangeable 

sites. To overcome this difficulty, a scalable solution based on the classic 2-pool model has 

been developed to describe multi-pool CEST phenomena (60). For dilute labile protons that 

undergo slow or intermediate chemical exchanges, the CEST effect, expressed as CEST 

ratio (CESTR), can be calculated using the CEST asymmetry analysis as

[2]

where Iref and Ilabel are the signal intensity with RF irradiation applied at the reference and 

labile proton frequency, respectively. For well-separated CEST groups, the first order 

approximation of the CEST effect can be obtained by linear superposition of CESTR for 

each labile proton group as , where Δωsi is the 

chemical shift offset of the ith labile group.

Incorporation of cross terms that represent the coupling of CEST effects from multiple labile 

protons yield

[3]

Kim et al. Page 3

Contrast Media Mol Imaging. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It has been shown that the simplified approach is in good agreement with conventional 

simulation algorithms and yet expends markedly shorter simulation times. In addition, this 

simplified approach offers a scalable solution that can be easily expanded using the same 

simulation routine when CEST systems involve an arbitrary and large number of 

exchangeable sites.

c. Simplified solution for quantifying the CEST effect

Although numerical methods are useful to quantify CEST phenomena, analytical solutions 

for CEST imaging can provide further insight into complex CEST effects. Zhou et al. 

assumed that RF irradiation instantaneously saturates labile protons without direct saturation 

of bulk water signals, so the Bloch-McConnell equations could be simplified as (53)

[4]

with r1s,w = R1s,w+ksw,ws, r2s,w = Rksw,ws, , and . The CEST 

effect can be solved as

[5]

where TS is the RF saturation time, fs is labile proton ratio with respect to bulk water, and 

 is the simplistic CEST solution assuming complete saturation of labile protons 

without RF spillover effects. Importantly,  is the saturation efficiency of labile 

protons (labeling coefficient), where  and . 

This equation can adequately describe the CEST effect when assuming negligible direct RF 

saturation (weak RF irradiation).

d. RF spillover effect-corrected empirical solution for quantifying the CEST effect

The RF spillover effect refers to the concomitant saturation of water protons due to RF 

irradiation that aims to specifically saturate labile protons. Although Eq. 5 is valid when 

assuming a weak B1 field, the concomitant RF spillover effect may not be negligible, 

particularly in DIACEST MRI experiments where the labile proton chemical shift is in close 

proximity to that of bulk water resonance (53,61,62). Both labile proton saturation and RF 

spillover effects are strongly B1-dependent — the labeling coefficient increases with RF 

power and so does the concomitant RF spillover effect (63). Therefore, the maximal 

apparent CEST effect can be achieved at an intermediate RF power level. Sun et al.(63) 

modified the simplistic solution with a correction of the RF spillover effect as follows:

[6]

where σ is the RF spillover factor, given by
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[7]

in which , rZS =r1s cos2 θ +r2s sin2 θ rZW = r1W cos2 (θ/2) +r2W sin2 (θ/2). It 

shows that with weak RF power, the spillover factor is negligible (i.e., σ=0), and the 

modified solution is consistent with that of Zhou et al.

e. Lorentzian fitting for quantifying CEST effects

The Z-spectrum is a plot of the water signal when RF irradiation is swept around the bulk 

water resonance. For a simplified 3-pool model that includes the CEST effect, direct water 

saturation (DWS) and macromolecular MT effects, it is reasonable to assume that the 

concomitant effects are symmetric around the water resonance. A Lorentzian model has 

been introduced to analyze the combined saturation based on the weak saturation pulse 

(WSP) approximation (64-66). Lorentzian line shapes for proton transfer ratio (PTR) and 

DWS are stated as

[8]

with A and Γ being the peak and full width at half maximum (FWHM) of the effect. In 

addition, the parameters within direct water saturation (L0(A0,Γ0)) and CEST effects 

(L1(A1,Γ1)) are

The underlying MT effect can be integrated into the multi-pool approximation function (60), 

and the combined transfer rate (CTR) is

[9]

where L1 = PTR and L2 is a Lorentzian function representing MTR′asym. Similarly, Sheth et 

al. proposed a model function of multiple Lorentzian lines to fit the CEST spectrum as (67)
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[10]

where A, w and Δω are the area, FWHM and center of Lorentzian spectra, respectively. The 

formula successfully modeled in vivo measurement of tumor extracellular pH in conjunction 

with administration of PARACEST agents (67). Indeed, Desmond et al. constructed 

endogenous CEST parameter maps of tumor xenografts by decomposing CEST spectra into 

four Lorentzian line shapes that represent the direct effect, amide, amine, and aliphatic peaks 

(66).

f. Spin locking theory for quantifying the CEST effect

Quantification of the chemical exchange process using off-resonance spin locking (SL) MRI 

is shown to be comparable to conventional Z-spectral imaging for slow to intermediate 

chemical exchanges (68-71). For the classic 2-pool exchange model, the steady-state 

solution  is given as

[11]

where R1ρ is the longitudinal relaxation rate in the rotating frame. Notably, the CEST effect 

can be quantified using the inverse difference of the CEST ratio (CESTRind) as follows:

[12]

The inverse difference solution of the CEST effect corrects the concomitant RF spillover 

effect, providing improved quantification of CEST measurement, which is particularly 

important for DIACEST MRI (72). Note that optimized sensitivity occurs by selecting a 

moderate RF power, albeit the CESTRind calculation is immune to RF spillover effects.

3. Dependence Of CEST MRI Measurement

The experimentally measurable CEST effect depends not only on CEST agent concentration 

and exchange rate, but also on relaxation rate and a number of experimental variables such 

as field strength, RF irradiation power level and acquisition schemes, including repetition 

time and flip angle (51). These confounding factors, therefore, need to be carefully 

examined for qCEST analysis.
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a. Relaxation rate

The strong T1 relaxation rate (T1w) dependence of the CEST effect is explained by the fact 

that saturation transfer-induced signal reduction is counterbalanced with signal recovery 

from longitudinal relaxation of the bulk water signal (3). Likewise, the T2 relaxation rate 

(T2w) comes into play through the concomitant RF spillover effect (63). Notably, the 

exchangeable proton pool with a short T2w (i.e., broad spectral width) is exposed to direct 

RF saturation with the bulk water pool. The empirical solution determining the relationship 

between the CEST effect and relaxation rates is given in Eq. 7.

b. Magnetic field strength

CEST experiments demonstrate a strong correlation between the CEST effect and field 

strength through the variability of T1w and T2w, which eventually impacts the spillover 

effect and the optimal B1 irradiation level. Figure 1 shows a simulated T1w (Fig. 1a) and T2w 

(Fig. 1b) for brain gray matter (GM) as a function of field strength (73,74). Simulated 

CESTR (Eq. 6) of endogenous amide proton transfer ratio (APTR) using an empirical 

solution demonstrates increasing APTR concomitantly with field strength level that is likely 

attributable to prolonged T1 and increased optimal B1 levels (Fig. 1c). Moreover, APTR 

initially increases linearly with field strength and gradually plateaus at a very high field 

regime because the chemical exchange rate of amide protons is relatively slow (Fig. 1d) 

(42,75). On the other hand, the CEST effect on groups of higher exchange rates, such as 

amine and hydroxyl groups, significantly increases with field strength.

c. B1 irradiation level

A lower labeling coefficient from weak RF power (i.e., inefficient labile proton saturation) 

leads to an attenuated CEST effect. Contrarily, very strong RF power induces a non-

negligible RF spillover effect, which is more pronounced in DIACEST MRI where labile 

proton resonance is in close proximity to that of bulk water. The B1 dependence of the 

CEST effect can be described reasonably well with the empirical solution (Eq. 6), which 

eventually leads to an answer for the optimal RF level that maximizes the CEST effect. 

Jones et al. (65) investigated the effect of saturation strength and duration on the pulsed 

steady-state APT effect for a three-compartment model of semisolid macromolecular 

protons, solute amide protons and bulk water protons. The simulation shows that MTC and 

DS strongly reduce with B1 decrease, and a moderate RF irradiation level maximizes APTR 

by reasonably balancing the labeling coefficient and spillover factor (Fig.2).

d. CEST agent properties

For dilute CEST agents with slow and intermediate chemical exchange rates, the CEST 

effect approximately linearly correlates with labile proton concentration and exchange rates. 

However, the CEST effect deviates from the linear relationship when the reverse exchange 

rate is comparable to the relaxation rate (i.e., kws=fs·ksw~R1w). The equation describes 

CEST agent kinetics and is analogous to the Michaelis-Menten equation of enzyme kinetics, 

which can be used to correlate the CEST effect with the concentration of the agent in 

solution (76). It has been shown that kws can be estimated and adequately corrected with T1 

normalization (77). Additionally, the relationship between the exchange rate and the CEST 
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effect is complicated by confounding experimental factors, particularly the labeling 

coefficient and spillover factor that are largely independent of the labile proton fraction ratio 

(78).

4. Optimization Of CEST MRI Experiments

Optimization of CEST MRI is important particularly in endogenous CEST MRI whose 

effects are typically small. In this section, we introduce signal-to-noise ratio per unit time 

(SNRput) for optimizing CEST experiments, as well as experimental parameters that include 

B1 level, RF irradiation scheme, repetition time and flip angle.

a. Signal-to-noise ratio efficiency for optimization of CEST MRI

The signal-to-noise ratio (SNR) of the CEST asymmetry effect has been derived as (51)

[13]

where SNRI0 is SNR of the control image. This shows that the SNR of CEST imaging varies 

not only with the magnitude of the CEST effect (i.e., CESTR) but also with SNRI0. 

Experimental parameters, repetition time, echo time and flip angle are determining factors of 

SNRI0, which dictate CEST sensitivity. Notably, SNR SNR efficiency (i.e., 

) is inversely related with repetition time and number of signal average 

(NSA). A typical steady-state CEST sequence is comprised of a long RF irradiation module, 

followed by fast image readout, such as echo planar imaging (EPI), which confers relatively 

good SNR and spatiotemporal resolution (42,65,71,79,80). Figure 3 shows experimental 

validation of CEST MRI SNR comparison from an in vitro pH phantom. Although the 

CESTR contrast between two pH compartments (ΔCESTR) steadily increases with TR (Fig. 

3a), CNRput (i.e., ) peaks at an 

intermediate TR — approximately twice the T1 (Fig. 3b). Under the optimal TR, we found 

that both ΔCESTR (Fig. 3a) and CNRput (Fig. 3b) increase with the RF duty cycle. Hence, 

within the permissible range of scan time and specific absorption rate (SAR) limits, the 

longest-achievable TS is generally preferred to obtain maximized CEST MRI contrast. 

Moreover, ΔCESTR decreases with the RF flip angle (Fig. 3a), while CNRput increases with 

the RF flip angle, which peaks at approximately 75° (Fig. 3b). This result indicates that both 

the amplitude and SNR efficiency have to be considered when optimizing CEST MRI 

experiments.

b. Continuous wave (CW) RF irradiation for optimization of CEST MRI

The optimal RF power that maximizes the CEST effect is deduced when the saturation 

efficiency and spillover factor are balanced (63) as follows:
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[14]

with , , , , , rW = r2W – r1W, rS = r2S – r1S, 

 and . This indicates that the optimal B1 level depends not only on the labile 

proton ratio, exchange rate and chemical shift, but also on relaxation rates. Figure 4 shows a 

numerical simulation of the optimal B1 irradiation level as a function of field strength and 

chemical shift when typical T1 and T2 values of the GM are assumed (73,74). Note that the 

“exchange rate normalized” optimal B1 level (i.e., γB1/ksw) approaches unity at high field 

and large chemical shift due to a reduced RF spillover effect. At typical clinical field 

strengths, the optimal RF power level of the DIACEST agents, whose chemical shifts are 

often less than 5 ppm from the bulk water, is substantially reduced from the exchange rate.

c. Pulsed RF irradiation for optimization of CEST MRI

CEST imaging has been accomplished using long block pulses, a series of short pulses 

(“pulse train”) that has a saturation efficiency similar to that of the long hard pulse, or 

alternatively steady-state approaches using alternating brief saturation and image acquisition 

(65). Although the pulse train CEST has been used in some early CEST experiments (42), 

long continuous-wave (CW) RF irradiation is commonly used in preclinical scanners to 

establish the steady-state CEST effect prior to image acquisition where the limitations of the 

RF duty cycle are less of a concern. However, CW irradiation is often not feasible on 

clinical scanners, which necessitates the use of a pulsed RF or pulse train irradiation scheme 

(81-84). The pulsed RF irradiation carries at least three parameters to optimize, namely, 

irradiation pulse duration, flip angle, and inter-pulse delay, in contrast to only one parameter 

(i.e., B1) requiring optimization in the case of CW irradiation. Sun et al. investigated the 

effects of the RF irradiation pulse train and labile proton properties on the pulsed-CEST 

MRI measurement (82,85), which showed that the optimal pulse irradiation can be 

reasonably inferred from the well-prescribed CW design. The optimal irradiation flip angle 

of pulsed irradiation is approximately 180° and is not dependent on acquisition parameters 

and sample properties. In pulsed-CEST imaging for slow chemical exchange, a flip angle of 

approximately 180° for each irradiation pulse is suitable because, in this case, an inversion 

pulse retains labile and bulk water protons in opposite phases. However, the inter-pulse 

delay of pulsed-CEST MRI degrades saturation efficiency and, hence, measureable CEST 

effect when imaging intermediate and fast chemical exchanges. In addition, Zu et al. found 

that the optimal average power and flip angle of pulsed irradiation are independent of each 

other. Both simulated and experimental results showed the pulsed-CEST contrast peaks at 

the flip angle of 180°(Fig. 5), and the optimal average power of pulsed irradiation is similar 

to the optimal RF field amplitude for CW-CEST MRI (86). Schmitt et al. proposed using 

long-period saturation pulse trains with balanced duty-cycles, which have the advantages of 

fewer hardware specifications, easy implementation, and low SAR without compromising 

CEST contrast (87).
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PARACEST MRI agents have large chemical shifts, which enable detection of labile 

protons undergoing a chemical exchange that is faster than DIACEST MRI. However, it 

requires relatively strong RF irradiation in order to saturate fast labile protons, resulting in 

an intense SAR. Vinogradov et al. proposed a WALTZ-16 pulse train with amplitude and 

phase modulation positioned on the bulk water resonance for detection of PARACEST 

agents that leads to less saturation RF power demand (88). Development of sophisticated on-

resonance irradiation pulse schemes with composite pulses can further mitigate the 

susceptibility to field inhomogeneity for on-resonance CEST imaging schemes. Recently, a 

time-interleaved parallel transmission based APT-MRI technique using multiple 

transmission coils has been demonstrated that substantially increased the saturation pulse 

duration (89).

d. Unevenly-segmented RF irradiation for efficient CEST imaging

Conventional CEST MRI typically consists of a long RF irradiation module followed by fast 

image acquisition to obtain the steady-state CEST contrast. Because of lengthy RF 

irradiation and relaxation recovery, it is not efficient to acquire multi-slice CEST images 

(90). Sun et al. proposed an unevenly segmented RF labeling scheme to enhance CEST 

imaging sensitivity (91). It includes a long primary RF irradiation sandwiched between a 

repetitive secondary short RF irradiation module and fast image readout for each saturation 

block. In this way, the steady-state CEST effect created by the primary irradiation is 

refreshed by short secondary irradiation during multi-slice excitations, and efficiency of 

signal acquisition can be significantly improved. This approach clearly demonstrated a 

significant sensitivity benefit per unit time over the conventional method.

e. Multi-echo CEST MRI for sensitive CEST imaging

For CEST imaging of slow and intermediate chemical exchange, signal averaging is often 

needed in order to augment CEST sensitivity. Because T2 signal decay is normalized during 

the CEST asymmetry calculation, the magnitude of the CEST effect is independent of echo 

time. It has been shown that a multi-echo EPI readout can yield the same CEST effect as the 

conventional single-echo acquisition. Moreover, the sensitivity of multi-echo CEST imaging 

was significantly higher than that of conventional single-echo CEST-EPI acquisition (92). 

Notably, both SNR and CNR from multi-echo CEST imaging were substantially higher than 

those obtained by conventional single-echo acquisition, which may facilitate in vivo CEST 

imaging by virtue of substantially improved sensitivity gain.

f. Image readout

There has been a variety of MRI acquisition methods tailored to improve sensitivity and 

efficiency of CEST imaging. One approach is using a long selective saturation strategy 

combined with rapid acquisition with relaxation enhancement (RARE) pulse sequences for 

PARACEST imaging under long T1 relaxation conditions (93). Alternatively, a fast low-

angle shot (FLASH) readout after short selective saturation periods could enhance 

PARACEST detection under short T1 relaxation conditions (93). Three-dimensional CEST 

imaging with gradient- and spin-echo (GRASE) readout that combines the turbo spin-echo 

(TSE) and EPI along with 2D sensitivity encoding (SENSE) accelerations enabled 
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significant reduction in the CEST acquisition time (94). Recently, Shah et al. integrated the 

single-shot steady-state free precession (SSFP) readout with CEST RF irradiation, and 

demonstrated comparable results with EPI readout but with substantially fewer distortion 

artifacts (95). More recently, keyhole and compressed sensing (CS) CEST MRI have been 

demonstrated, which may further enhance fast CEST imaging (96-99).

5. Quantitative CEST (qCEST) MRI

The experimentally measured CEST effect involves complex physical and chemical 

variables, not only parameters of interest such as CEST agent concentration, pH and 

temperature, but also relaxation rate and other experimental conditions. Development of 

qCEST analysis is necessary to augment conventional CEST-weighted MRI and to fully 

characterize the underlying CEST systems (49,50,75,100-102).

a. QUEST and QUESP for quantification of the CEST effect

Equation 5 describes CESTR as a function of saturation RF irradiation time (TS) (53). If 

T1w can be independently determined, the labile proton ratio-weighted exchange rate can be 

solved by fitting CESTR as a function of saturation time (i.e., QUEST). This was further 

simplified with a linear fitting procedure—the reciprocal linear QUEST (RL-QUEST) 

method (103). In addition, the CEST system can also be quantified by using the RF power 

dependence of the labeling coefficient (i.e., QUESP). These methods have shown to be 

successful in determining a self-consistent proton exchange rate. Briefly, QUEST can be 

more accurate than QUESP owing to the easier measurement of saturation time than that of 

saturation power, especially with B1 inhomogeneity, while QUESP has the advantage of not 

being limited by the demand for precision in labile proton ratio measurement (100). 

Recently, Randtke et al. developed QUESPT, which measures the CEST effects as a 

function of saturation time and saturation power, and has the potential to mitigate fitting bias 

(102). Note that QUEST, QUESP and QUESPT become less effective in quantifying high 

exchange rate cases due to the overestimation of the saturation efficiency. The Hanes-Woolf 

linear QUESP (HW-QUESP) method, however, was shown to produce accurate estimates of 

fast exchange rates because it includes a wide range of saturation power in both the x- and y-

values of the plot (102).

b. QUEST with ratiometric analysis (QUESTRA) for improved quantification of the CEST 
MRI effect

The saturation time-dependent QUEST analysis assumes negligible direct RF saturation. 

However, it has been shown that a time-dependent CEST effect is governed by T1ρ 

(longitudinal relaxation rate in the rotating frame), instead of the intrinsic T1 (68,69). Sun 

extended the QUEST approach with ratiometric analysis (QUESTRA), which normalizes the 

magnetization transfer ratio (MTR) at labile frequency by MTR at reference frequency (78)

[15]

where MTRlabel_ss and MTRref_ss are the steady-state MTR for the label and reference 

scans, respectively. Because the label and reference scans experience similar direct RF 
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saturation effects, the QUESTRA solution eliminates the confounding spillover effect with 

little dependence on T1, T2, RF irradiation power and chemical shift.

c. RF power-dependent qCEST MRI analysis

Optimization of the B1-dependent CEST effect has benefited qCEST analysis (63). To 

account for the semisolid magnetization transfer (MT) effect, a dual 2-pool model was 

formulated based on the empirical quantitative solution of pH-sensitive in vivo APT MRI, 

which allowed simultaneous determination of labile amide proton concentration and 

exchange rates at normal and ischemic pH (75). In addition, it has been shown that the 

optimal RF power, which varies with the exchange rate, has a lesser degree of dependence 

on the labile proton concentration (50). Under circumstances of multiple RF irradiation 

levels, the labile proton ratio and exchange rate can be determined independently (49). In 

addition, Zu et al. resolved the labile proton ratio and exchange rate using the chemical 

exchange rotation transfer (CERT) approach, which formulates CEST measurement as a 

function of the flip angle of the irradiation pulse (80,104,105).

d. Omega plot for quantification of the PARACEST MRI effect

Dixon et al. proposed the omega plot for quantifying PARACEST MRI. The labile proton 

signal intensity is shown to be (106)

[16]

where  is steady, the steady-state signal at the labile proton frequency. By plotting 

, the exchange rate can be determined without a priori knowledge of the 

labile proton ratio and relaxation rate. A phantom study confirmed that the exchange rates 

estimated from the omega plots were in good agreement with those from the solution of 

Bloch-McConnell equations at slow exchanging rates. Fast exchanging protons, however, 

experience incomplete saturation, which introduces measurement inaccuracy. In this case, 

the Hanes-Woolf QUESP solution may be an alternative approach to minimize such 

systematic errors (102).

The concomitant RF spillover effect can be corrected to improve the omega plot analysis. It 

has been shown that the RF spillover effect can be reasonably estimated, and the RF 

spillover factor-corrected omega plot analysis can be extended for DIACEST MRI as 

(51,107)

[17]

Both the labile proton exchange rate and ratio can be solved with 

 and , where C0 and C1 are the intercept 

and slope of the modified omega plot analysis.
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e. Ratiometric pH MRI

The ratiometric CEST MRI compares the CEST effects from multiple labile protons of the 

same molecule. The normalization calculation makes the ratiometric measurement 

independent of CEST agent concentration, resulting in substantial simplification of qCEST 

analysis (108,109). Sheth et al. investigated a PARACEST contrast agent (Yb-DO3A-oAA) 

to measure extracellular pH (67,110). Figure 6 shows excellent linearity between the CEST 

effects, and the pH exhibited good dynamic range (67). Recently, iopamidol, a food and 

drug administration (FDA)-approved CT contrast agent, has demonstrated potential for pH 

imaging (111). Longo et al. demonstrated that iopamidol pH MRI can monitor renal pH 

changes in acute renal injury (112,113). Alternative iodinated CT agents (iopromide) for pH 

imaging have also been evaluated (114). More recently, a method for endogenous 

ratiometric CEST MRI has been developed for in vivo pH imaging by comparing amide and 

amine exchangeable groups (66,115).

6. Artifacts And Post-Processing

Because the CEST effect is typically small, CEST MRI is prone to field inhomogeneity 

artifacts. In addition, conventional asymmetry analysis is subject to lipid signal 

contamination and contributions from asymmetric MT and NOE, which have to be 

considered when measuring the in vivo CEST effect.

a. Field inhomogeneity

The CEST effect is sensitive to field inhomogeneity (116-121). B0 inhomogeneity can be 

measured using a conventional field map (122). B0 shift can also be determined by fitting 

the direct water saturation with Bloch-McConnell (77) or Lorentzian line models 

(64,65,123), or a water saturation shift referencing the (WASSR) approach (122,124,125). 

B0 inhomogeneity-induced CEST artifacts can be corrected by aligning the interpolated Z-

spectrum based on B0 shift. WASSR correction can be achieved with partial Z-spectral 

sampling in segments around the label and reference frequencies to shorten the scan time 

(84,126). Moreover, B0 inhomogeneity correction can also be rectified with a model-based 

algorithm. Sun et al. showed that the MT asymmetry calculation is given by (75)

[19]

where CESTR′ represents CESTR with B0 field inhomogeneity contamination, and ΔMTR 

is the MTR offset due to a field inhomogeneity-induced MTR shift. Taking into account 

field inhomogeneity-modulated experimental factors, the corrected PTR can be shown to be 

CESTR = η · CESTR′ = η ·(MTRasym − ΔMTR), where η is the modulation factor: 

. The compensated CESTR is given as

[20]
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Recently, Song et al. proposed a new CEST phase mapping scheme based on length and 

offset varied saturation (LOVARS). Figure 7 displays the LOVARS scheme as applied to 

the imaging of 9L gliosarcomas in mice. The WASSR map (Fig. 7b) shows substantial B0 

variation, which distorts the MTRasym map (Fig. 7c). The LOVARS phases show a large 

difference between the two ROIs (Fig. 7d), despite their similar MTRasym magnitudes in the 

uncorrected CEST map (Fig. 7c). With either fast Fourier transform (FFT) (Fig. 7e) or the 

general linear model (GLM) (Fig. 7f), the thresholded imaginary component map (Fig. 7g) 

contains the same information as that obtained by conventional MTRasym correction, but 

with the superiority of higher CNR and less sensitivity to field inhomogeneity (127).

b. Filtering of CEST MRI

To improve quantitative interpretation of CEST contrast maps, Liu et al. proposed an MRI 

segmentation technique based on two resonance frequency offsets and the normalized 

magnetization ratio (NOMAR) filtering, which is defined as (128)

[18]

c. Lipid Artifacts

Amide proton transfer (APT) imaging is a specific form of CEST imaging that probes amide 

protons from endogenous proteins/peptides. Because the lipid chemical shift (-3.5 ppm) is 

situated approximately equal to the reference frequency for endogenous amide protons (3.5 

ppm), conventional asymmetry analysis is prone to lipid contamination. This lipid artifact is 

particularly prominent in the CEST-EPI sequence due to a chemical shift-induced pixel 

change along the phase encoding direction. Sun et al. developed a lipid signal suppression 

method using a chemical shift-selective refocusing pulse (129). For multi-slice acquisition, a 

fat suppression pulse should be positioned immediately prior to the EPI readout to minimize 

lipid contamination (91). Notably, although a lipid-induced voxel shift is less problematic in 

non-EPI-based sequences due to higher phase encoding bandwidth, lipid suppression is still 

important to distinguish confounding asymmetric saturation transfer effects, such as NOE 

from lipids (130).

d. Quantitative in vivo CEST MRI

In vivo CEST MRI has been applied to study a number of disorders, including acute stroke, 

tumors, MS, and renal injury (22,43,123,131-136). However, endogenous APT MRI can be 

confounded by concomitant T1, T2, MT and NOE changes, and in vivo qCEST MRI 

provides important diagnostic value (137-142).

Because T1, T2 and semisolid MT changes during acute stroke are relatively small, in vivo 

qCEST MRI analysis has been applied to quantify tissue acidosis during acute stroke 

(143-145). Reasonably homogeneous labeling coefficient and spillover factor maps were 

calculated from an empirical solution (Eq. 6). Note that the in vivo MTRasym is negative due 

to the baseline shift of the ΔMTR’asym. The routine pH-weighted MTRasym map shows 

significant regional differences between cerebral WM and GM that is attributable to the 
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concomitant RF irradiation effects and does not reflect pH. However, the tissue pH map 

derived from qCEST analysis accurately represents tissue acidification in the ischemic 

lesion. Recently, Zaiss et al. proposed an MT ratio (MTRRex) analysis using the inverse Z-

spectrum to eliminate spillover and semisolid MT effects (72). Conventional APT contrast 

(Fig. 8a) is contaminated by DS and T1 effects (Figs. 8d, e). By correcting the spillover with 

MTRRex (Fig. 8b), and correcting the T1 using the apparent exchange-dependent relaxation 

(AREX) evaluation (Fig. 8c), a pH map can be calculated (Fig. 8f) that will show 

significantly improved contrast between ischemic and normal regions (Fig. 8g).

7. Conclusion

CEST MRI is a sensitive imaging method that can characterize the chemical and biological 

properties of intracellular and extracellular domains of the tissue. However, the conventional 

CEST-weighted MRI method is limited by its dependence on experimental conditions. The 

emerging qCEST analysis method enables simultaneous determination of labile proton ratio 

and exchange rate, and is expected to provide an invaluable paradigm for in vivo imaging. 

Along with innovative acquisition, optimization and quantification methods, CEST MRI 

opens the way to an unbiased measure of important biological information for clinical 

translation.
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Table of abbreviations

APT(R) Amide Proton Transfer (Ratio)

AREX Apparent Exchange-dependent Relaxation

CERT Chemical Exchange Rotation Transfer

CEST(R) Chemical Exchange Saturation Transfer (Ratio)

qCEST Quantitative CEST

CNR Contrast-to-Noise Ratio

CS Compressed Sensing

CTR Combined Transfer Rate

CW Continuous Wave

DIACEST Diamagnetic CEST

D(W)S Direct Water Saturation

EPI Echo Planar Imaging

FFT Fast Fourier Transform

FISP Fast Imaging with Steady Precession
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FLASH Fast Low-angle SHot

FWHM Full Width at Half Maximum

GLM General Linear Model

GM Gray Matter

GRASE Gradient And Spin-Echo

LOVARS Length and Offset VARied saturation

MT(R) Magnetization Transfer (Ratio)

MTRasym Magnetization Transfer Ratio Asymmetry

MTRRex Spillover-correct Magnetization Transfer Ratio Yielding Rex

NOE Nuclear Overhauser Effect

NOMAR NOrmalized MAgnetization Ratio

NSA Number of Signal Average

PARACEST Paramagnetic CEST

PTR Proton Transfer Rate

QUESP QUantification of Exchange as a function of Saturation Power

QUEST(RA) QUantification of Exchange as a function of Saturation Time (Ratiometric 

Analysis)

RARE Rapid Acquisition with Relaxation Enhancement

rCEST(R) Ratiometric CESTR (Ratio)

RF RadioFrequency

RL-QUEST Reciprocal Linear-QUEST

SAR Specific Absorption Rate

SENSE SENSitivity Encoding

SL Spin Locking

SNRput Signal-to-Noise Ratio per unit time

SSFP Steady-State Free Precession

TE Echo Time

TR Repetition Time

TS Saturation RF irradiation time

TSE Turbo Spin-Echo

WASSR WAter Saturation Shift Referencing

WSP Weak Saturation Pulse

Table of mathematical notations
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A, Γ Peak and full width half maximum (FWHM) of a Lorentzian line shape

α Labeling coefficient or excitation pulse flip angle

CESTR′ CESTR with B0 field inhomogeneity contamination

ΔMTR MTR offset due to a field inhomogeneity-induced MTR shift

Δωw,s Frequency difference between the labeling RF and the labile proton 

resonance

η Field inhomogeneity-modulated experimental factor of CESTR

Ω Frequency offset of spin-lock pulse

fs Labile proton concentration with respect to bulk water

γ Gyromagnetic ratio

Iref, Ilabel Image intensity with RF irradiation applied at the reference and labile 

proton frequency

ksw, kws Chemical exchange rate of protons, from pool s (w) to pool w (s)

L1 Proton transfer rate

L2 Lorentzian function representing MTR′asym

Equilibrium magnetizations for bulk water (w) and solute pool (s)

Bulk water and solute magnetizations along x, y and z directions

Steady-state signal at the labile proton frequency

R1w,s, R2w,s Longitudinal and transverse relaxation rates of bulk water and labile groups

R1ρ Longitudinal relaxation rate in the rotating frame

Rex Chemical exchange relaxation rate

σ Spillover factor

T1w Longitudinal relaxation rate of water proton

T1ρ T1 relaxation time in the rotating frame

T2w Transverse relaxation rate of water proton

Θ Lock angle of the water magnetization

ω1 Irradiation RF power
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Fig. 1. 
Plot of T1 (a) and T2 (b) as a function of field strength in grey matter (GM). Simulated 

CEST effect (CESTR) as a function of B1 irradiation power (c), and the maximal CEST 

effect for a given field strength (d).
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Fig. 2. 
(a) APTR effect, and (b) MTC and DS as a function of RF saturation strength and duration 

for a three-compartment model of semisolid macromolecular protons, solute amide protons, 

and bulk water protons.
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Fig. 3. 
Experimental validation of optimal experimental condition in an in vitro pH CEST phantom. 

The pH-weighted CEST contrast (ΔCESTR) increases with TR (a), while its contrast-to-

noise ratio efficiency (CNRput) peaks at an intermediate TR (b). Both ΔCESTR (a) and 

CNRput (b) increase with RF duty cycle. In addition, ΔCESTR decreases with RF flip angle 

(a), while CNRput initially increased with RF flip angle and peaked at about 75° (b).
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Fig. 4. 
Numerically determined optimal B1 level as a function of field strength and chemical shift. 

The exchange rate normalized optimal B1 level approaches unit at high field and chemical 

shift due to mitigated RF spillover effects.
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Fig. 5. 
(a) Simulated and (b) experimental pulsed-CEST contrast as a function of average power 

and flip angle of pulsed irradiation at 9.4T with a duty cycle of 50%. Stars represent the 

experimental results.
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Fig. 6. 
CEST ratio-pH correlation for Yb-DO3A-oAA at 300 MHz magnetic field strength. (a) The 

% CEST effects of the amide (filled circles) and amine (unfilled circles) of 100 mM Yb-

DO3A-oAA were measured at 37 °C using 20 μT saturation power. (b) The log10 of a ratio 

of CEST showed an excellent correlation with pH (R2 = 0.99).
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Fig. 7. 
In vivo demonstration of the LOVARS scheme as applied to the imaging of 9L gliosarcomas 

in mice. (a) T2-weighted image; (b) B0 shift map; (c) uncorrected MTRasym map; (d) 

LOVARS time domain data (top) with phase (middle) and magnitude (bottom) traces 

determined through FFT with ROIs as marked in (c); (e) LOVARS phase map calculated 

using FFT; (f) LOVARS phase map calculated using GLM; (g) thresholded LOVARS 

imaginary component map.
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Fig. 8. 
(a) Conventional APT contrast is contaminated by (d) spillover and (e) T1 effects. With 

correction of spillover by (b) MTRRex and correction of T1 by the (c) AREX evaluation, (f) 

an absolute pH map can be calculated, which shows (g) significantly higher contrast 

between the stroke area and normal tissue.
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