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Summary

Uveal melanoma is the second most common form of melanoma and the most common primary 

intraocular malignancy. Until recently, very little was known about the genetics of this aggressive 

cancer. Mutations in oncogenes and tumor suppressors that are common in other cancers are 

conspicuously absent in uveal melanoma. In recent years, however, uveal melanoma has begun to 

yield its secrets, and a fascinating picture is emerging of how it develops and progresses. 

Mutations in the Gq alpha subunits, encoded by GNAQ and GNA11, appear to be early or perhaps 

initiating events that require further mutations for malignant transformation. On the other hand, 

mutations in the BRCA1-associated protein-1 (BAP1) appear to occur later and demarcate a 

molecular brink beyond which metastasis becomes highly likely. BAP1 mutations can also occur 

in the germline, leading to a distinctive cancer predisposition syndrome. These mutations appear 

to be key events that provide the potential for targeted therapy. This article will review the genetic 

findings in uveal melanoma over the past two decades and suggest important areas for future 

work.
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Epidemiology

Uveal melanoma (UM) is the most common primary malignancy of the eye, with an 

incidence of about 1200–1500 new cases per year in the United States, and it accounts for 

about 5% of all melanomas (Egan et al., 1988; Ramaiya and Harbour, 2007). UMs can arise 

anywhere in the uveal tract, comprising the iris, ciliary body, and choroid, and they often 

involve more than one of these structures. About 5% of UMs are isolated to the iris, and 

these are often considered separately because of their less aggressive clinical behavior and 

distinct genetic alterations. Risk factors for UM include light skin color, red or blonde hair, 

blue eyes, and cutaneous freckles and nevi (Gallagher et al., 1985; Seddon et al., 1990; 

Tucker et al., 1985; Van Hees et al., 1994). There is a slight male preponderance (Singh et 

al., 2005a). Some studies have shown an association between UM and increased sun 
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exposure, sunlamp use, and southern latitude (Seddon et al., 1990; Tucker et al., 1985). 

Unlike cutaneous melanoma, however, the rates of UM have not increased over recent 

decades (Singh et al., 2011). Thus, the role of ultraviolet light exposure in UM is less clear 

than for cutaneous melanoma.

Clinical considerations

UM is similar to other forms of melanoma in its cellular morphology, expression of 

melanocytic lineage markers, propensity for metastatic spread, and resistance to therapy 

(Ramaiya and Harbour, 2007). However, UM differs in important ways from other types of 

melanoma, owing at least in part to its anatomic location within the uveal layer of the eye. 

UMs are not located within an epithelium, so downregulation of E-cadherin, epithelial-to-

mesenchymal transition, and basement membrane invasion are not important steps in UM 

progression (Onken et al., 2006a). Likewise, the lymphatic structures in the eye are too 

small for the passage of cells (Yucel et al., 2009), so regional lymphatic spread of UM is 

extremely rare. Instead, UMs metastasize by hematogenous dissemination. The most 

common sites of involvement include liver (93%), lung (24%), and bone (16%), with the 

overwhelming majority presenting initially in the liver (Diener-West et al., 2005). The cause 

of this marked tropism for the liver remains unknown. Clinical features associated with poor 

prognosis include larger tumor diameter, ciliary body involvement, and advanced patient age 

(Augsburger and Gamel, 1990). Histopathologic prognostic factors include epithelioid cell 

type, inflammatory infiltration, and extracellular matrix patterning (De La Cruz et al., 1990; 

Folberg et al., 1992; Gamel et al., 1978; Makitie et al., 2001). The mortality rate at 15 years 

of diagnosis of the primary tumor is about 50% (Kujala et al., 2003), and median survival 

after detection of metastatic disease is about 9 months (Kath et al., 1993).

Chromosomal alterations

Most UMs exhibit a relatively low degree of genomic instability and aneuploidy compared 

with many other cancer types. One study found that UMs exhibited less than half the 

genomic instability of breast cancers (Papadopoulos et al., 2002). In another study of 52 

UMs, only one tumor showed microsatellite instability (Cross et al., 2003). In two 

independent studies that examined a total of 180 primary UMs, about two-thirds were 

diploid, only one-third demonstrated aneuploidy (which was usually limited to a few 

specific chromosomal changes), and only 2% were tetraploid (Coleman et al., 1995; 

Karlsson et al., 1995). Thus, the recurring chromosomal abnormalities in UM discussed 

below are likely to be specific to tumor progression rather than random events.

The most common of these abnormalities include loss on 1p, 3, 6q, 8p, and 9p and gain on 

1q, 6p, and 8q. These were initially identified by standard karyotypic analyses (Griffin et al., 

1988; Horsman et al., 1990; Prescher et al., 1990, 1995; Singh et al., 1994; Sisley et al., 

1990; Wiltshire et al., 1993), but have since been confirmed by fluorescence in situ 

hybridization (FISH; McNamara et al., 1997; Patel et al., 2001), comparative genomic 

hybridization (CGH; Aalto et al., 2001; Ehlers et al., 2008; Ghazvini et al., 1996; Gordon et 

al., 1994; Hughes et al., 2005; Kilic et al., 2006; Speicher et al., 1994), spectral karyotyping 

(Naus et al., 2001), microsatellite analysis (MSA; Scholes et al., 2003; Tschentscher et al., 
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2000), multiplex ligation-dependent probe amplification (MLPA; Damato et al., 2010), and 

single-nucleotide polymorphisms (SNPs; Onken et al., 2007). These abnormalities are 

discussed in greater detail later.

Chromosome 1

Loss of part or all of chromosome 1p occurs in about a quarter of UMs (Figure 1) and more 

often occurs in the context of monosomy 3 (Hausler et al., 2005). 1p loss is one of the few 

chromosomal abnormalities that provides prognostic information that is independent of 

chromosome 3 status, with its presence portending decreased disease-free survival (Kilic et 

al., 2005). Microsatellite analysis of 70 UMs identified the smallest common region of loss 

on 1p to about 55 Mb at 1p31 (Hausler et al., 2005). No mutations in this region have been 

identified, but there are several potential candidates such as the Notch pathway members 

HES2 and HES5, and the p53 homologue TP73 (Kilic et al., 2008).

Chromosome 6

Gain of 6p and loss of 6q occur in about a quarter to a third of UMs (Figure 1). Both 

abnormalities are often present in the same tumor, suggesting the formation of an 

isochromosome 6p (Aalto et al., 2001). 6p gain has received much more attention than has 

6q loss, but it is unclear which chromosomal arm is pathogenetically more significant or 

whether both are important. Overall, 6p gain is associated with a better prognosis than 

monosomy 3, which has led some investigators to speculate that 6p gain is somehow 

‘protective’ against metastasis (Damato et al., 2009; White et al., 1998). However, it seems 

more likely that 6p gain is associated with better prognosis simply because it tends to occur 

in the absence of monosomy 3 (Ehlers et al., 2008; Parrella et al., 1999; Prescher et al., 

1995). This relative mutual exclusivity of 6p gain and monosomy 3 may represent 

alternative evolutionary pathways that are available during tumor progression, the former 

being less likely to eventuate in metastasis than the latter (Landreville et al., 2008; Parrella 

et al., 1999). Using conventional karyotyping, CGH and FISH, the common region of 6p 

gain has been narrowed to 6pter–6p21 and of 6q loss to 6q16.1–6q22 (Bott et al., 2011; 

Speicher et al., 1994). However, no pathogenic mutations in these regions have yet been 

reported.

Chromosome 8

8p loss occurs in about a quarter and 8q gain in almost 40% of UMs (Figure 1). 8q gain is 

statistically associated with metastasis (Sisley et al., 1997) and has attracted a great deal 

more attention than 8p loss, yet its significance remains elusive. The smallest region of 

common gain on 8q has been narrowed to the large region 8q23–24 → qter (Prescher et al., 

1995; Speicher et al., 1994), which contains many potential oncogenes such as MYC, which 

is amplified in about 30% of UMs (Parrella et al., 2001). Other potential oncogenes in this 

region include DDEF1 and NBS1 (now referred to as ASAP1 and NBN, respectively), 

which are overexpressed in UMs with poor prognosis (Ehlers and Harbour, 2005; Ehlers et 

al., 2005). However, a pathogenetic significance for any of these observations has not been 

established, and no specific oncogenic mutations on 8q have been reported in UM. Using 

MLPA, which interrogates a limited number of loci (Van Dijk et al., 2005), 8q status 
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purportedly yielded prognostic information that was independent of chromosome 3 status 

(Damato et al., 2009). However, this finding has not been corroborated by other 

investigators using higher-resolution genome-wide techniques such as array CGH (Kilic et 

al., 2005; Onken et al., 2008a). It is perhaps notable that 8q gain is a poor prognostic factor 

mainly when it occurs in the context of 8p loss (Bernstein et al., 2005; Onken et al., 2008a), 

suggesting the formation of an isochromosome 8q (Prescher et al., 1995). This accounts for 

about a quarter of UMs with 8q gain and occurs almost exclusively in poor prognosis 

monosomy 3 tumors (Figure 2). Our group found that 8p loss was a more important 

prognostic factor than 8q gain (Onken et al., 2008a), and we identified LZTS1, located 

within a minimal deleted region on 8p, as a potential metastasis suppressor gene (Onken et 

al., 2008a). Thus, it may be that 8p loss rather than 8q gain is more significant, both 

prognostically and pathogenetically. Further work is needed to determine the role of 

chromosome 8 abnormalities in UM progression.

Chromosome 9

Cytogenetically detectable loss on chromosome 9p occurs in almost a quarter of UMs 

(Figure 1), and smaller regions of LOH around 9p21, including the CDKN2A locus, are 

found in up to a third of UMs (Merbs and Sidransky, 1999; Ohta et al., 1996). Methylation 

of the CDKN2A promoter occurs in 24–31% of cases (Merbs and Sidransky, 1999; Van Der 

Velden et al., 2001). These findings suggest that inactivation of CDKN2A may play a role in 

UM progression. However, germline CDKN2A mutations are very rare in patients with UM 

(Ohta et al., 1996; Singh et al., 1996a; Soufir et al., 2000).

Chromosome 3 and BAP1

Loss of one copy of chromosome 3 (monosomy 3) occurs in almost half of UMs (Figure 1) 

and is by far the most prognostically significant chromosomal marker in UM. Monosomy 3 

is strongly associated with clinical and histopathologic prognostic factors and with 

metastatic death (Prescher et al., 1996; Scholes et al., 2003). Chromosome 3 has attracted 

enormous attention, with the expectation that it may harbor one or more tumor suppressor 

genes important to UM progression (Horsthemke et al., 1992). In the past, many groups 

attempted to narrow the minimal deleted region(s) on chromosome 3 and implicated various 

loci, including 3p11–14 (Blasi et al., 1999; Cross et al., 2006), 3p25–26 (Cross et al., 2006; 

Tschentscher et al., 2001), 3p25.1–3p25.2 (Parrella et al., 2003), and less consistent regions 

on 3q (Cross et al., 2006; Tschentscher et al., 2001). Unfortunately, many of these studies 

did not consider partial deletions in the context of patient outcome. It is now known that 

partial deletions of chromosome 3 in UM are quite common, but are usually not 

prognostically relevant (Toyota et al., 2000), such that the significance of partial deletions in 

the absence of metastasis is not clear. Many studies have analyzed candidate genes on 

chromosome 3, but have been unsuccessful in identifying the specific mutations needed to 

establish pathogenetic relevance (Myatt et al., 2000; Sisley et al., 1993; Zeschnigk et al., 

2003).

We approached this problem using exome capture followed by next-generation sequencing 

(Harbour et al., 2010). Initially, two UMs were interrogated, both of which were known to 
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be monosomic for chromosome 3 and to have given rise to metastasis. BRCA1-associated 

protein-1 (BAP1), located at chromosome 3p21.1, was the only gene on chromosome 3 that 

was mutated in both tumors. Using Sanger sequencing, we went on to find inactivating 

mutations in BAP1 in 27 of 57 (47%) UMs. These mutations occurred almost exclusively in 

metastasizing tumors that had also lost the other copy of chromosome 3, consistent with the 

‘two-hit’ model for recessive cancer genes.

BAP1 mutations had previously been identified in a small number of breast and lung cancer 

cell lines (Jensen et al., 1998) and more recently in malignant pleural mesotheliomas (Bott et 

al., 2011; Testa et al., 2011), cutaneous melanoma (Wiesner et al., 2011), and possibly other 

cancers such as meningioma (Abdel-Rahman et al., 2011). BAP1 was identified through a 

screen for proteins that interact with BRCA1 and has been shown to cooperate with BRCA1 

in tumor suppression in cultured cells (Jensen et al., 1998). BAP1 has also been shown to be 

involved in cell cycle regulation through interaction with host cell factor-1 (Machida et al., 

2009), which functions as a transcriptional coactivator with E2F proteins during cell division 

(Tyagi et al., 2007). More recently, it was shown that calypso, the Drosophila homologue of 

BAP1, as well as human Bap1 protein, removes monoubiquitin moieties from histone H2A 

in a manner dependent on interaction with ASX (ASXL1 in humans) (Scheuermann et al., 

2010). This activity regulates Hox gene expression, suggesting that BAP1 plays a role in 

transcriptional regulation during development. While the relative importance of these 

various interactions remains unclear, a crucial role for BAP1’s deubiquinating activity is 

strongly suggested by several lines of evidence: (i) the requirement for this activity for 

tumor suppression in cell culture experiments (Ventii et al., 2008) and (ii) most missense 

mutations directly target the deubiquitinating catalytic domain (Harbour et al., 2010).

Gene expression profiling

Cytogenetic alterations have provided important insights into the pathobiology of UM, but 

for use in clinical prognostication such markers are susceptible to sampling error owing to 

significant intratumoral heterogeneity (Damato et al., 2009). Thus, several groups have 

explored the use of gene expression profiling (GEP) as a potentially more robust prognostic 

method, as well as for its potential insights into UM pathobiology. In an early study using 

nylon filter arrays, several genes were found to be differentially expressed in 12 UM cell 

lines compared with 3 normal melanocyte cultures (Zuidervaart et al., 2003). Using high-

density microarrays, another group found that UMs with disomy 3 exhibited a different GEP 

than those with monosomy 3 (Tschentscher et al., 2003).

Our group went a step further and showed that GEP could classify UMs into two 

prognostically significant groups using unsupervised clustering techniques without regard to 

cytogenetic status (Onken et al., 2004). Class 1 tumors had a low risk, and class 2 tumors 

had a high risk of metastasis. Notably, the prognostic accuracy of this GEP classification 

outperformed clinical, pathological, and cytogenetic prognostic indicators (Worley et al., 

2007), and this has been confirmed by several independent groups (Petrausch et al., 2008; 

Van Gils et al., 2008). A likely reason for the superiority of GEP over cytogenetic methods 

for prognostication is that cytogenetic markers are often distributed heterogeneously 

throughout the tumor and are thus prone to sampling error. In contrast, GEP represents a 
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functional ‘snapshot’ of the tumor’s microenvironment that is less variable across the tumor 

(Onken et al., 2010). We migrated the GEP to an assay comprising 12 discriminating genes 

and 3 control genes performed on a microfluidics platform that could be used on a routine 

clinical basis on very small samples from fine-needle biopsies (Onken et al., 2006b, 2010). 

The prognostic accuracy of this assay, and its superiority over chromosome 3 status for 

clinical prognostic testing, was recently validated in a prospective study involving ten 

centers across North America (Onken et al., in press).

Aside from its clinical value, gene expression profiling has provided important insights into 

the pathobiology of UM. The GEP of class 1 tumors closely resembles that of normal uveal 

melanocytes and low-grade uveal melanocytic tumors, whereas the GEP of class 2 tumors 

shows reduced expression of melanocytic genes and instead resembles the transcriptome of 

primitive neural/ectodermal cells (Chang et al., 2008; Onken et al., 2006a). Notably, 

depletion of BAP1 in cultured class 1 UM cells induced a change in cell morphology to 

class 2-like epithelioid phenotype and a shift in gene expression to resemble the class 2 GEP 

(Harbour et al., 2010). Taken together, these findings suggest that BAP1 may play a role in 

maintaining key aspects of melanocytic differentiation that, when lost, allow malignant 

progression.

MicroRNA expression

MicroRNA expression profiling can cluster UMs into prognostically significant groups, with 

one study identifying let-7b and miR-199a as the most significant discriminators (Worley et 

al., 2008). In other studies, miR-34a inhibited UM cell proliferation and migration through 

downregulation of c-Met (McGarvey et al., 2008), and miR-137 was found to exhibit tumor 

suppressor activity through downregulation of MITF and CDK6 (Chen et al., 2011). The 

pathogenetic relevance of these microRNA alterations in vivo is yet to be determined.

Molecular pathway defects

The Rb and p53 pathways are functionally inhibited in most UMs, although mutations in the 

RB1 and TP53 genes are rare (Brantley and Harbour, 2000a,b; Chana et al., 1999; Scholes et 

al., 2001; Sun et al., 2005). The Rb protein is constitutively hyperphosphorylated and 

functionally inactivated in most UMs, possibly as result of cyclin D1 overexpression or 

CDKN2A promoter methylation, which occur in about two-thirds and one-third of cases, 

respectively (Brantley and Harbour, 2000a; Coupland et al., 1998; Van Der Velden et al., 

2001). The p53 pathway is inhibited downstream of p53 in many UMs (Sun et al., 2005), 

and this may be a consequence of MDM2 overexpression, which is common in UM 

(Brantley and Harbour, 2000a; Coupland et al., 2000).

The PI3K/AKT pathway is constitutively activated in a majority of UMs, and 

phosphorylated AKT correlates with poor prognosis in UM (Saraiva et al., 2005). In a study 

of nine UM cell lines, mutations in PTEN were not observed (Naus et al., 2000). However, 

in a much larger study of 75 primary UMs, LOH of the PTEN locus was found in 76% of 

tumors, and actual mutations within the PTEN coding region were found in 11% of tumors 

(Abdel-Rahman et al., 2006). PTEN inactivation was also found to be associated with 

increased aneuploidy and decreased survival in UM (Abdel-Rahman et al., 2006; Ehlers et 
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al., 2008). Taken together, these findings implicate a role for PTEN in UM progression and 

warrant further work on this subject.

Most UMs demonstrate constitutive activation of the mitogen-activated protein kinase 

(MAPK) pathway, suggesting the presence of upstream activating mutations (Weber et al., 

2003; Zuidervaart et al., 2005). Mutations in KIT and the three RAS family members, which 

can activate the MAPK pathway, have proven to be exceedingly rare in UM (Cruz et al., 

2003; Mooy et al., 1991; Pache et al., 2003; Soparker et al., 1993; Zuidervaart et al., 2005). 

BRAF (V600E) mutations have been reported in a few UMs (Malaponte et al., 2006), but 

such mutations are rare (Cruz et al., 2003; Rimoldi et al., 2003; Weber et al., 2003; 

Zuidervaart et al., 2005). Interestingly, however, BRAF mutations may occur in up to 47% 

of iris melanomas (Henriquez et al., 2007), which are more anterior and more strongly 

linked to ultraviolet light exposure than the more common posterior UMs of the ciliary body 

and choroid. Mutations in the other two members of the RAF family, ARAF and CRAF, 

have not been found in UM (Onken et al., 2008b). A systemic interrogation of 21 other 

candidate oncogenes in the MAPK pathway identified no mutations in UM (Onken et al., 

2008b).

GNAQ/11 mutations

This curious absence of MAPK pathway mutations persisted until the recent discovery of 

mutations in GNAQ, which encodes the Gαq subunit, in almost half of UMs (Jensen and 

Rauscher, 1999). Mutant GNAQ was shown to activate the MAPK pathway, although it may 

have also important effects on other pathways such as the phosphatidylinositol–calcium 

second messenger system. Attention was drawn to this gene as a result of a forward genetic 

screen in mice that identified hypermorphic mutations in Gnaq or its paralog Gna11, which 

act through the melanocyte lineage factor Ednrb, as a cause of increased numbers of 

intradermal melanocytes (Van Raamsdonk et al., 2004). A subsequent study found that 83% 

of UMs contained mutations in either GNAQ or GNA11 affecting either Q209 or R183 in a 

mutually exclusive pattern (Van Raamsdonk et al., 2010). These mutations lead to 

constitutive activation of the Gαq and Gα11 subunits by abrogating their intrinsic GTPase 

activity required to return them to an inactive state.

GNAQ/11 mutations are found in benign uveal nevi and in the vast majority of UMs 

regardless of cytogenetic status, GEP class, or BAP1 status (Bauer et al., 2009; Jensen and 

Rauscher, 1999; Onken et al., 2008b). Further, these mutations are not sufficient for full 

malignant transformation to melanoma (Van Raamsdonk et al., 2009). This would seem to 

place GNAQ/11 mutations as early or perhaps initiating events in UM progression. On the 

other hand, BAP1 mutations are seen almost exclusively in metastasizing class 2 tumors 

with monosomy 3 (Harbour et al., 2010), suggesting that this mutation occurs relatively late 

in the primary tumor and may represent a rate-limiting step in metastasis. Either BAP1 

mutation or loss of chromosome 3 can occur first, but both events appear to be necessary for 

the tumor to acquire the metastasizing class 2 phenotype (Harbour et al., 2010). These early 

and late mutational events allow a tentative outline of UM progression to be constructed 

(Figure 3).
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Genetic comparison of uveal and cutaneous melanomas

Several groups have compared the cytogenetic alterations in uveal and cutaneous 

melanomas (Bastian et al., 1998; Curtin et al., 2005; Hoglund et al., 2004). Some of the most 

common chromosomal alterations in UM – 1p loss, 1q gain, 6p gain, 6q loss, 8p loss, 8q 

gain, and 11q loss – are also common in cutaneous melanoma (Figure 1). Monosomy 3, the 

most common change in UM, is also seen in cutaneous melanoma, although at a lower 

frequency. Likewise, loss on 9p and 10, which are very common in cutaneous melanoma, 

are also seen in UM, albeit not as often. Greater differences arise at the level of individual 

gene mutations. Activating mutations in BRAF and NRAS are common in some types of 

cutaneous melanoma, but are distinctively rare in UM (Cruz et al., 2003; Curtin et al., 2005; 

Davies et al., 2002; Mooy et al., 1991; Rimoldi et al., 2003; Soparker et al., 1993; Weber et 

al., 2003; Zuidervaart et al., 2005). Likewise, activating mutations in GNAQ/GNA11 occur 

in the vast majority of UMs, but are rare in cutaneous melanoma (Van Raamsdonk et al., 

2010). Nevertheless, all of these mutations appear to have in common the constitutive 

activation of the MAPK pathway (Weber et al., 2003). BAP1 mutations, which are strongly 

linked to metastasis in UM (Harbour et al., 2010), also occur in cutaneous melanoma 

(Wiesner et al., 2011), but it is unclear whether these mutations play the same role in the 

latter as they do in the former. Taken together, there are clearly genetic differences between 

uveal and cutaneous melanoma, but there are also remarkable similarities, with many 

seemingly divergent features potentially having similar effects at the molecular and cellular 

level.

Familial uveal melanoma

Traditionally, it has been thought that familial UM is extremely rare (Singh et al., 1996b). A 

few studies have suggested a link between UM and breast cancer, possibly as a consequence 

of germline BRCA2 mutations (Iscovich et al., 2002; Scott et al., 2002; Sinilnikova et al., 

1999). In one study, constitutional DNA samples were analyzed for BRCA2 mutations in 62 

patients with UM who were selected primarily on the basis of a family history of breast 

cancer or UM harbored; three (4.8%) patients harbored BRCA2 sequence variants that were 

judged to be potentially deleterious (Sinilnikova et al., 1999). An Israeli study identified 

4/143 (2.8%) patients with UM who carried a germline 6174delT BRCA2 mutation 

(Iscovich et al., 2002). However, as this alteration is prevalent in the Israeli population, the 

pathogenetic relevance of this finding is unclear. An Australian study found germline 

BRCA2 mutations in 2/71 (2.8%) patients with UM, but neither of these patients had a 

positive family history, thus leaving open the possibility that these were silent 

polymorphisms (Scott et al., 2002).

Given the rarity of familial UM in the literature, we were surprised to find that one of the 

patients with UM in our original study carried a germline BAP1 mutation that was reduced 

to homozygosity in the tumor by loss of the other copy of chromosome 3 (Harbour et al., 

2010). We have identified another family from our ocular oncology center in which UM and 

cutaneous melanoma occurred in multiple family member in association with a germline 

BAP1 mutation (author’s unpublished data). The scope of tumors associated with this 

emerging BAP1 cancer predisposition syndrome has now been expanded to include 
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malignant mesothelioma, cutaneous melanocytic tumors, and other cancers (Testa et al., 

2011; Wiesner et al., 2011).

Thus, while familial UM is indeed uncommon, representing perhaps 2–5% of patients with 

new UM, it is not as rare as once believed. The reason that familial UM was not recognized 

more commonly in the past may be because of a reduced penetrance for UM in these 

families (Testa et al., 2011; Wiesner et al., 2011). This would be consistent with previous 

studies that found that familial UM rarely involved more than 2–3 family members and was 

more likely to occur in larger families (where reduced penetrance would more likely be 

recognized; Abdel-Rahman et al., 2011; Canning and Hungerford, 1988; Singh et al., 1996b; 

Young et al., 1994). A possible explanation for the reduced penetrance is that BAP1 

inactivation appears to be a relatively late event in melanoma progression and requires an 

initiating event, such as an activating mutation GNAQ/11 in UM or BRAF in cutaneous 

melanoma, and loss of the other copy of BAP1 in order for the germline BAP1 mutation to 

become manifest. In support of this idea, a cutaneous melanocytic tumor associated with 

germline BAP1 mutation also harbored mutant BRAF, and only the portion of the tumor that 

had lost the other copy of BAP1 progressed to melanoma (Wiesner et al., 2011). Similarly, 

our reported case of UM associated with a germline BAP1 mutation harbored a GNAQ 

mutation and had lost the other copy of chromosome 3 (Harbour et al., 2010).

Implications for targeted therapy

While excellent local therapies exist for treating the primary ocular tumor, there are no 

consistently effective therapies for metastatic UM (Augsburger et al., 2009). The discovery 

of GNAQ/11 and BAP1 mutations in UM provides an unprecedented opportunity for 

targeted therapy of metastatic disease. Nevertheless, molecular targeting of these mutations 

will pose significant challenges.

For GNAQ/11 mutations, the therapeutic goal is to inhibit oncogenic downstream signaling 

resulting from these mutations. Direct inhibition of mutant Gαq or Gα11 may prove 

difficult, however, because these mutations abrogate the intrinsic GTPase activity that would 

normally allow these proteins to return to their GDP-bound, inactive state. This is similar to 

the long-standing problem targeting mutations in RAS family oncogenes, which also rely on 

intrinsic GTPase activity to terminate signaling (Diaz-Flores and Shannon, 2007). An 

alternative strategy is to inhibit downstream signaling molecules that are activated by 

GNAQ/11 mutations. One such target is MEK (Mitsiades et al., 2011), a key component of 

the MAPK mitogenic pathway that is activated by GNAQ/11 mutations (Jensen and 

Rauscher, 1999). Other potential targets that are currently being investigated include 

phospholipase C (PLC), which is activated by Gq, and protein kinase C (PKC), which is 

activated downstream of PLC (Patel et al., 2011).

Therapeutic targeting of BAP1 mutations poses different challenges. First, as BAP1 acts as a 

recessive cancer gene, the goal of therapy is to restore one or more functions of BAP1 that 

are lost when it is inactivated. This is technically more challenging than inhibiting an 

overactive oncogene. Second, it remains unclear which function(s) of BAP1 is responsible 

for its anticancer role. Nevertheless, it seems likely that this role is dependent on BAP1’s 
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deubiquinating activity, as discussed in a previous section. Further, a major function of this 

deubiquinating activity appears to be the removal of monoubiquitin moieties from histone 

H2A, which alters local chromatin structure to regulate transcription. Thus, a compound that 

inhibits H2A monoubiquitination may at least in part offset the biochemical, and 

consequently cellular, effects of BAP1 loss. Histone deacetylase (HDAC) inhibitors 

represent one such class of compounds. Through inhibition of the Bmi1/Ring1 complex, 

which monoubiquitinates H2A (Bommi et al., 2010), HDAC inhibitors such as valproic 

acid, trichostatin A, LBH-589, and suberoylanilide hydroxamic acid can reverse the H2A 

hyperubiquitination that occurs in cultured UM cells depleted of BAP1, and this is 

accompanied by increased melanocytic differentiation, cell cycle exit, and a shift from class 

1 to class 2 GEP (Landreville et al., 2012). This study also showed antitumor activity of 

valproic acid in vivo in an animal model of UM. Thus, HDAC inhibitors may have 

therapeutic potential in UM, and clinical trials are currently being planned.

Conclusions

In recent years, there has been tremendous progress in understanding the genetics of 

melanoma in general and UM in particular. Activating mutations in GNAQ/11 appear to 

represent a very early or initiating event, whereas inactivating mutations in BAP1 appear to 

demarcate a threshold in tumor progression beyond which metastasis and death await. The 

opportunities for targeted therapy afforded by the discovery of GNAQ/11 and BAP1 

mutations are being explored. Therapies based on GNAQ/11 status are underway for 

metastatic UM. A greater understanding of the normal function of BAP1 in the melanocyte 

lineage and the adverse effects of BAP1 loss are needed to develop agents that specifically 

target this mutation. Further insights to guide therapy may derive from future research into 

the genetic events that occur after metastasis.
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Figure 1. 
Common chromosomal gains and losses in cutaneous and uveal melanomas. This represents 

a summary of data published by Hoglund and colleagues (Hoglund et al., 2004). Data are 

presented for all chromosomal arms in which the indicated alteration was present in at least 

20% of either cutaneous or uveal melanomas. (−) indicates loss and (+) indicates gain of the 

indicated chromosomal arm of whole chromosome.
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Figure 2. 
Summary of the combinations of alterations observed on chromosomal arms 8p and 8q in 

240 primary uveal melanomas. These data were compiled from 10 published studies that 

used karyotype analysis, FISH or CGH (Aalto et al., 2001; Hughes et al., 2005; Kilic et al., 

2006; Naus et al., 2001; Prescher et al., 1995; Sisley et al., 1997; Speicher et al., 1994; 

Tschentscher et al., 2000; White et al., 1998; Wiltshire et al., 1993).
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Figure 3. 
Summary of major molecular events in uveal melanoma progression. The earliest known 

and perhaps initiating event is an activating mutation in GNAQ or GNA11, presumably in a 

normal uveal melanocyte (MC), which may function primarily to trigger inappropriate cell 

cycle re-entry through activation of the MAPK and perhaps other pathways. Usually the 

mutant cell clone does not progress to melanoma, but rather undergoes senescence resulting 

in a nevus, or is eliminated by apoptosis or immune surveillance (small black spheres). Less 

than one in 8000 nevi progress beyond this stage (Singh et al., 2005b). The rare tumor that 

progresses does so along one of the two pathways characterized by distinct gene expression 

profiles (GEP). The GEPs of normal uveal melanocytes and nevi are very similar to that of 

class 1 uveal melanomas (blue spheres) (Chang et al., 2008), which have a low risk of 

metastasis (small purple sphere). Melanomas that acquire the class 2 GEP (class 2 MM) 

have a very high risk of metastasis (large purple sphere). Class 1 tumors often exhibit 6p 

gain and 8q gain, but have less overall aneuploidy than class 2 tumors, which often exhibit 

1p loss, 8p loss, and 8q gain. 8q gain is more common in class 2 tumors, but is also seen in 

class 1 tumors, so this may be a late event (Parrella et al., 1999). The class 2 GEP is strongly 

associated with mutation of BAP1, located at 3p21, and loss of the other copy of 

chromosome 3, suggesting that bi-allelic loss of BAP1 is a key step in uveal metastasis 

(Harbour et al., 2010). Metastatic tumors (purple spheres) have a distinct gene expression 

profile that is more similar to that of class 2 than that of class 1 primary tumors (author’s 

unpublished data). MC, melanocyte; MM, malignant melanoma; Met, metastasis.
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