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Abstract: Multimodality based methods have shown great advantages in classification of Alzheimer’s dis-
ease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature
selection methods are typically used for joint selection of common features across multiple modalities.
However, one disadvantage of existing multimodality based methods is that they ignore the useful data
distribution information in each modality, which is essential for subsequent classification. Accordingly, in
this paper we propose a manifold regularized multitask feature learning method to preserve both the
intrinsic relatedness among multiple modalities of data and the data distribution information in each
modality. Specifically, we denote the feature learning on each modality as a single task, and use group-
sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly
select the common features from multiple tasks. Furthermore, we introduce a new manifold-based
Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the
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multikernel support vector machine method to fuse multimodality data for eventual classification. Con-
versely, we also extend our method to the semisupervised setting, where only partial data are labeled. We
evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron
emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging
initiative database. The experimental results demonstrate that our proposed method can not only achieve
improved classification performance, but also help to discover the disease-related brain regions useful for
disease diagnosis. Hum Brain Mapp 36:489–507, 2015. VC 2014 Wiley Periodicals, Inc.

Key words: manifold regularization; group-sparsity regularizer; multitask learning; feature selection;
multimodality classification; Alzheimer’s disease
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INTRODUCTION

Alzheimer’s disease (AD) is the most common type of

dementia, accounting for 60–80% of age-related dementia

cases [Ye et al., 2011]. It is predicted that the number of

affected people will double in the next 20 years, and 1 in 85

people will be affected by 2050 [Brookmeyer et al., 2007]. As

AD-specific brain changes begin years before the patient

becomes symptomatic, early clinical diagnosis of AD becomes

a challenging task. Therefore, many studies focus on possible

identification of such changes at the early stage, that is, mild

cognitive impairment (MCI), by leveraging neuroimaging data

[Jie et al., 2014a; Sui et al., 2012; Ye et al., 2011].
Neuroimaging is a powerful tool for disease diagnosis

and also evaluation of therapeutic efficacy in neurodege-
nerative diseases, such as AD and MCI. Neuroimaging
research offers great potential to discover features that can
identify individuals early in the course of dementing ill-
ness. Recently, a number of machine learning and pattern
classification methods have been widely used in neuroi-
maging analysis of AD and MCI, including both group
comparison (i.e., between clinically different groups) and
individual classification [Jie et al., 2014b; Orru et al., 2012;
Ye et al., 2011]. Early studies mainly focus on extracting
features [e.g., based on regions of interest (ROIs) or voxels]
from single imaging modality such as structural magnetic
resonance imaging (MRI) [Chincarini et al., 2011; Fan
et al., 2008a,b; Liu et al., 2012; Oliveira et al., 2010; West-
man et al., 2011] and fluorodeoxyglucose positron
emission tomography (FDG-PET) [Drzezga et al., 2003;
Foster et al., 2007; Higdon et al., 2004; Hinrichs et al.,
2009], and so forth. More recently, researchers have begun
to integrate multiple imaging modalities to further
improve the accuracy of disease diagnosis [Hinrichs et al.,
2011; Zhang et al., 2011; Zhou et al., 2013].

In many clinical and research studies, it is common to
acquire multiple imaging modalities for a more accurate
and rigorous assessment of disease status and progression.
In fact, different imaging modalities provide different
views of brain function or structure. For example, struc-
tural MRI provides information about the tissue type of
brain, while FDG-PET measures the cerebral metabolic
rate for glucose. It is reported that MRI and FDG-PET

measures provide different sensitivity to memory between
disease and health [Walhovd et al., 2010b]. Intuitively,
integration of multiple modalities may uncover the previ-
ously hidden information that cannot be found using any
single modality. In the literature, a number of studies have
exploited the fusion of multiple modalities to improve AD
or MCI classification performance [Apostolova et al., 2010;
Dai et al., 2012; Foster et al., 2007; Huang et al., 2011; Lan-
dau et al., 2010; Yuan et al., 2012]. For example, Hinrichs
et al. [2011] and Liu et al. [2014] proposed to combine MRI
and FDG-PET for AD classification. Zhang et al. [2011]
combined three modalities, that is, MRI, FDG-PET, and cer-
ebrospinal fluid (CSF), to discriminate AD/MCI and normal
controls (NCs). Gray et al., [2013] extracted features includ-
ing regional MRI volume, voxel-based FDG-PET signal
intensities, CSF biomarker measures, and categorical genetic
information for diagnosis of AD/MCI. Existing studies
have indicated that different imaging modalities can pro-
vide essential complementary information that can improve
accuracy in disease diagnosis when used together.

For imaging modalities, even after feature extraction
(usually from brain regions), there may still exist redundant
or irrelevant features. So, feature selection, which can be
considered as the biomarker identification for AD and MCI,
is commonly used to remove these redundant or irrelevant
features. However, due to the complexity of brain and the
disease, it is challenging to detect all relevant disease-
related features (i.e., regional features) from a single modal-
ity, especially in the early stage of the disease. Different
imaging modalities may provide essential complementary
information that can help identify these dysfunctional
regions implicated by the same underlying pathology. In
addition, recent studies also show that there is overlap
between the disease-related brain regions detected by MRI
and FDG-PET, respectively, such as regions in the hippo-
campus and the mesia temporal lobe [Huang et al., 2011].
Some feature selection techniques (e.g., t-test) have been
used for identifying the disease-related regions from each
single modality data [Wee et al., 2012; Zhang et al., 2011].
However, an obvious disadvantage of these techniques is
that they do not consider the intrinsic relatedness between
features across different modalities. Recently, a few studies
have exploited to jointly select features from multimodality
neuroimaging data for AD/MCI classification. For example,
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Huang et al. [2011] proposed to jointly identify disease-
related brain features from multimodality data, using
sparse composite linear discrimination analysis method.
Zhang and Shen [2012] proposed a multimodal multitask
learning for joint feature selection for AD classification. Liu
et al. [2014] embedded intermodality constraint into multi-
task learning framework for AD/MCI classification. How-
ever, a disadvantage of those methods is that the
distribution information of each modality data is ignored,
which may affect the final classification performance.

Accordingly, in this article, as motivated by the work in
[Zhang and Shen, 2012], we proposed a new multitask-
based joint feature learning framework, which considers
both the intrinsic relatedness among multimodality data
and the distribution information of each modality data.
Specifically, we formulated the classification of multimo-
dality data as a multitask learning (MTL) problem, where
each task denotes the classification based on individual
modality of data. The aim of MTL is to improve the gener-
alization performance by jointly learning a set of related
tasks. Learning multiple related tasks simultaneously has
been shown to often perform better than learning each
task separately [Argyriou et al., 2008]. Specifically, two
regularization items are included in the proposed model.
The first item is the group-sparsity regularizer [Ng and
Abugharbieh, 2011; Yuan and Lin, 2006], which ensures
only a small number of brain-region specific features to be
jointly selected across different tasks (i.e., modalities). The
second item is the manifold regularization item, which can
preserve the distribution information of the whole data
from each task (i.e., modality) and thus induce more dis-
criminative features. Then, the multikernel support vector
machine (SVM) technique is adopted to fuse multimodal-
ity data for classifying individuals with AD/MCI from
NCs. Furthermore, we extend our method to the semisu-

pervised setting (i.e., learning from both labeled and unla-
beled data), which is of great importance in practice as the
acquisition of labeled data (i.e., diagnosis of disease) is
usually expensive and time-consuming, while the collec-
tion of unlabeled data is relatively much easier. To the
best of our knowledge, no previous learning models could
ever incorporate both the group-sparsity and the manifold
regularization terms into the same objective function, for
which we further develop a new efficient algorithm.

To validate the efficacy of our method, two sets of
experiments, that is, supervised and semisupervise classifi-
cation, are performed on 202 subjects with the baseline
MRI and FDG-PET data from Alzheimer Neuroimaging
Initiative (ADNI) database (www.loni.ucla.edu/ADNI),
which includes 51 AD patients, 99 MCI patients, and 52
NCs. In both sets of experiments, we built multiple binary
classifiers, that is, AD versus NC, MCI versus NC, and
MCI converters (MCI-C) versus MCI nonconverters (MCI-
NC), respectively. The experiment results demonstrate the
efficacy of our proposed method.

Methods

Figure 1 illustrates the proposed classification frame-
work, which includes three main steps: image preprocess-
ing and feature extraction, feature selection, and
classification. In this section, we will give the detailed
descriptions of these steps. Before that, we will first intro-
duce the subjects used in this article.

Subjects

The data used in the preparation of this article were
obtained from ADNI database. The ADNI was launched in
2003 by the National Institute on Aging, the National Insti-
tute of Biomedical Imaging and Bioengineering, the Food

Figure 1.

The proposed classification framework. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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and Drug Administration, private pharmaceutical compa-
nies, and nonprofit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has
been to test whether the serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and
early AD. Determination of sensitive and specific markers
of very early AD progression is intended to aid research-
ers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of
clinical trials.

ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private
corporations, and subjects have been recruited from over
50 sites across the US and Canada. The initial goal of
ADNI was to recruit 800 adults, aged 55–90, to participate
in the research—approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people
with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years (see www.adni-info.
org for up-to-date information). In current studies, we
used a total of 202 subjects with corresponding baseline
MRI and PET data, which includes 51 AD patients, 99
MCI patients (including 43 MCI converters and 56 MCI
nonconverters), and 52 NC. Demographic information of
the subjects is listed in Table I. A detailed description on
acquiring MRI, PET data from ADNI as used in this article
can be found at [Zhang et al., 2011].

Image Preprocessing and Feature Extraction

Image preprocessing is performed for all MRI and FDG-
PET images. Specifically, we use the specific application
tool for image preprocessing as similarly used in [Wang
et al., 2014; Zhang et al., 2011], that is, spatial distortion,
skull-stripping, and removal of cerebellum. Then, for
structural MR images, we use the FSL package [Zhang
et al., 2001] to segment each image into three different tis-
sues: gray matter (GM), white matter, and CSF. With atlas
warping, each subject was partitioned into 93 ROIs [Shen
and Davatzikos, 2002]. For each ROI, the volume of GM
tissue in that ROI was computed as a feature. For FDG-
PET images, we use a rigid transformation to align it onto
its respective MR image of the same subject, and then

compute the average intensity of each ROI in the FDG-
PET image as a feature. Overall, by performing this series
of image preprocessing, for each subject we can acquire 93
features from the MRI image and another 93 features from
the PET image. We normalize the features of each modal-
ity with the same normalization scheme as used in [Zhang
et al., 2011].

Manifold Regularized Multitask Feature Selection

Multitask learning aims to improve the performance of
learning algorithms by jointly learning a set of related tasks
[Argyriou et al., 2008; Obozinski et al., 2010], which is par-
ticularly useful when these tasks have some commonality
and are generally slightly under sampled. Based on multi-
task learning framework, Zhang and Shen [2012] proposed
a feature learning method to jointly predict the multiple
regression and classification variables from multimodality
data, and achieved state-of-the-art performance in AD clas-
sification. Motivated by their work, we proposed a new
multitask feature learning framework to jointly detect the
disease-related regions from multimodality data for classifi-
cation. We first briefly introduce the existing multitask fea-
ture learning method. Then, we derive our manifold
regularized multitask feature learning models, as well as
the corresponding optimization algorithm.

Multitask feature selection

Assume that there are M supervised learning task (i.e.,
M modalities). Denote Xm5½xm

1 ; x
m
2 ; :::; x

m
N�

T 2 RN3d as the
training data matrix in the m-th task (i.e., m-th modality)
from N training subjects, and Y5½y1; y2; :::; yN�T 2 RN as the
response vector from these training subjects, where xm

i rep-
resents the feature vector of the i-th subject in the m-th
modality, and yi 2 f11;21g is the corresponding class
label (i.e., patient or NC). It is worth noting that different
modalities from the same subject have the same class label.
Let wm � Rd parameterize a linear discriminant function
for task m. Then, the linear multitask feature selection
(MTFS) model [Argyriou et al., 2008; Zhang and Shen,
2012] is to solve the following objective function:

min
W

1

2

XM
m51

jjY2Xmwmjj221bjjWjj2;1 (1)

where W5½w1;w2; :::;wM� 2 Rd3M is the weight matrix
whose row wj is the vector of coefficients associated with
the j-th feature across different tasks. Here, jWjj2;15Pd

j51 jjwjjj2 is the sum of the l2-norm of the rows of matrix
W, as was used in the group-sparsity regularizer [Yuan
and Lin, 2006]. The use of l2;1-norm encourages the weight
matrices with many zero rows. For feature selection, only
those features with nonzero coefficients are kept. In other
words, this norm combines multiple tasks and ensures
that a small number of common features be jointly

TABLE I. Characteristics of the subjects (mean 6

standard deviation)

AD (N 5 51) MCI (N 5 99) NC (N 5 52)

Age 75.2 6 7.4 75.3 6 7.0 75.3 6 5.2
Education 14.7 6 3.6 15.9 6 2.9 15.8 6 3.2
MMSE 23.8 6 1.9 27.1 6 1.7 29.0 6 1.2
ADAS-Cog 18.3 6 6.0 11.4 6 4.4 7.4 6 3.2

MMSE 5 Mini-Mental State Examination, ADAS-Cog 5

Alzheimer’s Disease Assessment Scale-Cognitive Subscale.
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selected across different tasks. The parameter b is a regu-
larization parameter that balances the relative contribu-
tions of the two terms. The larger b value means few
features preserved for classification and vice versa. It is
easy to show that the problem in Eq. (1) reduces to the l1-
norm regularized optimization problem in the least abso-
lution shrinkage and selection operator (LASSO) [Tibshir-
ani, 1996] when the number of tasks equals to one.

Manifold regularized MTFS (M2TFS)

In the MTFS model, a linear mapping function (i.e.,
f(x) 5 wTx) was adopted to transform the data from the orig-
inal high-dimensional space to one-dimensional space. In
this model, for each task we only consider the relationship
between data and class label, while the mutual dependence
among data is ignored, which may result in large deviations
even for very similar data after mapping. Figure 2 illustrates
an example. Let’s consider a pair of mapped data points y1

and y2 in Figure 2. Intuitively, these two points should be
closer, as they come from the same class.

To address this issue, we introduced a new regulariza-
tion item as:

min w

XM
m51

XN

i;j

sm
ij jjf ðxm

i Þ2f ðxm
j Þjj

2
2

52
XM
m51

ðXmwmÞTLmðXmwmÞ

(2)

where Sm5½sm
ij � denotes a similarity matrix that defines the

similarity on task m across different subjects. Lm5Dm2Sm

represents combinatorial Laplacian matrix for task m,
where Dm is the diagonal matrix defined as Dm

ii 5
PN

j51 Sm
ij .

Here, the similarity matrix is defined as:

Sm
ij 5

1; if xm
i and xm

j are from the same class

0; otherwise

(
(3)

This penalized item can be explained as follows: if xm
i

and xm
j come from the same class, the distance between

f ðxm
i Þ and f ðxm

j Þ should be smaller. It is easy to see that
Eq. (2) aims to preserve the local neighboring structure
of same-class data during the mapping. With the regu-
larizer in Eq. (2), the proposed manifold regularized
MTFS model (M2TFS) has the following objective
function:

min
W

1

2

XM
m51

jjY2Xmwmjj221bjjWjj2;11g
XM
m51

ðXmwmÞTLmðXmwmÞ

(4)

where b and g are two positive constants. Their values
can be determined via inner cross-validation on the train-
ing data.

In our proposed M2TFS model, the group sparsity regu-
larizer ensures only a small number of features to be
jointly selected from multimodality data. The Laplacian
regularization item preserves the discriminative informa-
tion of the data from each modality via incorporating the
label information of both classes and thus may induce
more discriminative features.

Extension: Semisupervised M2TFS (semi-M2TFS)

In general, semisupervised learning methods attempt to
exploit the intrinsic data distribution disclosed by the
unlabeled data and thus help construct a better learning
model [Zhu and Goldberg, 2009]. In the proposed M2TFS
model, we can redefine the similarity matrix Sm in Eq. (2)

Figure 2.

An example for illustrating the mutual dependence among data. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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to explore the geometric distribution information of origi-
nal data for training a better learning model under semisu-
pervised setting. Therefore, we extend our model to
semisupervised version as follows.

We first define a diagonal matrix P 2 RN3N to indicate
labeled and unlabeled data, that is, Pii50 if the class label
of subject i is unknown, and Pii51 otherwise. Then, we
redefine the similarity matrix Sm with the following
function:

Sm
ij 5exp ð2distðxm

i ; x
m
j Þ=tÞ (5)

where distðxm
i ; x

m
j Þ5kxm

i 2xm
j k

2, and t is a free parameter to
be tuned empirically. According to the redefinition of simi-
larity matrix, we re-explain the penalized item in Eq. (2)
as follows: The more similarity between xm

i and xm
i , the

distance between f ðxm
i Þ and f ðxm

j Þ should be smaller to
minimize the objective function. Likewise, smaller similar-
ity between xm

i and xm
i should lead to larger distance

between f ðxm
i Þ and f ðxm

j Þ for minimization. According to
this definition, it is easy to see that Eq. (2) preserve the
geometric distribution information of the original data
during the mapping. Finally, based on the formulation in
Eq. (4), the objective function of our semisupervised
M2TFS model (denoted as semi-M2TFS) can be written as
follows:

min
w

1

2

XM
m51

jjPðY2XmwmÞjj221bjjWjj2;11g
XM
m51

ðXmwmÞTLmðXmwmÞ

(6)

where Lm is the corresponding Laplacian matrix, based
on the newly defined similarity matrix Sm in Eq.
(5).Intuitively, the first term in Eq. (6) is for the super-
vised learning involving only the labeled data, while the
last term in Eq. (6) involves both labeled and unlabeled
data for unsupervised estimation on intrinsic geometric
distribution of the whole data. It is worth noting that (i)
Eq. (4) is a special case of Eq. (6), except for the defini-
tion of similarity matrix; (ii) the similarity matrix Sm in
Eq. (6) is defined purely by the distance in the original
data space [i.e., given by Eq. (5)]. Below, we will develop
a new method for optimizing the objective function in
Eq. (6).

Optimization Algorithm

It is worth noting that, to the best of our knowledge, the
objective function defined in Eq. (6) is the first to simulta-
neously include both the group-sparsity and manifold reg-
ularizations, which cannot be solved by the existing sparse
learning models. Accordingly, we resort to the widely
used accelerated proximal gradient (APG) method [Beck
and Teboulle, 2009; Chen et al., 2009; Liu and Ye, 2009].

Specifically, we first separate the objective function in Eq.
(6) to a smooth part:

f ðWÞ5 1

2

XM
m51

jjPðY2XmwmÞjj221g
XM
m51

ðXmwmÞTLmðXmwmÞ (7)

and a nonsmooth part:

gðWÞ5bjjWjj2;1 (8)

Then, the following function is constructed for approxi-
mating the composite function f ðWÞ1gðWÞ:

XlðW;WiÞ5f ðWiÞ1ðW2Wi;rf ðWiÞÞ1
l

2
jjW2Wijj2F1gðWÞ

(9)

where jj � jjF denotes the Frobenius norm, rf ðWiÞ denotes
the gradient of f ðWÞ at point Wi of the i-th iteration, and l
is the step size.

Finally, the update step of APG algorithm is defined as:

Wi115arg min
W

1

2
jjW2Vjj2F1

1

l
gðWÞ

5arg min
w1;:::;wd

1

2

Xd

j51

ðjjwj2vjjj221
b

l
jjwjjj2Þ

(10)

where wj and vj denote the j-th row of the matrix W and
V, respectively. Note that l can be determined by line
search, and

V5Wi2
1

l
rf ðWiÞ (11)

Therefore, through Eq. (10), this problem can be decom-
posed into d separate subproblems. The key of APG algo-
rithm is how to solve the update step efficiently. The study
in [Chen et al., 2009; Liu and Ye, 2009] shows that the ana-
lytical solutions of those subproblems can be easily obtained:

w�j 5
ð12

b

ljjvjjj2
Þvj; if jjvjjj2 >

b

l

0; otherwise

8><
>: (12)

In addition, according to a technique used in [Liu and
Ye, 2009], instead of performing gradient descent based on
Wi, we compute the search point as:

Qi5Wi1aiðWi2Wi21Þ (13)

where ai5
ð12qi21Þqi

qi21
and qi5

2
i13.

The detailed optimization procedure is summarized in
Algorithm 1. This algorithm achieves a convergence rate
of Oð1=I2Þ and a time complexity of OðdðN1MÞIÞ, where I
is the maximum iteration. The detailed proof of conver-
gence rate and also the time complexity of this algorithm
are given in the Appendix.
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Algorithm 1: (Semi-)M2TFS

Input: The data fXmjm51; :::;Mg from training subjects,
along with their corresponding response vector
Y5½y1; y2; :::; yN�T. For the case of semisupervised learning,
yi50 for each unlabeled subject i.
Output: WI; J

�

Initialization: b � 0; g � 0; l0 > 0;r > 1;W05W150; q051
For i51 to max_iteration I

1: Compute the search point Qi according to Eq. (13)
2: l5li21

3: While ðf ðWi11Þ1gðWi11ÞÞ > XlðWi11;QiÞ; l5rl;
Here Wi11 is computed by Eq. (10).

4: Set li  l
End
Calculate J�5fjj jjwjjj250; j51; :::; dg

CLASSIFICATION

Following [Zhang et al., 2011], we adopted the multi-
kernel learning (MKL) SVM method for classification.
Specifically, for each modality of training subjects, a lin-
ear kernel was first calculated based on the features
selected by the above proposed method. Then, to com-
bine multiple modality data, we adopted the following
MKL technique:

kðx; zÞ5
XM
m51

lmkmðxm; zmÞ (14)

where kmðxm; zmÞ denotes the kernel function over the m-th
modality across subject x and z, and lm is a no-negative

weight parameter with
PM

m51 lm51.
In the current studies, the MKL technique used in

[Zhang et al., 2011] was applied to combine multiple ker-
nels. The optimal lm is determined based on the training
subjects through a grid search with the range from 0 to 1
at a step size of 0.1, via another 10-fold cross-validation.
Once the optimal lm was obtained, the standard SVM can
be performed for classification.

RESULTS

To evaluate the effectiveness of our proposed method,
we perform a series of experiments on the multimodality
data from the ADNI database. Specifically, two sets of
experiments, that is, supervised classification and semisu-
pervised classification, were performed on 202 ADNI base-
line MRI and PET data, respectively. In both sets of
experiments, multiple binary classifiers, that is, AD versus
NC, MCI versus NC, and MCI converters (MCI-C) versus
MCI nonconverters (MCI-NC), are built, respectively. For
classification, a linear SVM was implemented based on the
LIBSVM library [Chang and Lin, 2001] with the default
value for regularization parameter (i.e., C 5 1). For evalua-
tion of the proposed method, we adopt the classification
accuracy, sensitivity, specificity, and area under receiver
operating characteristic (ROC) curve (AUC) as perform-
ance measures. Here, the accuracy measures the propor-
tion of subjects that are correctly predicted among all
subjects, the sensitivity represents the proportion of
patients that are correctly predicted, and the specificity
denotes the proportion of NCs that are correctly predicted.

Supervised Classification

In this experiment, 10-fold cross-validation strategy was
adopted to evaluate the classification performance. Specifi-
cally, the whole set of subject samples are divided into 10
equal portions, for each cross-validation, the subject sam-
ples within one portion was left out for testing, and the
remaining subject samples were used for training the clas-
sifier. This process is repeated for 10 times independently
to avoid any bias introduced by randomly partitioning
dataset in the cross-validation, thereby yielding an
unbiased estimate of classification error rate.

Classification performance

In the current studies, we compared our proposed
method with the state-of-the-art multi-modality-based
methods, including MultiModality method proposed in
[Zhang et al., 2011] (denoted as MM and MML, corre-
sponding to the method without feature selection and the

TABLE II. Classification performance of different methods

Method

AD versus NC MCI versus NC MCI-C versus MCI-NC

ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC

LASSO 91.02 90.39 91.35 0.95 73.44 76.46 67.12 0.78 58.44 52.33 63.04 0.60
t-test 90.94 91.57 90.00 0.97 73.02 78.08 63.08 0.77 59.11 53.49 63.57 0.64
SFFS 86.78 87.06 86.15 0.93 69.21 82.12 45.38 0.73 56.28 44.42 64.82 0.55
MM 91.65 92.94 90.19 0.96 74.34 85.35 53.46 0.78 59.67 46.28 69.64 0.60
MML 92.25 92.16 92.12 0.96 73.84 77.27 66.92 0.77 61.67 54.19 66.96 0.61
MTFS 92.07 91.76 92.12 0.95 74.17 81.31 60.19 0.77 61.61 57.21 65.36 0.62
M2TFS 95.03 94.90 95.00 0.97 79.27 85.86 66.54 0.82 68.94 64.65 71.79 0.70

ACC 5 ACCuracy, SEN 5 SENsitivity, SPE 5 SPEcificity.
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method using LASSO as feature selection, respectively)
and MTFS method [Zhang and Shen, 2012] (denoted as
MTFS). In addition, for more comparisons, we also concat-
enate all features from MRI and FDG-PET into a long fea-
ture vector, and then perform three different feature
selection methods, that is, t-test, LASSO and sequential
floating forward selection. Finally, the standard SVM with
linear kernel was used for classification. The detailed
experimental results are summarized in Table II. Figure 3
plots the ROC curves of four multimodality-based meth-
ods (i.e., MM, MML, MTFS, and the proposed method).

As we can see from Table II and Figure 3, our proposed
M2TFS method consistently outperforms the other methods
on three classification groups. Specifically, our proposed
M2TFS method achieves the classification accuracy of 95.03,
79.27, and 68.94% for AD versus NC, MCI versus NC, and
MCI-C versus MCI-NC, respectively, while the best classifica-
tion accuracy of other methods are 92.25, 74.34, and 61.67%,
respectively. Also, M2TFS is consistently superior to other
methods in sensitivity measure. High sensitivity is very
important for the purpose of diagnosis, because there are dif-
ferent costs for misclassifying a normal person to be a patient
or misclassifying a patient to be a healthy person. Obviously,
compared with the former, the latter may cause more severe
consequences and thus has higher misclassification cost.
Hence, it is advantageous for a classifier to provide higher sen-
sitivity rate. In addition, the AUC of proposed method, respec-
tively, is 0.97, 0.82, and 0.70 for those classifications, which
indicates excellent diagnostic power. The results in Table II
show that our proposed M2TFS method can take advantage of
the local neighboring structure information of same-class data
to seek out the most discriminative subset of features. Besides,
we performed the significance test between classification accu-
racy of our proposed and those of compared methods, using
the standard paired t-test. Table III gives the testing results,
which show that our proposed method is significantly better
than other feature selection methods (i.e., the corresponding p-
values are very small).

Comparison of different combination schemes

To investigate the effect of combining weights, that is,
lMRI and lPET, on the performance of our multimodality
classification method, we test all of their possible values,
ranging from 0 to 1 at a step size of 0.1, with the con-
straint of lMRI1lPET51. Figure 4 gives the classification
performance, including classification accuracy and AUC
value, on three classification groups with respect to differ-
ent combining weights of MRI and PET. It is worth noting

Figure 3.

The ROC curves of four multimodality based methods. (a) the

classification of AD vs. NC, (b) the classification of MCI versus

NC, (c) the classification of MCI-C versus MCI-NC. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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that, for each plot, the two vertices of the curve, that is,
the leftmost and rightmost, denote the individual-modality
based results using only MRI (lMRI51) and FDG-PET
(lPET51), respectively.

As we can see from Figure 4, most of inner intervals of
the curve have larger values (i.e., better classification per-
formance) than the two vertices, which indicate the effec-
tiveness of combining two modalities for classification.
Moreover, the intervals with higher performance mainly
lie in a larger interval of [0.2, 0.8], implying that each
modality is indispensable for achieving good classification
performance. Further observation shows that this method
is inferior to our adopted MKL-based method as shown in
Table II, which implies that different modalities contribute
differently and thus should be integrated adaptively for
achieving better classification performance.

The most discriminative brain regions

It is of great interest to identify the biomarkers for dis-
ease diagnosis. With this consideration, in this subsection,
we evaluated the discriminative power of the selected fea-
tures (i.e., ROIs) using the proposed method. As the
selected features are different in each cross-validation, we
choose these features with the highest selection frequency
in all cross-validation folds as the most discriminative fea-
tures. For each selected discriminative feature, the stand-
ard paired t-test was performed to evaluate its
discriminative power between patients and controls
groups. Table IV lists the top 12 ROIs detected from both
MRI and FG-PET data for MCI classification. Figure 5
plots these regions in the template space. In addition,
Table S1 and Table S2 in Supporting Information Appen-
dix list the top ROIs selected for AD classification and
MCI-conversion classification, respectively.

As can be seen from Table IV, most of the selected top
regions for MCI classification, that is, hippocampus, amyg-
dala, parahippocampus, temporal pole, precuneus, and
entorhinal region, are consistent with the previous studies
using group comparison [Del Sole et al., 2008; Derflinger
et al., 2011; Nobili et al., 2008; Poulin et al., 2011; Solodkin

et al., 2013; Wang et al., 2012; Wolf et al., 2003]. Also, from
Supporting Information Table S1, we can see that most of
the selected top regions for AD classification, that is, hip-
pocampus, amygdala, temporal pole, precuneus, and
uncus, are known to be related to AD by many studies
using group comparison [Chetelat et al., 2002; Convit
et al., 2000; Dai et al., 2009; Karas et al., 2007; Laakso et al.,
2000]. A close observation on both Table IV and Support-
ing Information Table S1 shows that some of the regions,
that is, hippocampus, amygdala, temporal pole, and precu-
neus, are commonly selected for both classification tasks,
which further indicates those brain regions may be much
related to the AD. Conversely, most of selected features in
Table IV and Supporting Information Table S1 have very
small P-values, indicating their strong discriminative
power in identifying AD/MCI patients from NCs.

Finally, Supporting Information Table S2 shows that
some of the selected top regions for MCI-conversion classi-
fication, that is, hippocampus, cingulated, and inferior
frontal cortex, are also reported by the previous studies
[Aksu et al., 2011; Drzezga et al., 2003; Ota et al., 2014].
However, most of the selected features in Supporting
Information Table S2 are not as discriminative as the fea-
tures obtained in AD/MCI classifications (in Table IV and
Supporting Information Table S1). This partly explains
why lower performance is achieved in MCI-conversion
classification, compared to AD/MCI classifications.

Semisupervised Classification

In this subsection, we validate the effectiveness of pro-
posed method under semisupervised setting. We first
divided our subject samples into two portions: one portion
is used as labeled data, and another portion is considered as
unlabeled data; and then we performed two experiments to
validate our proposed method from two aspects: (1) the
classification performance with/without using unlabeled
training subjects; (2) the performance of proposed method
with different amounts of unlabeled training subjects.

In the first experiment, we first fixed a ratio r1 5 50% of
positive and negative subjects as labeled data. The rest of
subjects were used as unlabeled data. We also adopted 10-
fold cross-validation strategy to evaluate the classification
performance. Specifically, for each cross-validation, 90% of
the labeled data together with the unlabeled data are used
for training model. The rest of labeled data as well as the
unlabeled data are used for testing the classification per-
formance. This process is also repeated 10 times to avoid
any bias introduced by randomly choosing labeled data.
We also compared those feature selection methods as men-
tioned in supervised classification. Table V gives the classi-
fication performance of different methods.

From Table V, we can observe that our proposed semi-
M2TFS method can further improve the performance com-
pared with the supervised methods. Specifically, our pro-
posed semi-M2TFS method achieves the classification

TABLE III. The significance test between the classifica-

tion accuracies of our proposed method and other com-

pared methods

Compared
method

P-value

AD versus
NC

MCI versus
NC

MCI-C versus
MCI-NC

LASSO <0.0001 <0.0001 0.0010
t-test <0.0001 <0.0001 0.0063
SFFS <0.0001 <0.0001 0.0004
MM <0.0001 <0.0001 0.0019
MML 0.0009 <0.0001 0.0062
MTFS <0.0001 0.0001 0.0086
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Figure 4.

The classification results on three classification groups with respect to different combining weights

of MRI and PET (Left: classification accuracy; Right: AUC value). Note that mPET 1 mMRI 5 1. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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accuracy of 90.38, 75.06, and 60.57% for AD versus NC,
MCI versus NC, and MCI-C versus MCI-NC, respectively,
while the best classification accuracy of other methods are
89.25, 73.3, and 58.38%, respectively. In addition, the AUC
of proposed method is 0.95, 0.77, and 0.61, respectively,
for those classifications, which also indicates excellent
diagnostic power. The results in Table V show that our
proposed semi-M2TFS method can take advantage of the

geometric distribution information of original data (includ-
ing labeled data and unlabeled data), and thus obtain a
better learning model.

In the second experiment, we evaluate the performance of
proposed method for different amounts of unlabeled training
subjects. Specifically, we first fixed a ratio r1 5 50% of positive
and negative subjects as labeled data. In the following proce-
dure, we used a fraction r25f10%; 20%; 40%; 60%; 80%; 100%g
of the rest of subjects as unlabeled data. We evaluated our
methods with selected labeled data and unlabeled data using
10-fold cross-validation. At each cross-validation, 90% of the
labeled data together with the unlabeled data are used for
training model. The rest of labeled data as well as the unla-
beled data are used for testing the classification performance.
This process is also repeated 10 times independently. For any
chosen fraction r2 of unlabeled data, we also repeated 10 times
to avoid any bias introduced by randomly choosing unlabeled
data. The experiment is also repeated 10 times to avoid any
bias introduced by randomly choosing labeled data. The aver-
age classification is computed for each fraction r2. Figure 6
shows the classification accuracy of our proposed method
with respect to different unlabeled samples.

As we can see from Figure 6, the classification accuracy
can be consistently improved with the increase of unla-
beled samples on three classification groups, which again
shows that the proposed method can lead to the selection
of more discriminative features using geometric

TABLE IV. Top 12 ROIs detected by our proposed

M2TFS method for MCI versus NC classification

Selected ROIs MRI FDG-PET

L. cuneus P 5 0.0741 P 5 0.0626
L. precuneus P 5 0.0001 P 5 0.0005
L. temporal pole P 5 0.0004 P 5 0.0624
L. entorhinal cortex P< 0.0001 P 5 0.0286
L. hippocampal formation P< 0.0001 P 5 0.0109
L. angular gyrus P< 0.0001 P 5 0.0003
R. hippocampal formation P< 0.0001 P 5 0.0309
R. occipital pole P 5 0.0375 P 5 0.8289
L. occipital pole P 5 0.1638 P 5 0.0390
R. amygdala P< 0.0001 P 5 0.0352
L. parahippocampal gyrus P 5 0.0009 P< 0.0001
R. precuneus P 5 0.0016 P 5 0.0007

L. 5 Left; R. 5 Right.

Figure 5.

Top 12 ROIs detected by the proposed M2TFS method when performing MCI classification.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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distribution of data, and as a result the classification per-
formance is significantly improved with the increase of the
number of unlabeled data. These results demonstrate the
significant gain obtained using information of data
distribution.

DISCUSSION

In this article, we have proposed a new multimodality
based classification framework with two successive steps,
that is, manifold regularized MTFS and multikernel SVM
classification. Two different sets of experiments, that is,
supervised classification and semisupervised classification,
have been performed on 202 baseline subjects from ADNI
to validate our proposed method. The results demonstrate
that our proposed method can consistently and substan-
tially improve the classification performance of the existing
multimodality based classification method.

Significance of Results

Multimodality-based classification methods have been
used to fuse information from multiple different data
source, as different imaging modalities can provide essen-
tial complementary information that can be used to
enhance our understanding of brain disorders. A main
aim of multimodality method is to access the joint infor-
mation provided by multiple imaging technique, which in
turn can be useful for identifying the dysfunctional regions
implicated many brain disorders [Sui et al., 2012]. Recent
emergence of multitask learning approach makes it possi-
ble to jointly identify and select features from different
modalities. Our study demonstrated that, using multitask
learning and embedding the distribution information of
data, the proposed method can achieve a significantly
improved performance for disease classification.

The regions involved in the course of AD/MCI classifi-
cation by the proposed method are in agreement with pre-
vious studies. For example, hippocampal formation, which
is thought to play an important role in memory, spatial
navigation and control of attention, is one of the first brain
regions to suffer damage with memory loss and disorien-
tation. Researchers have found that the hippocampal for-
mation is damaged heavily in AD, and is a focal point for
pathology [Hyman et al., 1984; Van Hoesen and Hyman,
1990; Wolf et al., 2003]. The amygdala plays a primary role
in the processing of memory, decision-making and emo-
tional reactions. Existing studies have shown this as
another important subcortical region that is severely and
consistently affected by pathology in AD [Dai et al., 2009;
Knafo et al., 2009; Poulin et al., 2011]. In addition, group

Figure 6.

Classification accuracy with respect to the use of different num-

ber of unlabeled samples. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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comparison based studies demonstrate significant abnor-
malities in parahippocampal gyrus [Solodkin et al., 2013;
Wang et al., 2012], uncus [Laakso et al., 2000], temporal
pole [Nobili et al., 2008], entorhinal cortex [Derflinger et al.,
2011], precuneus [Del Sole et al., 2008; Karas et al., 2007],
and angular [Hunt et al., 2006]. The fact that our results are
consistent with the previous studies demonstrates that our
proposed method can also help discover the disease-related
brain regions useful for disease diagnosis.

Multimodality Classification

Recent studies on AD and MCI have shown that bio-
markers from different modalities contain complementary
information for diagnosis of AD [Apostolova et al., 2010;

Foster et al., 2007; Landau et al., 2010; Walhovd et al.,

2010b]. Several studies on combining different modalities

of biomarkers have been reported for multimodality classi-

fication [Bouwman et al., 2007; Chetelat et al., 2005; Fan

et al., 2008a,b; Sokolova, 1991; Vemuri et al., 2009; Wal-

hovd et al., 2010a; Wee et al., 2012; Yang et al., 2010],

achieving better performance than baseline single-

modality methods. Two different strategies were often

used in those methods, that is, (1) combining all features

from different modalities into a longer feature vector for

the following classification and (2) using MKL technique

for multimodality data fusion and classification. Empirical

results have shown that the latter often can achieve better

classification performance than the former.

TABLE VII. Comparison on classification accuracy of different multimodality classification methods

Method Subjects Modalities
AD

versus NC
MCI

versus NC
MCI-C versus

MCI-NC

(Hinrichs et al., 2011) 48AD166NC MRI1PET 87.6% – –
(Huang et al., 2011) 49AD167NC MRI1PET 94.3% – –
(Gray et al., 2013) 37AD175MCI(34MCI-C141MCI-NC)135NC MRI1PET1

CSF1genetic
89.0% 74.6% 58.0%

(Liu et al., 2014) 51AD199MCI(43MCI-C156MCI-NC)152NC MRI1PET 94.4% 78.8% 67.8%
M2TFS 51AD199MCI(43MCI-C156MCI-NC)152NC MRI1PET 95.0% 79.3% 68.9%
M2TFS 51AD199MCI(43MCI-C156MCI-NC)152NC MRI1PET1CSF 95.4% 83.0% 72.3%

TABLE VI. The classification performance with different modalities of data

Method

AD versus NC MCI versus NC MCI-C versus MCI-NC

ACC
(%)

SEN
(%)

SPE
(%) AUC

ACC
(%)

SEN
(%)

SPE
(%) AUC

ACC
(%)

SEN
(%)

SPE
(%) AUC

PET 84.42 83.53 84.81 0.91 67.11 75.96 50.19 0.72 54.44 48.37 59.11 0.57
MRI 88.68 84.51 92.50 0.94 73.12 78.28 63.65 0.79 52.22 44.19 58.21 0.54
CSF 82.26 82.55 81.54 0.87 70.72 71.62 69.04 0.75 58.72 53.02 63.04 0.63
M2TFS (MRI1PET) 95.03 94.90 95.00 0.97 79.27 85.86 66.54 0.82 68.94 64.65 71.79 0.70
M2TFS (MRI1PET1CSF) 95.38 94.71 95.77 0.98 82.99 89.39 70.77 0.84 72.28 66.05 76.61 0.72

ACC 5 ACCuracy, SEN 5 SENsitivity, SPE 5 SPEcificity.

TABLE V. The classification performance of different methods with 50% of labeled data

Method

AD versus NC MCI versus NC MCI-C versus MCI-NC

ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC

LASSO 87.83 86.92 88.67 0.95 68.97 73.64 60.14 0.73 54.61 53.13 55.72 0.57
t-test 88.60 90.85 86.41 0.96 72.12 80.53 56.19 0.75 55.34 51.16 58.48 0.57
SFFS 83.50 83.20 83.78 0.91 66.93 80.08 42.06 0.68 54.91 48.49 59.76 0.56
MM 87.55 89.49 85.64 0.94 71.47 86.87 42.30 0.73 57.47 46.80 65.43 0.58
MML 86.54 85.68 87.37 0.93 71.63 77.82 59.91 0.75 56.63 53.23 59.15 0.57
MTFS 87.63 86.90 88.30 0.94 71.62 79.91 55.91 0.73 56.52 50.03 61.39 0.56
M2TFS 89.25 85.80 92.59 0.95 73.03 89.39 42.03 0.75 58.38 55.69 60.26 0.58
semi-M2TFS 90.38 90.91 89.73 0.95 75.06 84.71 56.78 0.77 60.57 47.74 70.23 0.61

ACC 5 ACCuracy, SEN 5 SENsitivity, SPE 5 SPEcificity.
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To evaluate the effect of combining multimodality data,
we performed two additional experiments, that is, (1)
using more modalities and (2) using only single modality.
In the first experiment, besides MRI and PET modalities,
we also included the CSF data (with Ab42, t-tau and p-tau
as features) using our proposed classification framework.
Specifically, we combined three modalities data (i.e., MRI,
FDG-PET, and CSF) for classification [denoted as M2TFS
(MRI1PET1CSF)]. While in the second experiment, for
each modality, we performed LASSO-based feature selec-
tion, and then used SVM with linear kernel for classifica-
tion (denoted as MRI, PET and CSF, respectively). It is
worth noting that feature selection was not necessary for
CSF modality in both experiments. The corresponding
experimental results are summarized in Table VI. Here,
the proposed M2TFS with two modalities (i.e., MRI and
FDG-PET) is denoted as M2TFS (MRI1PET).

As we can see from Table VI, our proposed method
with three modalities [i.e., M2TFS (MRI1PET1CSF)]
achieves the best classification performance, compared
with that with two modalities [i.e., M2TFS (MRI1PET)]
and those with single modality (i.e., PET, MRI, and CSF).
Also, Table VI shows that the performance of combining
two modalities is better than that of using only single
modality. These results further validate that different
modalities of data contain complementary information,
and the advantages of multimodality based methods over
single-modality based ones.

Conversely, in Table VII we also compare our proposed
method with the recent state-of-the-art methods for multi-
modality based AD/MCI classification. As we can see
from Table VII, compared with all other methods, our
method achieves the best classification accuracy, which
again validates the efficacy of our proposed method.

In the current studies, multitask learning technique is
used to learn a set of related features from multimodal-

ity data for improving the classification performance.
As multitask learning can use the related auxiliary
information among tasks, it often leads to a better learn-
ing model, compared to single-task learning. Several
studies have used multitask learning for disease classifi-
cation and prediction. For example, Yuan et al. [2012]
also used multitask learning framework for classifica-
tion of incomplete multimodality of data. Zhang and
Shen [2012] adopted multitask learning framework for
joint prediction of multiple regression and classification
variables. Zhou et al. [2013] formulated the prediction
problem as a multitask regression problem by consider-
ing the prediction at each time point as a task. More
recently, Liu et al. [2014] also adopted multitask feature
learning framework for AD/MCI classification, by add-
ing the intermodality constraint into its objective func-
tion. However, different from Liu et al.’s method, our
proposed method simultaneously adopted group-
sparsity regularizer (for joint feature selection from
multimodality data) and embed the distribution infor-
mation of data into the learning model. The experimen-
tal results in Table VII show that our method can
achieve a better classification performance than Liu
et al.’s method [Liu et al., 2014].

The Effect of Distinct Similarity Measures

In the proposed method, two different similarity meas-
ures are adopted, which are defined in Eqs. (3) and (5),
respectively. The former was used to preserve the local
neighboring structure of same-class data during the map-
ping, while the latter was used to preserve the geometrical
distribution information of original data. To evaluate the
effects of both similarity measures, we perform two addi-
tional experiments. Specifically, in supervised setting, we
first performed the proposed M2TFS method with the

TABLE VIII. The classification performance of the proposed M2TFS method with different similarity matrices

Method

AD versus NC MCI versus NC MCI-C versus MCI-NC

ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE(%) AUC

M2TFS 95.03 94.90 95.00 0.97 79.27 85.86 66.54 0.82 68.94 64.65 71.79 0.70
M2TFS-S5 94.63 94.12 95.00 0.97 77.51 84.14 64.81 0.81 64.28 59.30 67.68 0.65

ACC 5 ACCuracy, SEN 5 SENsitivity, SPE 5 SPEcificity.

TABLE IX. The classification performance of the proposed semi-M2TFS method with different similarity matrices

Method

AD versus NC MCI versus NC MCI-C versus MCI-NC

ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC

semi-M2TFS 90.38 90.91 89.73 0.95 75.06 84.71 56.78 0.77 60.57 47.74 70.23 0.61
semi-M2TFS-Mix 91.03 91.32 90.63 0.96 75.42 85.60 56.11 0.78 60.83 50.88 68.32 0.62

ACC 5 ACCuracy, SEN 5 SENsitivity, SPE 5 SPEcificity.
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similarity defined in Eq. (5) (denoted as M2TFS-S5),
instead of the similarity defined in Eq. (3). Then, in semi-
supervised setting, we performed the proposed semi-
M2TFS method with a mixture of two similarity measures
[i.e., the similarity between labeled data computed by Eq.
(3), and the similarity computed by Eq. (5) for other cases]
(denoted here as semi-M2TFS-Mix), instead of using the
original similarity measure as defined in Eq. (5). Both
experimental results are summarized in Tables VIII and
IX, respectively. As we can see from both Tables VIII and
IX, the M2TFS method achieves better performance than
M2TFS-S5 method, and semi-M2TFS-Mix method achieves
better performance than semi-M2TFS, which indicate that
M2TFS and semi-M2TFS-Mix can both obtain more dis-
criminative features (i.e., ROIs), as the similarity defined
in Eq. (3) embeds the discriminative information of data.

The Effect of Regularization Parameters

In our proposed M2TFS method, it includes two regulari-
zation items, that is, the group-sparsity regularizer and the
manifold regularization term. The parameters b and g bal-
ance the relative contribution of those regularization terms.
To investigate the effects of the regularization parameters b

and g on the classification performance of our proposed
method, we test different values for b, ranging from 0 to 25
at a step size of 5, and also test different values for g, rang-
ing from 0 to 50 at a step size of 5. Figure 7 shows the clas-
sification results with respect to different values of b and g.
It is worth noting that, when b50, no feature selection step
is performed, that is, all features extracted from MRI and
FDG-PET data are used for classification. So our method
will be degraded to a multimodality method as proposed
in [Zhang et al., 2011] (i.e., MM method). Also, when g50,
no manifold regularization item is included, and thus our
method will be degraded to a MTFS method.

As we can observe from Figure 7, under all values of b

and g, our proposed M2TFS method consistently outper-
forms the MTFS methods on three classification groups (i.e.,
AD vs. NC, MCI vs. NC and MCI-C vs. MCI-NC), which
further indicates the advantage of adding the manifold regu-
larization term. Also, Figure 7 show that, when fixing the
value of b, the varied curves with the values of g are very
smooth on three classification groups, which shows that our
method is very robust to the regularization parameter g.
Finally, we can see from Figure 7 that, when fixing the value
of g, the results on three classification groups are largely
affected with different values of b, which implies that the
selection of b is very important for the final classification
results. This is reasonable as b controls the sparsity of model
and thus determines the size of the optimal feature subset.

Manifold Learning and Semisupervised learning

Manifold learning is a recent machine learning technique,
which pursuits the goal to embed the original data in a

high-dimensional space into a lower dimensional space,
while preserving the characteristic properties of the original
data. As manifold learning enables dimensionality reduction
and processing tasks in a meaningful lower-dimensional
space, it has been successfully applied to lots of tasks. In the
community of machine learning, semisupervised learning
based on manifold has been extensively studied and applied
[Belkin and Niyogi, 2004; Zhu and Goldberg, 2009]. A few
recent studies have applied manifold learning to medical
imaging analysis [Aljabar et al., 2008; Guerrero et al., 2011;
Wachinger and Navab, 2012; Wolz et al., 2012].

Semisupervised learning is a class of learning tasks that
can make use of both labeled and unlabeled data for learn-
ing, where typically a small amount of labeled data with a
large amount of unlabeled data are available. Existing stud-
ies have shown that a model can produce considerable
improvement in learning performance when using unla-
beled data together with a small amount of labeled data.
The acquisition of labeled data is usually expensive and
time-consuming as it often requires a skilled human agent
or a physical experiment, while the collection of unlabeled
data is relatively easier. So, semisupervised learning is of
great importance in practice. Among semisupervised learn-
ing methods, a promising family of techniques is to exploit
the “manifold structure” of the data, which is generally
based on the assumption that similar unlabeled subjects
should be given the same classification [Zhu and Goldberg,
2009]. A few studies have applied semisupervised learning
to medical imaging analysis [Dittrich et al., 2014]. For exam-
ple, Filipovych and Davatzikos [2011] applied the semisu-
pervised learning for classifying MCI subjects into MCI
converters (MCI-C) and MCI nonconverters (MCI-NC)
using semisupervised SVM method with 63 normal and 54
AD subjects as labeled data and 416 MCI subjects (includ-
ing 242 MCI-C and 174 MCI-NC) as unlabeled data.

Conversely, in the proposed semi-M2TFS method, we com-
puted the classification performance on both the labeled data
used for testing (i.e., testing data) and all the unlabeled data.
However, in practice, it may be a better strategy to compute
the classification accuracy using only the testing data (i.e.,
excluding all unlabeled data), as, for the latter, the training
data and the testing data are completely independent, and
thus the predictive model can be prelearned using the training
data and then used directly to make prediction for the new
subjects. Therefore, we recompute the classification accuracy
using only the testing data, and the results show that our pro-
posed method achieves the classification accuracy of 90.13,
74.99, and 60.04% for AD versus NC, MCI versus NC, and
MCI-C versus MCI-NC, respectively, which are comparable to
the corresponding results of semi-M2TFS in Table V. These
results again validate the efficacy of our proposed method.

Limitation

The current study is limited by several factors. First, in
the current study, we only investigated binary-class
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Figure 7.

The classification accuracy with respect to the selection of g and b. (a) AD classification, (b)

MCI classification, and (c) MCI conversion classification. Each curve represents the performance

for different selected value for b. X-axis denotes for different values for g. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]



classification problem (i.e., AD vs. NC, MCI vs. NC, and
MCI-C vs. MCI-NC), but did not test the ability of the clas-
sifier for the multiclass classification of AD, MCI, and
NCs. Second, the proposed method is based on multimo-
dality data (i.e., FDG-PET and MRI) and requires each
subject having all corresponding modalities of data, which
limits the size of subjects that can be used for study.
Finally, other modalities of data (for example genetic data)
can also be used for further improving the classification
performance. In the future work, we will address the
above limitations to further improve the performance of
classification.

CONCLUSION

In summary, this article addresses the problem of
exploiting the distribution information of data to build the
multitask feature learning method for jointly selecting fea-
tures from multimodalities of data. By introducing the
manifold regularization term into the multitask learning
framework, we used the APG algorithm to solve the opti-
mal problem for seeking out the most informative feature
subset. We have also developed the manifold regularized
MTFS method for both supervised and semisupervised
cases, with the corresponding algorithms denoted as
M2TFS and semi-M2TFS, respectively. Different from the
existing MTFS methods, our method uses the distribution
knowledge of data for early diagnosis of AD with better
results. Experimental results on the ADNI dataset validate
the efficacy of our proposed method.
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