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Abstract

Interactions between a pathogen and a vector are plastic and dynamic. Such interactions can be 

more rapidly accommodated by epigenetic changes than by genetic mutations. Gene expression 

can be affected by the proximity to the heterochromatin, by local histone modifications, and by the 

three-dimensional position within the nucleus. Recent studies of disease vectors indicate that gene 

regulation by these factors can be important for susceptibility to pathogens, reproduction, 

immunity, development, and longevity. Knowledge about heterochromatin, histone modifications, 

and nuclear architecture will help our understanding of epigenetic mechanisms that control gene 

function at traits related to vectorial capacity.

Introduction

Genomic approaches are now the focus for the development of novel vector control 

strategies [1]. However, vector-pathogen interactions are plastic, and the outcome of these 

interactions might not be solely explained by genetic variation [2]. Thus, it is critical to 

expand our current understanding of vector-pathogen-host interactions to a new level that 

includes epigenetic modifications of the genome. Epigenetic mechanisms include heritable 

effects on gene expression caused by heterochromatin, nuclear architecture, variations in 

DNA methylation, post-translational modifications of histones, and non-coding RNAs [3-5]. 

Epigenomic studies operate with the complete set of epigenetic modifications, and they are 

predominantly conducted in model organisms (www.modencode.org) [6], as well as in 

humans (www.epigenome.org) [7] and parasites (http://plasmodb.org) [5]. Vectors are 

usually the only part in “disease triads” (hosts—pathogens—vectors) that lacks 

comprehensive epigenomic studies. The aim of this review is to highlight recent research 

advances and to identify what is still missing in understanding of epigenetic mechanisms in 
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disease vectors. Heterochromatin, histone modifications, and nuclear architecture are well 

interconnected. Heterochromatin has specific histone modifications, such as H3K9me2, 

H3K9me3, and H3K27me3 [8], and it can form attachments between chromosomes and the 

nuclear envelope [9, 10]. Chromatin regions marked with H3K27me3 can mediate intra- and 

inter-chromosomal interactions in the nucleus [11]. Nuclear architecture provides the 

positioning of transcriptionally active chromatin marked with H3K4me3 and H3K79me2 

away from the nuclear periphery, which is a repressive environment [12]. Therefore, a better 

understanding of one epigenetic mechanism will help to decipher the role of other 

mechanisms in controlling vectorial capacity.

Organization of heterochromatin in disease vectors

Chromatin of eukaryotes exists in at least two distinct forms that were originally defined by 

morphology as darkly stained constitutive heterochromatin, which remains condensed 

throughout the cell cycle, and as lightly stained euchromatin, which undergoes cycles of 

condensation and de-condensation [13]. Among arthropods, the most detailed analysis of the 

heterochromatin has been performed in a nonvector species, Drosophila melanogaster. 

Heterochromatin in this species plays an important role in the chromosome pairing, gene 

silencing via position-effect variegation, maintaining genome stability, production of Piwi-

interacting RNAs, and organism longevity [3, 4]. Over 77% of the 24 Mb of pericentromeric 

heterochromatin in Drosophila is represented by transposable elements (TEs) and about 

10% is occupied by tandem repeats, which concentrate toward the centromeres [14]. Despite 

being transcriptionally less active than euchromatin, the fruit fly heterochromatin contains 

essential protein-coding genes and the ribosomal DNA (rDNA) locus. A genome-wide study 

of 53 chromatin proteins in Drosophila cells has revealed five principal chromatin types 

indicated by the colors YELLOW, RED, BLUE, BLACK, and GREEN [15]. GREEN 

chromatin, marked by histone-lysine methyltransferase SU(VAR)3-9 and heterochromatin 

protein 1 (HP1), includes the pericentromeric constitutive and facultative heterochromatin. 

BLUE chromatin, marked by Polycomb group (PcG) proteins and H3K27me3, corresponds 

to the PcG heterochromatin. A repressive BLACK chromatin, marked by Lamin and 

Suppressor of Under-Replication (SUUR), corresponds to the intercalary heterochromatin. 

Finally, YELLOW and RED chromatin types represent housekeeping and tissue specific 

genes of euchromatin, respectively.

Studies on genomic mapping and characterization of heterochromatin in arthropod vectors 

are sparse. But even limited numbers of studied cases demonstrate the high diversity in 

heterochromatin amount and location among species (Figure 1). In the African malaria 

mosquito Anopheles gambiae, heterochromatin was first described based on Hoechst 33258 

staining of mitotic chromosomes [16]. The heterochromatin amount has been found varying 

among and within species. An early study suggested a possible role of sex chromosome 

heterochromatin in controlling fertility and mating behavior of An. gambiae [17]. To 

determine the extent of heterochromatin within the An. gambiae genome assembly, genes 

have been physically mapped to the euchromatin-heterochromatin transition zone of 

polytene chromosomes [18]. The study has found that a minimum of 232 genes reside in 

16.6 Mb of mapped heterochromatin. Similarly to fruit fly, the heterochromatin in An. 

gambiae accumulates HP1, includes the rDNA locus, and is enriched with essential protein-
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coding genes important for establishing, maintaining, and modifying chromatin structure 

[18]. In the yellow fever mosquito Ae. aegypti, constitutive heterochromatin was first 

detected by a C-banding technique in pericentromeric areas and in the intercalary region of 

chromosome 1 [19]. A recent genomic analysis of mapped supercontigs demonstrated a 

uniformly high coverage of TEs (~52%) across all chromosomal arms with no clear 

distinction between pericentromeric regions and the rest of chromosomal arms [20]. This 

organization sharply contrasts with that in An. gambiae, whose genome has a higher TE 

content in pericentromeric heterochromatin (~54%) and a lower TE content in euchromatic 

arms (~12%). Thus, increase in the genomic TE content can cause “heterochromatization” of 

euchromatin seen in Ae. aegypti. In most of the other vector species, heterochromatin has 

been characterized based on C-banding or fluorescence in situ hybridization (FISH) of 

repetitive DNA. In the kissing bug Triatoma infestans, a vector of Chagas disease, 

heterochromatin consists of AT-rich simple tandem repeats and is located in the terminal 

regions of holokinetic (i.e., with diffuse centromere) chromosomes [21]. In the hard tick 

Ixodes scapularis, large blocks of pericentromeric heterochromatin of telocentric 

chromosomes are composed of the few major tandem repeat families [22, 23]. It is likely 

that satellite DNA repeats rather than TEs mainly contribute to the large genome sizes of the 

kissing bug (1.7 Gb) [24] and the hard tick (2.1 Gb) [22]. The diversity of the 

heterochromatin amount and location could potentially result in diverse functions with 

respect to gene regulation.

Because heterochromatic regions have many essential and actively transcribed genes [14, 

25], mapping, sequencing, and annotation of heterochromatin in vector species are important 

for genome-wide analyses, such as localization of transcription factors, chromatin 

modifications, and non-coding RNAs. However, large genome sizes and abundance of 

repetitive DNA in many vectors remain the major roadblocks toward the assembly of 

heterochromatic sequences and completion of genome projects. Available genome 

sequencing data for vector species indicate that the genome sizes can vary more than 10-fold 

(Table 1). It is clear that the DNA repeat content rather than the gene number correlates well 

with the genome assembly size (Figure 2). Nevertheless, genome assemblies often miss 

large portions of heterochromatin. For example, a repetitive satellite DNA Aste72A is 

completely absent from the genome assembly of An. stephensi mainly obtained by Illumina 

and 454 sequencing, even though it constitutes a substantial portion of the heterochromatin 

in the X and Y chromosomes as evident from FISH [26]. Thus, next-generation sequencing 

technologies have important limitations for providing high-quality finished genome 

assemblies. Recent studies have demonstrated that a third-generation technology, Pacific 

Biosciences (PacBio) sequencing, can be a promising alternative approach to assemble 

structural variants and repeats in complex regions of eukaryotic genomes [27, 28]. A 

combination of Illumina and PacBio assemblies has given most accurate rDNA operon 

number predictions and resolution of repetitive regions [29]. Also, recent advances in 

physical chromosome mapping can facilitate creating reference genome assemblies much 

needed for investigating heterochromatin in vector species [30]. Elucidating 

heterochromatin organization will be key to understanding the epigenetic regulation of gene 

expression in disease vectors.
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Chromatin modifications in disease vectors

Altering chromatin structure by histone modifications, such as acetylation and methylation 

among others, is the predominant epigenetic regulatory mechanism of transcriptional control 

in Drosophila. For example, H3K27me3 is associated with Polycomb-mediated silencing, 

while H3K4me3 and H3K27ac are present in active promoters [8]. A recent work explored 

the epigenome of An. gambiae by mapping the distribution and levels of two post-

translational histone modifications, H3K27ac and H3K27me3 [31]. The enrichment profiles 

of H3K27ac and H3K27me3 in the mosquito genome have been found to be mutually 

exclusive and associated with high and low levels of transcription, respectively. The analysis 

revealed that 6% of the An. gambiae genome is occupied by H3K27ac, whereas 14% is 

occupied by H3K27me3. Genes marked with H3K27ac display a significant differential 

enrichment in gene ontology (GO) terms associated with metabolic processes, as well as 

immune and signaling pathways. In contrast, genes marked with H3K27me3 show 

differential enrichment in GO terms related to membrane transporters and developmental 

processes, such as homeobox genes. Another interesting finding of this study is that multiple 

genes from the Toll, Immune Deficiency (IMD) and Janus kinase/signal transducers and 

activators of transcription (JAK/STAT) pathways, antimicrobial effectors, and metabolic 

genes are marked with one of these two histone modification marks. Thus, epigenetic 

variations in the An. gambiae genome can play a role in the interactions between mosquitoes 

and pathogens. An important conclusion of the above results is that the mechanisms of 

regulating chromatin structure and function are largely conserved between Anopheles and 

Drosophila, and that they are expected to be conserved in many other disease vectors. Thus, 

the key contribution of the study is that it sets the basis for future epigenetic studies in other 

mosquito species and insect vectors.

The H3K27me3 marks are produced by E(z), which is the histone methyltransferase 

component of the Polycomb repressive complex 2 (PRC2) [3]. 3-Deazaneplanocin A 

(DZNep) is a known histone methylation inhibitor, which is used as an experimental 

epigenetic drug for cancer therapy [32]. One study has shown that injection of DZNep into 

pupae of the cotton bollworm Helicoverpa armigera reduced the H3K27me3 mark and the 

prothoracicotropic hormone gene expression, thereby delaying development and inducing 

diapause [33]. Another study has provided a simple protocol for examining epigenetic 

effects of DZNep on the malaria vector An. gambiae [34]. It has demonstrated the negative 

correlation between the DZNep concentration and the rate of growth and development of 

immature mosquitoes. Also, adult female mosquitoes fed with blood containing DZNep 

exhibited a significant reduction in number of viable eggs. Although, the effects of 

epigenetic drugs are often systemic, modifying the levels of histone marks can be a useful 

approach to evaluate the global phenotypic changes by chromatin modifications in disease 

vectors. To identify specific effects on expression of target genes, epigenetic studies must 

include knockouts of genes encoding for chromatin-modifying enzymes [35].

Sequencing of the genomes of 16 Anopheles species has given the opportunity to explore 

evolution of epigenetic modifiers in mosquitoes [36]. The study demonstrated that genes 

enriched for biological process “chromatin organization” and for molecular functions “DNA 

binding” and “chromatin binding” were among those with the fastest evolutionary rates, 
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indicating the plastic nature of the epigenetic component. At the same time, 75% of 

epigenetic regulatory genes found in D. melanogaster have also orthologs in An. gambiae 

[36]. A follow up comparative analysis of epigenetic gene expression between Drosophila 

and Anopheles revealed distinct tissue-associated expression patterns in fruit fly and 

mosquito [37]. Almost 85% of the variation in epigenetic gene expression occurred in 

carcasses, midguts, ovaries, heads, Malpighian tubules, and salivary glands. The results 

suggest that a subset of epigenetic genes may have different roles in these two species 

reflecting their differences in development, behavior, and lifestyle. Thus, studies of the 

genome distribution and function of major chromosomal proteins and histone modifications 

in vectors will bring new insights into their roles in traits relevant to vectorial capacity (i.e., 

blood feeding, susceptibility to pathogens, mating behavior). This knowledge will help to 

design the strategies to manipulate the epigenetic gene function and to fight the diseases.

Nuclear architecture: the role in gene expression and longevity

Evidence for non-random organization of chromosomes into territories gave rise to the idea 

that the relative positioning of chromosomes and genes with respect to the nuclear periphery 

is important for gene regulation [38]. In Drosophila, down-regulated genes of interphase 

chromosomes [12] and gene-poor heterochromatic regions of polytene chromosomes 

predominantly occupy the nuclear periphery [9, 10]. However, transcriptionally active genes 

can also be found at the periphery around the nuclear pore complexes in yeast, fruit fly, 

mouse, and malaria parasite [39]. Tissue-specific transcriptional processes can be regulated 

by a nuclear architectural protein, CCCTC-binding factor (CTCF). CTCF can mediate inter- 

and intra-chromosomal interactions that regulate recombination, enhancer-promoter 

interactions, transcriptional pausing, and alternative mRNA splicing [11].

A recent study investigated reorganization in the three-dimensional (3D) position and 

expression of three genes, actin, ferritin, and Hsp 70, in live intact Biomphalaria glabrata 

snails upon exposure to Schistosoma mansoni miracidia, a parasitic worm that causes 

intestinal schistosomiasis (Bilharzia) in humans and other mammals [40]. In the susceptible 

snails, the actin gene loci moved from the nuclear interior towards a more intermediate 

position within the nuclei at 30 minutes after infection. Interestingly, the movement 

preceded the 16-fold increase in gene expression at 1 hour after infection. In the resistant 

snails, a 22-fold increase in gene expression without major repositioning was observed for 

the actin gene loci at 30 minutes after infection (Figure 3). The authors hypothesize that the 

rapid increase in actin expression observed in the resistant snails could be due to pre-

positioning of the actin gene in place where transcription is optimal. In contrast, susceptible 

snails failed to respond as efficiently because they needed ~30 minutes to reposition the 

actin gene to the transcription factory. Expression of actin could be necessary to support 

rearrangements in the snail cytoskeleton that is damaged by the worm. The delayed 

transcription of actin in susceptible snails probably failed to elicit a protection of the 

cytoskeleton. Yet different patterns of the nuclear repositioning and expression have been 

observed for the ferritin and Hsp 70 genes. Hsp70 moves and is expressed in the susceptible 

snails but not in the resistant snails. It is likely that this heat-shock gene is important for the 

parasite in its efforts to trigger an infection by controlling the snail host genome. The ferritin 

gene moves and is up-regulated in both susceptible and resistant snails, suggesting its 
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response to tissue damage. This study proposes a hypothesis that timely positioning a locus 

in the transcription factory could be necessary to confer resistance to a pathogen. Due to the 

lack of the whole-chromosome visualization, the study could not determine if whole 

chromosome territories or genes on chromatin loops have made the transition through the 

nuclear space.

A detailed study of the 3D genome reorganization in response to infection has not been 

performed in any arthropod vector species. The chromosome territories in snails have a 

similar morphology and structure to those of mammalian cells. In contrast, chromosomes of 

fruit flies and mosquitoes often have so-called Rabl organization, with centromeres and 

telomeres located at the opposite poles of the interphase nucleus [9, 10]. To study 

chromosome territories, chromosome paints can be produced for organisms with sequenced 

genomes by generating DNA FISH probes from oligonucleotide libraries [41]. Such probes 

can also be developed by using a laser capture microdissection and whole-genome 

amplification. Microdissected chromosome paints have been used to demonstrate 

chromosome territories in polytene and nonpolytene interphase nuclei of An. gambiae [42]. 

A very recent study applied chromosome region-specific microdissected paints to 

investigate tissue-specific features of chromosome architecture in An. messeae [43]. It found 

significant differences in the 3D interposition of the nuclear envelope attachment regions of 

the chromosomes X and 3R between somatic (salivary glands, follicle epithelium) and germ-

line (ovarian of nurse cells) tissues, suggesting the link between the nuclear architecture and 

cell-type differentiation. The chromosome painting method can be applied to detailed 

analysis of the 3D dynamics of chromosome territories in vectors infected with pathogens.

Sufficient longevity of disease vectors is crucial for a disease transmission, because only 

older adults are potentially infective, as it takes a specific time for a pathogen to reach an 

appropriate stage of development inside a vector [44]. It is well known that the nuclear 

architecture in aged cells significantly differ from that in normal cells. In aging adult fruit 

flies, nuclei grow in size and assume irregular morphology. Moreover, aberrant nuclear 

shapes and reduced lifespan can be induced by overexpression of genes encoding for the 

nuclear envelope proteins Lamin and Kugelkern of adult flies [45, 46]. A new study of 

polytene nuclei from D. melanogaster salivary glands revealed forces that regulate the 

nuclear envelope morphology and function. Condensin-II-mediated chromatin condensation 

can alter the 3D structure and shape of the nucleus via nuclear envelope-chromosome 

attachments [47]. If the organization of the nuclear architecture is similar among arthropods, 

than the induced structural changes in the nuclear envelope should cause the reduction in 

lifespan in the majority of disease vectors.

Conclusions and perspectives

Recent advances in vector genomics created an opportunity to improve our understanding of 

epigenetic inheritance of species involved in disease transmission. The works reviewed here 

show that heterochromatin organization, histone modifications, and nuclear architecture can 

play important roles in phenotypes relevant to vectorial capacity. Several immediate steps 

have to be taken to make vector species fully accessible to epigenomic studies. First, instead 

of fragmented and unordered genomic scaffolds, chromosomally mapped high-quality-
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finished genome assemblies, which include heterochromatin, must be available. An 

important challenge is to construct chromosome-scale scaffolds from short sequencing 

reads. Third-generation-sequencing long-read technologies, such as those from Pacific 

Biosciences and Oxford Nanopore Technologies, could offer the solution of how to create 

longer scaffolds and to deal with repeat-rich heterochromatic regions [27, 28, 48]. Second, 

epigenetic regulatory gene sets must be identified in vector species. Although many genes 

involved in heterochromatin structure, chromatin remodeling, and transcriptional control are 

conserved among species, other genes with epigenetic functions can evolve rapidly [36]. 

Third, principles of the 3D genome organization must be studied in vectors to understand its 

role in gene expression and possible effects on infection and aging. The global patterns of 

intra- and inter-chromosomal interactions can be studied in 3D using the Hi-C approach, 

which crosslinks physical contacts between distant genomic regions [11]. The knowledge 

about epigenetic factors in vectors of human and animal infectious diseases will provide a 

rich basis for fundamental and applied research aimed at deciphering the mechanisms 

controlling vectorial capacity.
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CTCF CCCTC-binding factor

DZNep 3-Deazaneplanocin A

FISH fluorescence in situ hybridization

GO gene ontology

HP1 heterochromatin protein 1

Hsp heat shock protein

IMD Immune Deficiency

JAK/STAT Janus kinase/signal transducers and activators of transcription

PacBio Pacific Biosciences

PcG Polycomb group

PRC2 Polycomb repressive complex 2

rDNA ribosomal DNA

SUUR Suppressor of Under Replication

TEs transposable elements
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Highlights

• Heterochromatin contains essential genes and performs important biological 

functions.

• Finished genome assemblies must include heterochromatic sequences.

• Histone modifications regulate immunity, development, and reproduction.

• Nuclear architecture affects gene expression and longevity.
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Figure 1. 
Schematic representation of heterochromatin organization in chromosomes of fruit fly and 

vector species. Genomes with a low overall TE content (a-c): Drosophila melanogaster [14] 

(a), Anopheles gambiae [18] (b), Glossina morsitans [54, 59] (c). Genomes with a high 

overall TE content (d-f): Culex quinquefasciatus [55] (d), Musca domestica [56, 60] (e), 

Aedes aegypti (f) [20]. Constitutive heterochromatin is marked by the black color 

representing satellite DNA and C-bands. Chromosome regions with a low (<45%) and a 

high (>45%) TE contents are indicated by the light blue and dark blue colors, respectively. 

Genomes with a relatively high tandem repeat (satellite DNA) content (g-h): Triatoma 

infestans [21] (g), Ixodes scapularis [22, 23] (h). Chromosome lengths reflect the 

differences in genome sizes of these insects. Heterochromatin is marked by the high satellite 

DNA and/or TE content (a)-(c) and by the high satellite DNA content in (d)-(g). The rDNA 

locus is located either within or next to the heterochromatin.
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Figure 2. 
Correlation between total interspersed repeats and genome assembly sizes for species with 

sequenced genomes [26, 36, 49, 50, 52-57]. Coefficient of determination, R2=0.88. Color-

coded circles represent different species. Blue circles labeled “Anopheles” correspond to 13 

Anopheles species from Table 1, except An. gambiae.
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Figure 3. 
A schematic representation of changes in the 3D nuclear position and gene expression in a 

snail vector upon infection with miracidia [40]. The reactions of the cells in the susceptible 

(a-c) and refractory (d-f) strains are shown at 0, 0.5, and 1 hour after the infection. The 

strains are different in the spatial position of the chromosome (blue curved line) carrying the 

actin gene, which is located in the middle of the nucleus in the susceptible strain (a) and 

closer to the nuclear periphery in the refractory strain (d). Hypothetically, cells in the 

susceptible strain are damaged by the parasite (c), while cells in the refractory strain are 

repaired by rearrangements in the cytoskeleton (f). Red circle – inactive gene, green circle – 

active gene. Green lines – transcripts. Miracidia are not shown.

Sharakhov and Sharakhova Page 15

Curr Opin Insect Sci. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sharakhov and Sharakhova Page 16

Table 1

Sizes and annotation statistics of the sequenced genome assemblies.

Species name Common
name

Genome
assembly
size, Mb*

Total
interspersed
repeats, %

Protein-
coding
gene

number

Reference

Pediculus humanus
corporis

Human
body louse 110.8 1.0 10773 [49]

Drosophila
melanogaster Fruit fly 118.0 5.35 13733 [50, 51]

Anopheles darlingi

Malaria
mosquito

136.9 2.3 10481 [52]

Anopheles albimanus 170.5 2.0 11911

[36]Anopheles christyi 172.7 2.8 10738

Anopheles dirus 216.3 5.1 12781

Anopheles sinensis 220.8 6.5 16766 [53]

Anopheles stephensi
(Indian strain) 221.3 7.1 11789 [26]

Anopheles epiroticus 223.5 6.3 12078

[36]

Anopheles funestus 225.2 4.0 13344

Anopheles stephensi
(SDA strain)

225.4 5.0 13113

Anopheles melas 227.4 7.3 16149

Anopheles arabiensis 246.6 9.4 13162

Anopheles merus 251.8 11.4 13887

Anopheles gambiae
(PEST strain) 273.1 17.8 12810

Anopheles
quadriannulatus 283.8 7.7 13349 [36]

Glossina morsitans Tsetse fly 366.2 14.0 12308 [54]

Culex quinquefasciatus
Southern

house
mosquito

579.1 48.0 18955 [55]

Musca domestica Common
house fly 750.4 52.0 14180 [56]

Aedes aegypti Yellow fever
mosquito 1311.0 62.0 15784 [57]

*
data for vectors are from VectorBase [58], species are listed in the order of increased
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