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Abstract

To reduce widespread shortages, attempts are made to use more marginal livers for 

transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary 

complications. Recent advances in organ preservation have shown that ex vivo subnormothermic 

machine perfusion has the potential to improve preservation and recover marginal livers pre- 

transplantation. To determine the feasibility in human livers, we assessed the effect of 3 hours of 

oxygenated subnormothermic machine perfusion (21 °C) on seven livers discarded for 

transplantation. Biochemical and microscopic assessment revealed minimal injury sustained 

during perfusion. Improved oxygen uptake (1.30 [1.11–1.94] to 6.74 [4.15–8.16] mL O2/min.kg 

liver), lactate levels (4.04 [3.70–6.00] to 2.29 [1.20–3.42] mmol/L) and adenosine triphosphate 

content (45.0 [70.6–87.5] pre-perfusion to 167.5 [151.5–237.2] pmol/mg after perfusion) were 

observed. Liver function, reflected by urea, albumin and bile production was seen during 

perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH 

and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic 

machine perfusion effectively maintains liver function with minimal injury and sustains or 

improves various hepatobiliary parameters post-ischemia.
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Introduction

Preserving the viability of the donor liver is essential for successful transplantation. While 

advances in preservation solutions and immunosuppression have resulted in excellent 

outcomes following liver transplantation using standard criteria donors (1), transplantation 

using marginal grafts remains problematic (2,3). Donation after circulatory death (DCD) 

livers with increased warm ischemic time (WIT), in particular, present a challenge as the 

incidence of primary nonfunction and biliary complications are increased (4). The increasing 

use of marginal livers to expand the donor pool demands more sophisticated preservation 

modalities to prevent or treat the underlying deficiency of these livers.

While conventional static cold storage (SCS) merely slows the deterioration of the donor 

liver, ex vivo machine perfusion techniques may be useful in sustaining organ viability, 

improving it, or pre-conditioning the liver for reperfusion. Pre-clinical studies using 

hypothermic machine perfusion (HMP) at 0–4 °C have shown impressive benefits for 

preservation (5–8). The first clinical series from 2010 employing HMP in livers donated 

after brain death (DBD) showed promising initial results and was a large step forward in 

bringing perfusion techniques to clinical transplantation (9) and a more recent trial showed 

that hypothermic machine perfusion of DCD livers produced similar results to unperfused 

DBD livers (10). In contrast, normothermic machine perfusion (NMP) at ±37 °C offers the 

environment for a fully functional metabolism, which supports the reestablishment of 

homeostasis and other recovery processes, including an increase in ATP content (11). 

Additionally, maintaining a metabolically functional organ opens the opportunity of viability 

testing to assess liver function during perfusion and improve donor liver selection and 

allocation (12,13). Recently, the feasibility of NMP has been shown in sustaining discarded 

human DCD livers (14).

While NMP is potentially an improvement over cold perfusion, it still exposes the 

compromised ischemic and cold-stored liver to a rapid temperature rise. It is our hypothesis 

that a more gradual rewarming course may relieve this insult by employing a stepwise 

normalization of temperature and metabolic demand (15,16). Improvement of mitochondrial 

function in this phase may precondition the liver for normothermic reperfusion (17). 

Subnormothermic machine perfusion (SNMP) systems have been investigated to assume 

this intermediate role, benefiting from a lower metabolic demand at subphysiological 

temperature, while still maintaining sufficient metabolism for viability testing and 

improvement of graft function (18). In our experience normothermic temperatures required 

oxygen carriers to achieve sufficient oxygenation (19). Lowering the temperature to 21 °C 

allowed us to simplify the system by obviating oxygen carriers and allowing ambient air 

temperature control, which may significantly expedite clinical implementation. This proof-

of-concept study, applying SNMP in human livers for the first time, aims to demonstrate 
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controlled re-equilibration of ischemic disturbances through recovery of metabolism and 

hepatobiliary function.

Materials and methods

Procurement and back-table preparation

Donor livers were obtained from the New England Organ Bank (NEOB) with consent for 

research from the family after being turned down for clinical transplantation. Extubation of 

donors after circulatory death was performed by the primary service, which was also 

responsible for declaration of death 5 minutes after circulatory cessation. The procurement 

procedure did not begin until after declaration of death. Standard procurement technique 

includes an in situ flush with University of Wisconsin (UW) solution, intra-abdominal 

cooling with ice, and an additional back table UW flush. The gallbladder was incised, 

aspirated of bile, and irrigated with saline. The common bile duct was flushed with UW 

solution. The relative warm ischemic time for DCD livers is defined as the time between 

extubation and in situ cold flushing, whereas absolute warm ischemic time begins after 

circulatory cessation and ends at in situ cold flushing. Donor livers were transported in 

sterile bags cooled on ice. On arrival at our center and during the priming of the machine 

perfusion system the donor liver was prepared for connection to the system. The portal vein 

and hepatic branches of the celiac trunk and/or superior mesenteric artery were dissected 

free. The portal vein was cannulated distally with a section of tubing (Masterflex 24 L/S, 

Cole Palmer, Vernon Hills, IL). The aortic segment was opened and the celiac trunk was 

cannulated at the origin with a vessel cannula (Medtronic, Minneapolis, MN). Other 

branches of the celiac trunk were tied using 0 silk sutures. The cystic duct was ligated and 

the gallbladder flushed of residual bile. The common bile duct was cannulated with a vessel 

cannula, which was then connected to a section of tubing to allow bile collection. All 

cannulae were secured using 0 silk sutures.

Approval was obtained from the NEOB for the perfusion of discarded human donor livers 

and this study was declared exempt by the Massachusetts General Hospital (MGH) 

institutional review board (IRB # 2011P001496).

Ex vivo Subnormothermic Machine Perfusion

The subnormothermic perfusion system consisted of two independent circulations for portal 

and arterial perfusion, each including a roller pump (Masterflex L/S, Cole Palmer), hollow-

fiber oxygenator (Affinity NT, Medtronic, Minneapolis, MN), and a bubble trap (Radnoti, 

Monrovia, CA) (Figure 1). Sensors allowed for continuous measurement of pressure on the 

inflow vessels. The livers were perfused with phenol-red Williams’ medium E (Sigma-

Aldrich, St. Louis, MO, USA), supplemented with insulin (5 U/L Humulin R; Eli Lilly & 

Co, Indianapolis, IN, USA), penicillin/streptomycin (40,000 U/L / 40,000 μg/L) (Gibco/

Invitrogen, Camarillo, CA, USA), and 10 mg/L hydrocortisone (Solu-Cortef, Pharmacia & 

Upjohn, Kalamazoo, MI). The complete composition can be found in Table S1. Additional 

sodium bicarbonate (8.4%) was added to correct a drop in pH after introducing the liver to 

the system. The solution was oxygenated and buffered with a carbogen mixture of 95%O2 / 
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5%CO2, achieving maximum partial oxygen pressure of >700mmHg and undepleted oxygen 

outflow (>200 mmHg).

Immediately before connection to the machine perfusion system the donor liver was flushed 

with 2 L of cold 0.9% NaCl solution through the portal vein and 1 L through the artery. 

Prior to and following machine perfusion the liver was weighed. The liver was gradually 

warmed to room temperature (21 °C) over the first hour of perfusion. Donor livers were all 

perfused for 3 hours, a duration chosen following our animal studies that demonstrate full 

reconstitution of tissue ATP content before 3 hours of perfusion (18). Flow was regulated 

manually to achieve a target pressure of 4–7 mmHg over the portal vein and 50–80 mmHg 

on the artery. Resistance was calculated throughout perfusion as the quotient of pressure and 

flow.

Hepatocellular and biliary function and injury

Perfusate samples were taken frequently in the first half hour and every half hour thereafter. 

To assess tissue damage, alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) 

were analyzed. ALT was analyzed using an Infinity liquid stable reagent (Cellomics/Thermo 

Electron, Pittsburgh, PA, USA). LDH activity was quantified using a colorimetric assay 

based on the conversion on NAD+ to NADH (BioVision, Inc, Milpitas, CA, USA). Urea and 

albumin production were measured to assess metabolic and synthetic function. Urea was 

assayed enzymatically (Cell Biolabs, San Diego, CA), and albumin was detected using a 

BCG-based assay (QuantiChrom, BioAssay Systems, Hayward, CA). Samples were drawn 

from the portal venous and arterial inflow and from the caval outflow for half-hourly blood 

gas analysis (BGA)(Rapidpoint 500, Siemens). BGA included electrolyte (Na+, K+, Ca2+, 

Cl−), lactate and glucose concentrations, and acid/base physiology (pH, pO2, pCO2, HCO3-, 

base excess). Oxygen uptake rate (OUR) was calculated by subtracting the oxygen outflow 

from the combined inflow through the portal vein and hepatic artery (OUR= (pvO2IN 

+haO2IN) − O2OUT). The oxygen concentration in each was derived using Henry’s law, 

CdO2 = aO2 x PO2, where CdO2 is the concentration of dissolved oxygen, aO2 is the solubility 

coefficient for oxygen (0.00314 mL O2/ mmHg O2 / dL) and P02 is the partial oxygen 

pressure. pvO2IN/haO2IN and O2OUT were calculated by multiplying the O2 concentration by 

the flow rate, and finally OUR was divided by the weight of the liver.

Wedge biopsies were taken for analysis of tissue ATP content. Prior to homogenization of 

the tissue, biopsies were pulverized in liquid nitrogen. Pulverized tissue was subsequently 

analyzed for ATP content using a luminescence-based cell viability assay (BioVision). ATP 

content was normalized to protein content, measured spectrophotometrically after the 

reaction with Coomassie dye.

Bile was collected throughout and quantified at 1-hour intervals. Alkaline phosphatase 

(ALP) was measured fluorometrically in the perfusate as a marker of biliary and 

hepatocellular injury (BioVision). Phospholipids (lecithin, lysolecithin, sphingomyelin) 

were analyzed in bile using the choline oxidase – DAOS method and measured 

calorimetrically (Wako Diagnostics, Richmond, VA). Total bile acids in bile were measured 

colorimetrically using a commercially available enzymatic kit (BioQuant, San Diego, CA). 
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Bile samples were collected under mineral oil to prevent atmospheric equilibration and 

allow evaluation of bicarbonate and pH of the bile sample.

Histology

Liver parenchyma biopsies were fixed in 10% formalin and transferred to 70% ethylalcohol 

until processing for light microscopy. After paraffin embedding, samples were sectioned and 

stained with hematoxylin and eosin (H&E). Samples were assessed by a blinded 

transplantation pathologist (RNS).

Statistical analysis

Data were analyzed using Prism 5.0a for Mac OS X (GraphPad software, Inc., La Jolla, 

CA). Data was analyzed for normality using the Kolmogorov-Smirnov normality test. After 

confirming normality (α =0.05), repeated measures ANOVA with Tukey post-tests were 

used to analyze time-course parameters. Correlation between two continuous variables was 

analyzed by simple linear regression, using a t-test to determine whether the regression 

coefficient differed from 0. Statistical difference between high and low ATP groups were 

analyzed using a Mann–Whitney U test for total perfusate release. Results are presented as 

median (upper – lower quartile). A p-value <0.05 was considered significant.

Results

Donor and preservation parameters

Seven consecutively perfused discarded human livers were included in this study, 5 of 

which were DCD, with an average relative WIT of 28 (23–34) minutes (Table 1). Livers 

were discarded on the basis of prolonged WIT, donor age > 45 years in DCD donors, high 

macrovesicular steatosis, and inability to allocate. As minimal dissection of the vasculature 

was performed on procurement, an average of 70 (63–87) minutes was needed to prepare the 

liver for perfusion, resulting in a mean cold ischemic time of 685 (473–871) minutes.

Perfusion and metabolic parameters during SNMP

Once connected to the perfusion system the donor livers warmed up gradually, reaching 

ambient room air temperature of 20.8 ± 1.0 °C after approximately 60 minutes. Pressures of 

5.8 (4.8–6.2) mmHg on the portal vein and 56 (47–61) mmHg on the artery were maintained 

by adjusting the flow rates, resulting in an average flow rate of 767 (683–833) mL/min and 

206 ± (195–311) mL/min, respectively (Figure 2a). Portal resistance was constant 

throughout perfusion, while the arterial resistance increased in the first 30 minutes and 

began to decrease (Figure 2b). No significant weight change (−0.89 [−5.3– −2.1]) was 

observed between the beginning and end of perfusion (p=0.9). Sodium and chloride ion 

concentrations were in the normal range after 90 and 30 minutes respectively and ended at 

137.5 (135.2–143.6) mmol/L and 103.7 (101.2–106.5) mmol/L, while the potassium ion 

concentration increased initially from a baseline of 5.36 to 12.9 (11.7–12.8) mmol/L and 

subsequently decreased slightly, and then remained steady and ended at 10.7 (7.25–12.7) 

mmol/L (Figure 2c).
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Oxygen uptake was immediate and continued to increase during the first 2 hours and 

plateaued thereafter (1.30 [1.11–1.94] to 6.74 [4.15–8.16] mL O2/min.kg liver−1; p<0.0001)

(Figure 2d). Partial oxygen outflow pressure did not fall below 200 mmHg. In all cases an 

initial drop in pH was observed after 15 minutes, but overall pH returned to within the 

normal reference range by the second hour (Figure 2e). Bicarbonate levels increased from 

25.4 (24.75–26.04) mmol/L to 37.0 (33.3–39.5) mmol/L. Glucose increased during the first 

90 minutes and plateaued (final of 341.3 (270.5–490.5) mg/dL). Lactate levels decreased to 

near normal levels (2.29 [1.20–3.43] mmol/L) after peaking at 30 minutes (4.04 [3.70–5.99] 

mmol/L)(Figure 2f).

Liver function and injury during SNMP

Urea production from amino acids in the hepatic urea cycle was constant and totaled 33.12 

(27.01–36.79) μg/mL.kg liver−1 at the end of perfusion(Figure 3a). Total albumin secreted 

into the perfusate was 142.2 (175.0–107.4) mg/dL.kg liver−1, with a peak output in the first 

30 minutes, followed by a moderate rate of secretion thereafter (189.7 [151.8–293.4] mg/kg 

liver.h−1) (Figure 3b). ALT, LDH and ALP were measured as markers of hepatic and biliary 

injury (Figure 3c). Substantial ALT release was limited to the first 20 minutes of perfusion 

and did not increase significantly thereafter, ending at 1062.1 (750.61–1062.4) U/L. 

Similarly, only a moderate increase in LDH and ALP was observed. ALP increased mildly 

during perfusion and most steeply to 2.46 (0.78–4.2) U/L in the first hour.

Histology

Liver biopsies stained with H&E did not show any difference between pre- and post-

perfusion histology (Figure 3d). Notably, normal hepatocyte morphology was preserved and 

no evidence of injury to the sinusoidal endothelium was seen after SNMP. Pre-perfusion 

biopsies were consistent with donor characteristics including mild to severe steatosis in 

livers 5 & 6.

Liver energy status (ATP)

Tissue ATP content at the end of cold storage correlated negatively with relative WIT 

(p=0.0045, r2=0.83; Figure 4a). ATP increased significantly from 45.0 (70.6–87.5) pmol/mg 

protein to 167.5 (151.5–237.2) pmol/mg protein (Figure 4b). By the end of machine 

perfusion a 3.7-fold increase in ATP was observed overall (p=0.022). ATP content was 

correlated to various non-invasive, donor or real-time parameters to determine whether these 

could be used as surrogates for invasive ATP analysis. ATP recovery was variable between 

livers (Figure S1); the tissue ATP content increased to >200 pmol/mg in three of the seven 

donor livers (Table 2). These livers had significantly higher oxygen uptake (p=0.009) than 

the other donor livers. Additionally, mean LDH, ALP, ALT, lactate, and relative WIT were 

lower in these high ATP livers compared to the low ATP livers, although this difference was 

not statistically significant. ATP at the end of perfusion correlated negatively with final ALT 

values (p=0.02, r2=0.68; Figure 4c)
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Biliary function

Bile flow generally started within the first 30 minutes of perfusion. Total bile production in 

the first hour was 2.25 (0.9–2.5) mL, which increased to 3.9 (2.4–5.1) mL in the final hour 

(Figure 5a). Absence of an enterohepatic circulation of bile salts resulted in a decrease in 

biliary bile salt concentration from the first hour (Figure 5b). Total phospholipid 

concentration increased throughout perfusion, which resulted in a lower and less toxic bile 

salt to phospholipid ratio (Figure 5c). The secretion of cytoprotective bicarbonate increased 

favorably, which also raised the pH from 6.9 early in perfusion to a more alkaline pH of 7.6 

at the end of perfusion (Figure 5d).

Discussion

In this preliminary study we demonstrate that human livers can be supported ex vivo by 

subnormothermic machine perfusion (SNMP) at room temperature. During this ex vivo 

period the liver is metabolically active, demonstrating synthetic and clearance function, 

while incurring minimal additional injury. Furthermore, this study shows that 

subnormothermic machine perfusion can improve various functional and biochemical 

parameters after a period of extensive warm and cold ischemia, including a significant 

improvement in oxygen uptake, bile production and tissue ATP content.

SNMP likely operates through a number of cooperative mechanisms. Restoration of 

mitochondrial respiratory function and reversal of energy deficits have been shown to be 

pivotal in restoring liver viability (20,21). Mitochondria play a key role in I/R injury through 

their role in reactive oxygen species (ROS) formation and the induction of apoptosis (22,23). 

In this work, particular attention has been paid to improvement of the energy balance of the 

liver. Impairment of oxidative phosphorylation during warm hypoxia leads to a rapid 

dephosphorylation of ATP, which is only exacerbated during hypothermic preservation 

(18,24). As a result the ischemic liver is poorly prepared for warm reperfusion and the 

oxidative and inflammatory stress that follows. Improvement of mitochondrial condition, 

reflected here by augmentation of tissue ATP content, an increasing consumption of oxygen, 

and decreasing lactate levels during SNMP, may result in the improved tolerance to 

oxidative stress seen on reperfusion in animal studies (25). Recovered levels of ATP appear 

to be a good indicator of mitochondrial respiratory function, as we see that high ATP 

content at the end of SNMP is correlated to higher oxygen uptake and lower lactate levels 

during perfusion. Moreover, the ability of the liver to recover ATP seems to depend on the 

severity of the injury sustained during ischemia. Livers with a poor recovery of ATP were 

subjected to a longer WIT and showed worse LFTs during SNMP. Conversely, clinical 

studies have shown that pre-implantation ATP content correlates to liver failure (26) and 

post-reperfusion ATP recovery to post-transplant function (27). In various animal studies we 

have demonstrated that ATP content correlates to the number viable cells (28,29) and we 

have found that post-perfusion ATP content is highly suggestive of outcome in transplant 

models (18,30).

Additional mechanisms of action may include the normalization of ion and metabolite 

balances through equilibration with the perfusion solution, which produces a more adequate 

environment for warm reperfusion. Microcirculatory obstructions, originating from either 
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microthrombi or cellular edema, may be of underappreciated importance and prevent 

adequate tissue perfusion. Improving sinusoidal conductance prior to transplantation 

increases the rate of graft recovery (31).

Discussions concerning the optimum phase during the ex vivo period for the application of 

machine perfusion are ongoing (32). Various groups have considered long perfusion times, 

aiming to replace static cold preservation entirely and have shown success (33–35). It has 

been shown in a porcine model that even a short period of cold preservation prior to warm 

perfusion has adverse effects on function and injury (24,36) of the liver, suggesting that 

perfusion may benefit from immediate initiation on retrieval. Warm perfusion that spans the 

transport period has been approached with rightful trepidation, namely considering the risk 

of equipment failure. Moreover, resource and personnel demands of long-term machine 

perfusion would make implementation of preservation-spanning perfusions arduous. 

However, new devices are gaining support and may play a role in the near future (37). Post-

procurement machine perfusion, particularly in the case of DCD livers, offers a recovery 

phase prior to cold preservation that may improve tolerance to extended cold ischemia (38). 

In this work and previous studies we employ SNMP with the aim of improving the final 

quality of the liver pre-implantation and, importantly, to allow for the most representative 

assessment of liver viability. We have previously shown that ATP can be recovered to 

baseline levels after three hours of perfusion, a duration that is compatible with the logistics 

of transplantation (18). Learning from clinical experience, various parameters in perfusion 

can be considered as indicators of liver function or injury and include standard LFTs, bile 

production, and other hepatic synthetic functions (39,40). Detailed analyses of metabolism 

can be used to provide accurate criteria for liver viability. By applying dynamic discriminate 

analyses, Perk et al. have identified metabolites measured during perfusion that discriminate 

between warm ischemic and fresh livers with a very high specificity (12). Moreover, using 

easily measured metabolites like glucose, urea, and lactate, indices for transplantation can be 

constructed that predict transplant success with equally high specificity (13).

Although the importance of preserving and assessing hepatocellular viability is indisputable, 

progress towards expanding the current donor pool cannot occur without advances in biliary 

preservation. Bile duct complications remain a limiting factor in the use of DCD livers, with 

particularly high incidences of non-anastomotic biliary strictures (41). With ischemia as the 

primary risk factor for biliary complications, SNMP may provide an elegant solution, 

minimizing further injury and providing a platform for treatment. Secondly, bile salt toxicity 

has been proposed as a factor in bile duct injury. A compositional change in bile salt to 

phospholipid ratio has been associated with bile duct injury in clinical studies (42,43). 

Moreover, a shift to dominantly toxic, hydrophobic bile salts may play an important role 

(44). It may prove beneficial to supplement the depletion of bile salts observed in this and 

other work with protective hydrophilic bile salts (45). SNMP and other warm machine 

perfusion systems have already proven advantageous in reducing markers of biliary injury 

during preservation and restoring normal biliary physiology (14,46). In this work we 

confirm machine perfusion’s ability to rectify various compositional disturbances in bile. 

Moreover, SNMP results in a less toxic and more protective composition of bile through 

changes in bile salt, phospholipid, and bicarbonate concentrations (47,48).
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The precise constituents and setting for optimal machine perfusion of the liver remains 

uncertain. While simplicity and minimal risk have driven the development of hypothermic 

systems, normothermic machine perfusion has sparked interest in the prospect of an ex vivo 

organ with close to normal physiology that opens up the opportunity for intervention, 

recovery, and viability testing (14,49). The complexity and associated risk have delayed 

clinical implementation and have even veered groups away. In developing this SNMP 

system, emphasis has been laid on simplicity while maintaining the goal of developing an 

effective system for liver recovery and assessment. SNMP at room temperature offers a 

technical advantage by obviating the need for temperature control, and the reduced 

metabolic state in turn obviated the need for oxygen carriers in our system (18,50). With 

regards to efficacy, SNMP has already shown excellent results in both hepatic and biliary 

preservation.

The effect of SNMP on post-transplant outcome is not determined in this study, as it was not 

tested in a transplantation or oxygenated whole blood reperfusion model. Future controlled 

studies that include post-perfusion evaluation are required to determine whether the 

improved parameters observed in this work translate to the better post-transplant outcome 

that we have observed in animal models. In this feasibility study we demonstrate that SNMP 

effectively supports the human liver ex vivo with minimal injury, stable if not improved 

metabolic activity, and normalized physiological disturbances post-ischemia. Moreover, 

SNMP provides an environment for restoring the hepatic energy status, reflecting a recovery 

of mitochondrial function. This work is the first demonstration of the capacity of SNMP to 

sustain human livers and supports previous experimental work that suggest a pivotal role of 

machine perfusion in expanding the use of currently discarded livers for transplantation.
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Abbreviations

DCD donation after circulatory death

WIT warm ischemia time

SCS static cold storage

HMP hypothermic machine perfusion

NMP normothermic machine perfusion

ATP adenosine triphosphate

SNMP subnormothermic machine perfusion
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NEOB New England Organ Bank

UW University of Wisconsin

PV portal vein

HA hepatic artery

ALT alanine aminotransferase

LDH lactate dehydrogenase

BGA blood gas analysis

ALP alkaline phosphatase

H&E hematoxylin and eosin

OUR oxygen uptake rate

I/R ischemia/reperfusion

ROS reactive oxygen species

LFT liver function test

PVR portal vein resistance

HAR hepatic artery resistance

CIT cold ischemia time
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Figure 1. Subnormothermic machine perfusion system
Schematic representation (A) and actual photo (B) of a liver in the system.
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Figure 2. Perfusion and metabolic dynamics
Development of arterial and portal flow (A) and hepatic arterial (HAR) and portal venous 

resistance (PVR) (B) during SNMP. Perfusate sodium, potassium and chloride 

concentrations during SNMP (C). Oxygen uptake rate (OUR) and partial oxygen pressure in 

the inflow and outflow perfusate (D). pH of the inflow perfusate (E). Lactate concentration 

in the perfusate during SNMP (F) Shaded areas represent normal electrolyte ranges in blood. 

Data presented as median and interquartile range (IQR).
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Figure 3. Hepatic function and injury
Urea production as a biochemical marker of clearance (A), albumin as a synthetic marker 

(B) and alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and alkaline 

phosphatase (ALP) as markers of injury (C) and representative H&E photomicrographs of 

liver biopsies of the 7 perfused livers, before and after perfusion (D). Data presented as 

median and IQR.
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Figure 4. Adenosine triphosphate
Scatter plot of tissue ATP content at the end of cold storage (pre-perfusion) correlated to 

relative warm ischemic time (A), tissue ATP content per hour of perfusion (B) and ATP 

content at the end of perfusion correlated to ALT release (C). Data presented as median and 

IQR. * indicates significantly higher than baseline.
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Figure 5. Biliary parameters
Bile flow measured for every hour of perfusion (A), the concentration of bile salts and 

phospholipids in the bile (B), as well as the bile salt to phospholipid ratio (C), and the 

bicarbonate concentration and pH of bile during perfusion (D). Data presented as median 

and IQR.
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Table 2

Comparison between high and low recovered ATP grafts

High ATP* Low ATP* p-value

n=3 n=4

Donor age (years) 51 (38–63) 50 (44–53) 0.59

Oxygen uptake (mL.kg liver−1) 1204 (1129–1282)* 564.5 (404–760)* 0.009

Mean arterial resistance (mmHg.min.mL−1) 0.42 (0.29–0.44) 0.26 (0.21–0.31) 0.63

Mean portal resistance (x10−3 mmHg.min.mL−1) 5.7 (5.4–7.5) 8.2 (6.9–9. 9) 0.86

Peak lactate (mmol/L) 3.95 (3.70–4.00) 6.10 (5.06–6.66) 0.4

ALT release (U/L) 604.7 (443.2–979.2) 1194.9 (1020.7–1330.9) 0.62

ALP release (U/L) 1.32 (1.25–5.16) 5.12 (3.38–7.18) 0.86

LDH release (U/L) 190.0 (173.3–535.0) 660 (526.7–1018) 0.4

Urea output (μg/mL. kg liver−1) 33.12 (31.2–47.5) 29.3 (23.7–35.3) 0.62

Albumin output (mg/dL. kg liver−1) 135.5 (94.1–138.9) 175.0 (147.3–190.0) 0.23

relative WIT (min) 20 (20–22) 31 (31–44) 0.28

CIT (hours) 11.4 (10.1–14.1) 9.7 (6.5–14.1) 0.86

*
High (>200 pmol/mg protein) and low (<200 pmol/mg protein) ATP content post-perfusion; AUC= area under the curve.

*
area under curve
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