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Abstract

Objective—Test the hypothesis that greater baseline peak external knee adduction moment 

(KAM), KAM impulse, and peak external knee flexion moment (KFM) during the stance phase of 

gait are associated with baseline-to-2-year medial tibiofemoral cartilage damage and bone marrow 

lesion progression, and cartilage thickness loss.
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Methods—Participants all had knee OA in at least one knee. Baseline peak KAM, KAM 

impulse, and peak KFM (normalized to body weight and height) were captured and computed 

using a motion analysis system and 6 force plates. Participants underwent MRI of both knees at 

baseline and two years later. To assess the association between baseline moments and baseline-

to-2-year semiquantitative cartilage damage and bone marrow lesion progression and quantitative 

cartilage thickness loss, we used logistic regression with generalized estimating equations (GEE), 

adjusting for gait speed, age, gender, disease severity, knee pain severity, and medication use.

Results—The sample consisted of 391 knees (204 persons): mean age 64.2 years (SD 10.0); 

BMI 28.4 kg/m2 (5.7); 156 (76.5%) women. Greater baseline peak KAM and KAM impulse were 

each associated with worsening of medial bone marrow lesions, but not cartilage damage. Higher 

baseline KAM impulse was associated with 2-year medial cartilage thickness loss assessed both as 

% loss and as a threshold of loss, whereas peak KAM was related only to % loss. There was no 

relationship between baseline peak KFM and any medial disease progression outcome measures.

Conclusion—Findings support targeting KAM parameters in an effort to delay medial OA 

disease progression.

Introduction

Osteoarthritis (OA) is a leading contributor to chronic disability (1). Twenty-three percent of 

U.S. adults report doctor-diagnosed arthritis and 10% have arthritis-related activity 

limitations (2). OA is the most common form of arthritis, frequently affecting the knee. The 

impact of knee OA in the U.S. is likely to increase due to the aging population, obesity 

epidemic, and paucity of disease-modifying treatment. It is well accepted that an abnormal 

knee local mechanical environment can contribute to joint damage. Change in medial-to-

lateral tibiofemoral load distribution and greater medial load are theorized to increase the 

risk of medial knee OA disease progression (3).

Instrumented force-measuring knee implantation is the current gold standard method for 

measurement of medial knee load, but it is invasive and impractical. Knee load cannot be 

directly measured in vivo noninvasively. The external knee adduction moment (KAM) 

during the stance phase of gait has been characterized both as a determinant and a surrogate 

for dynamic medial knee load (3,4). KAM reflects the medial-to-lateral joint load 

distribution (5) and has been associated with lower limb varus alignment (6), medial OA 

disease severity (7), and medial-to-lateral bone mineral density ratio (8). Efforts have been 

directed toward developing and testing interventions that lower KAM with the ultimate goal 

of modifying disease course in medial tibiofemoral OA (9,10). However, longitudinal 

evidence of an association between baseline KAM and subsequent medial disease 

progression comes from only a few studies with inconsistent findings (11,12,13).

Peak KAM during the stance phase potentially captures maximal medial joint load 

experienced at any one instant of time. KAM impulse is the time integral of KAM over the 

stance phase. By incorporating both load magnitude and duration, KAM impulse may 

provide a cumulative measure of KAM sustained during each step of walking. There is a 

theoretical rationale to support a role for both of these parameters in disease progression. 

Studies in recent years suggest that a reduction in KAM may be accompanied by a 
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deleterious increase in the external knee flexion moment (KFM) (14,15). However, whether 

KFM plays a role in knee OA disease progression in OA knees is unclear.

The objective of this study was to evaluate the association between baseline KAM and KFM 

parameters and subsequent medial tibiofemoral OA disease progression over 2 years. We 

hypothesized that in persons with knee OA, greater baseline peak KAM, KAM impulse, and 

peak KFM (each normalized to body weight and height) during the stance phase of gait are 

each associated with baseline-to-2-year worsening of medial tibiofemoral cartilage damage 

and bone marrow lesions, and with quantitatively measured cartilage thickness loss.

Methods

Sample

In this prospective, longitudinal, observational cohort study of knee OA, the MAK-3 Study 

(Mechanical Factors in Arthritis of the Knee-Study 3), participants were recruited from the 

community using advertising in periodicals, neighborhood organizations, letters to the 

Buehler Center on Aging, Health, and Society registry at Northwestern University, and via 

medical center referrals. Inclusion criteria were: definite tibiofemoral osteophyte presence 

[Kellgren/Lawrence (K/L) radiographic grade ≥ 2] in one or both knees; and Likert category 

of at least “a little difficulty” for 2 or more items in the WOMAC physical function scale. 

Exclusion criteria were: corticosteroid injection within previous 3 months; avascular 

necrosis, inflammatory arthritis, periarticular fracture, Paget's disease, villonodular 

synovitis, joint infection, ochronosis, neuropathic arthropathy, acromegaly, 

hemochromatosis, gout, pseudogout, osteopetrosis, or meniscectomy; or MRI exclusions. 

Approval was obtained from the Institutional Review Boards of Northwestern University 

and NorthShore University HealthSystem Evanston Hospital. All participants provided 

written consent.

Quantitative gait analysis

Kinematic data were collected at 120 Hz, using an 8-camera, Eagle Digital Real-Time 

motion measurement system from Motion Analysis Corporation (MAC). At a sampling rate 

of 960 Hz, ground reaction forces and moments were measured with 6 AMTI (Advanced 

Mechanical Technology Inc., Watertown, MA, USA) force platforms embedded flush with 

the floor as participants walked along a 10.7 × 1.2 meter walkway. An experienced 

technician placed external passive reflective markers, using the modified Helen Hayes full-

body marker set (16) (bilaterally on acromion process tip, lateral humeral epicondyle, 

between radius and ulna styloids, anterior superior iliac spine, superior sacrum at L5/sacral 

interface, lower thigh, along flexion/extension rotation axis at lateral femoral condyle, lower 

leg, along flexion/extension rotation axis at lateral malleolus, posterior calcaneus, foot 

center between 2nd and 3rd metatarsals). To closely match usual daily walking, each 

participant wore his/her own comfortable athletic or walking shoes and walked at a self-

selected comfortable speed without using assistive devices (no participant habitually used 

assistive devices). A minimum of five trials having clean foot strikes on the force platforms 

for the left and right feet were acquired, with rest between trials. OrthoTrak gait analysis 

software (MAC) was used to calculate 3-D joint angles, moments, and temporal-spatial 
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parameters. Inverse dynamics were used to compute 3-D external joint moments. Baseline 

predictors of peak KAM (% body weight*height), KAM impulse – the area under the KAM-

time curve (seconds*% body weight*height), and KFM (% body weight*height) were 

calculated using custom Matlab programs. Gait speed was measured within the quantitative 

gait analysis; the 5-trial average was used.

While KAM normalization is widely accepted and established, to address the possibility that 

the absolute (i.e., non-normalized) KAM parameter values differed in pattern of association 

with the outcomes, we evaluated the correlation between normalized and non-normalized 

values, and, in sensitivity analyses, the association between non-normalized KAM 

parameters and outcomes.

MRI acquisition and semi-quantitative assessment of cartilage damage and bone marrow 
lesion progression

At baseline and 2-year follow-up, magnetic resonance images (MRI) of both knees were 

obtained in all participants, using a commercial knee coil and 1 of 2 whole-body scanners, 

3T Verio or 1.5T Avanto (both Siemens Healthcare, Erlangen, Germany); the same scanner 

was used at both evaluations. The protocol included coronal T1-weighted spin-echo (SE) 

[TR/TE/FOV/Matrix/Slice thickness = 3 s/20 ms/14 cm, 256×256, 3 mm at 3T; 

TR/TE/FOV/Matrix/Slice thickness = 3 s/18 ms/14 cm, 256×256, 3 mm at 1.5T], and 

sagittal axial, and coronal fat-suppressed proton density-weighted turbo spin echo sequences 

[TR/TE/Turbo Factor/FOV/Matrix/Slice thickness = 500 ms/11 ms/7/12 cm, 320×320, 3 

mm at 3T; TR/TE/Turbo Factor/FOV/Matrix/Slice thickness = 600 ms/11 ms/7/12 cm, 

320×320, 3 mm at 1.5T].

Following a detailed reading protocol, each knee was scored using the Whole-Organ MRI 

Score (WORMS) method (17), by one of two expert musculoskeletal radiologists. Baseline 

and 2-year scans were evaluated as pairs, with known chronology as suggested for 

longitudinal studies in knee OA (18), but blinded to all other data. Two medial 

weightbearing femoral condylar subregions (central and posterior) and 3 medial tibial 

plateau subregions (anterior, central, and posterior) were each scored separately for cartilage 

morphology and bone marrow lesions. At each subregion, cartilage morphology was scored: 

0 (normal thickness and signal); 1 (normal thickness, increased signal on T2-weighted 

images); 2 (solitary, focal, partial or full-thickness defect ≤ 1 mm in width); 3 (multiple 

areas of partial-thickness loss or grade 2 lesion > 1 mm, with areas of preserved thickness); 

4 (diffuse, > 75%, partial-thickness loss); 5 (multiple areas of full-thickness loss, or full-

thickness lesion > 1 mm, with areas of partial-thickness loss); and 6 (diffuse, > 75%, full-

thickness loss). Subchondral bone marrow lesions were scored: 0 (normal); 1 (mild, < 25% 

of region); 2 (moderate, 25-50% of region); and 3 (severe, > 50% of region). In a previous 

study, the inter-rater intra-class correlation coefficients (ICCs) (unspecified model) for these 

same readers were 0.98 and 0.90 for medial cartilage morphology and bone marrow lesions 

respectively (17).

Baseline-to-2-year progression of cartilage damage and bone marrow lesions in the medial 

tibiofemoral compartment were each defined as a full-grade score worsening in any of the 5 

medial femoral and tibial subregions. Medial femoral surface progression was defined as 
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score worsening in either of the 2 femoral subregions, and tibial surface progression as 

worsening in any of the 3 tibial subregions.

Quantitative measurement of cartilage thickness loss

For the quantitative cartilage measurement, coronal spoiled gradient echo sequences with 

water excitation were acquired, with a slice thickness of 1.5 mm and an in-plane resolution 

of 0.31 mm (field of view 16 cm, 512 _ 512–pixel matrix, number of excitations 1). The 

repetition time, echo time, and flip angle, respectively, were 18.6 msec/9.3 msec/15° on the 

1.5T, and 12.2 msec/5.8 msec/9° on the 3T scanner; baseline and follow-up acquisitions 

were always done using the same magnet. The total area of subchondral bone and the area of 

the cartilage surface were segmented in the medial tibial surfaces, and in the weight-bearing 

portion of the medial femoral condyles using proprietary software (Chondrometrics, 

Ainring, Germany) (19–22).

Average thickness of cartilage, including areas of denuded subchondral bone as 0 mm, was 

quantified in baseline and 2-year images with chronology known (18). Using the same 

methodology, cartilage thickness precision error (coefficient of variation [CV] for 2 

acquisitions with repositioning) was 2.1% for the medial tibia and 3.0% for the medial 

weightbearing femur (19). The regions of interest (ROI) in this study were the entire medial 

tibial and central weightbearing femoral surfaces; external, central, and posterior tibial 

subregions and external and central femoral subregions (22), since greater 12-month 

cartilage thinning and standardized response means were observed in these than other 

subregions (23). Disease progression outcome in each ROI was analyzed as a continuous 

outcome variable expressed as % cartilage loss over the baseline-to-2 year follow-up period, 

and secondarily as a dichotomous variable defined as baseline-to-2-year cartilage thickness 

loss ≥ 5% (i.e., approximately twice the CV, as previously defined (19), a threshold that is 

unlikely to reflect measurement error).

Assessment of disease severity, alignment, knee pain, and medication use

All participants underwent bilateral, anteroposterior, weightbearing knee radiographs at 

baseline in the semiflexed position with fluoroscopic confirmation of superimposition of the 

anterior and posterior tibial plateau lines and centering of the tibial spines within the femoral 

notch (24). Disease severity was assessed using the K/L system, 0 (normal), 1 (possible 

osteophytes), 2 (definite osteophytes, with possible joint space narrowing), 3 (moderate 

osteophytes with definite joint space narrowing, some sclerosis, and possible attrition), and 4 

(large osteophytes with marked joint space narrowing, severe sclerosis, and definite 

attrition) (25). To assess knee alignment, a single anteroposterior radiograph of both limbs 

was obtained using a 1.3 by 0.4-meter graduated-grid cassette. All radiographs were 

obtained in the same unit by two trained technicians. Alignment was measured as the angle 

formed by the intersection of the line connecting the centers of the femoral head and 

intercondylar notch with the line connecting the centers of the surface of the ankle talus and 

tips of the tibial spines. Alignment was recorded as negative for the varus direction, 0° for 

neutral, and positive for valgus. Image analysis (26) was completed by one of the three 

trained readers using a customized program (Surveyor 3; OAISYS Inc, Kingston, Ontario, 
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Canada), blinded to all other data. In a reliability study of 200 full-limb pairs assessed by 

these readers, the inter- and intra-reader ICCs were 0.95 and 0.96 (27).

Knee pain severity was measured using the Intermittent and Constant Osteoarthritis Pain 

(ICOAP), a valid and reliable multidimensional measure designed to comprehensively 

evaluate the pain experience in knee or hip OA (28,29). Medication use was defined as a yes 

answer to: During the past 30 days, have you used any of the following medications for joint 

pain or arthritis on most days? (for at least one category among acetaminophen, non-

prescription NSAIDs, prescription NSAIDs, and prescription pain medications).

Statistical analysis

To assess the relationships between baseline peak KAM, KAM impulse, and peak KFM 

(each as a continuous variable) and subsequent cartilage damage and bone marrow lesion 

progression (dichotomous outcomes) in the medial tibiofemoral compartment and at femoral 

and tibial surfaces, we used logistic regression with generalized estimating equations (GEE) 

to account for the correlation between the 2 limbs of each individual, adjusting for gait 

speed, age, gender, disease severity, knee pain severity, and medication use. Results are 

reported as odds ratios (ORs) and 95% confidence intervals (CIs). Similarly, linear and 

logistic regression models with GEE methods were used to assess the relationships between 

baseline peak KAM, KAM impulse, and peak KFM and quantitative cartilage thickness loss 

outcomes. In sensitivity analyses, we used the same models with non-normalized KAM 

parameters.

Results

Among 250 participants, 212 completed the 2-year follow-up visit. Reasons for not 

completing included: participant not reachable (n=12); serious medical condition (n=6); too 

busy (n=5); work (n=5); other (n=10). An additional 8 participants developed a 

contraindication or declined the follow-up MRI. Among the remaining 204 participants (408 

knees), 14 knees were excluded due to a total knee replacement and 3 knees had technical 

image problems, leaving the final analysis sample of 391 knees from 204 participants. The 

mean age of the 204 participants was 64.2 (SD 10.0) years, mean BMI was 28.4 (5.7) kg/m2, 

and 156 (76.5%) were women. Mean knee mechanical axis was -1.0 (4.0) degrees (i.e., in 

the varus direction). The K/L grade distribution was: grade 0, 17 knees (4.3%); grade 1, 72 

(18.4%); grade 2, 186 (47.6%); grade 3, 56 (14.3%); and grade 4, 60 knees (15.4%). Mean 

gait speed was 1.2 (0.2) m/s. Mean pain severity score was 9.24 (7.58) and 92 persons 

(45.1%) were taking medication on most of the past 30 days. Mean baseline peak KAM, 

KAM impulse, peak KFM were 1.67 (0.85) % body weight*height, 0.60 (0.44) seconds*% 

body weight*height, and 2.09 (0.85) % body weight*height respectively. Participants who 

did not complete the follow-up did not differ from completers in KAM, KAM impulse, 

gender, BMI, knee alignment, K/L grade, and medication use. The non-completers, 

however, differed slightly in age [68.1 (11.1) years, p=0.03], gait speed [1.1 (0.2) m/s, 

p=0.002], peak KFM [1.78 (0.78) % body weight*height, p=0.001], and knee pain severity 

[11.74 (7.76), p=0.02].
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Table 1 provides the mean baseline peak KAM, KAM impulse, and peak KFM for knees 

without vs. with baseline-to-2-year cartilage damage progression, and for knees without vs. 

with bone marrow lesion progression. Table 2 shows the pairwise Spearman correlations for 

variables at baseline (right knee only). KAM and KAM impulse were highly correlated with 

each other and were each highly correlated with varus alignment. Because of this, and 

because it very likely falls in the casual KAM/disease progression pathway, varus alignment 

was not a covariable for inclusion in multivariable models. As in Table 3, greater baseline 

peak KAM was significantly associated with bone marrow lesion progression at the medial 

tibial surface, and KAM impulse with bone marrow lesion progression in the medial 

tibiofemoral compartment and specifically at the tibial surface. There was no evidence of an 

association between baseline peak KAM or KAM impulse and cartilage damage progression 

(Table 3). Baseline peak KFM was not associated with cartilage damage (e.g., for medial 

tibiofemoral compartment, adjusted OR 0.96, 95% CI: 0.65, 1.42) or bone marrow lesion 

progression (e.g., for medial tibiofemoral compartment, adjusted OR 1.19, 95% CI: 0.90, 

1.58).

In the assessment of cartilage thickness change, 6 additional knees were excluded due to 

image technical problems, leaving 385 knees for analysis. As in Table 4, greater baseline 

peak KAM and KAM impulse were each significantly associated with greater baseline-to-2-

year % cartilage thickness loss as a continuous variable, at the medial tibial surface, external 

and central tibial subregions, central femoral weightbearing surface, and central femoral 

subregion. Table 5 shows mean baseline peak KAM, KAM impulse, and peak KFM among 

knees without and with ≥ 5% cartilage thickness loss. In analyses of the secondary outcome, 

KAM impulse was significantly associated with ≥ 5% cartilage thickness loss at the medial 

tibial surface (adjusted OR 2.39, 95% CI: 1.28, 4.48) and medial central weightbearing 

femoral surface (adjusted OR 2.88, 95% CI: 1.66, 5.00) and each subregion evaluated. There 

was no significant association between peak KAM and this outcome at any surface or 

subregion (data not shown). There were no association between baseline KFM and 

subsequent cartilage thickness loss by either measure of cartilage thickness loss outcome 

(e.g., adjusted regression coefficient for continuous outcome 0.18, 95% CI: -0.71, 1.08 at the 

medial tibial surface and 0.65, 95% CI: -0.86, 2.17 at the medial central weightbearing 

femoral surface).

As illustrated in Figure 1, non-normalized KAM parameters correlated strongly with 

normalized values. In sensitivity analyses, the non-normalized values of the KAM parameter 

yielded a pattern of results similar to findings using the normalized values.

Discussion

Greater baseline peak KAM and KAM impulse were each associated with baseline-to-2-year 

worsening of medial tibiofemoral bone marrow lesions, but not cartilage damage assessed 

semi-quantitatively. Higher baseline KAM impulse was associated with 2-year medial 

cartilage thickness loss assessed both as % loss and defined as a threshold of loss exceeding 

measurement error, whereas peak KAM was related only to % loss. We found evidence of a 

KAM/cartilage thickness loss relationship in the external and central subregions of the 
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medial femoral and tibial surfaces. In contrast, there was no evidence of an association 

between baseline peak KFM and any disease progression outcomes.

In a previous longitudinal study of 74 hospital patients with medial knee OA, the risk of 

baseline-to-6-year radiographic medial OA progression, defined as at least one grade 

worsening of medial joint space width, increased by 6 fold with every 1-unit (i.e., 1% 

BW×HT) increase in baseline peak KAM (11). Analysis of a subset of 144 participants 

pooled from both the interventional and control groups in a 12-month randomized controlled 

trial of wedge insoles showed that baseline KAM impulse, but not peak KAM, was 

associated with greater medial tibial cartilage volume loss over 12 months (12). There was 

no association between KAM parameters and 12-month progression of semi-quantitative 

measures, i.e., medial tibiofemoral cartilage defects or bone marrow lesions (12). Recently, 

in 16 individuals with medial knee OA, baseline KAM and KFM were associated with 5-

year change in femoral and tibial medial-to-lateral cartilage thickness ratio (13).

Our relatively large (given extensive time and resources required for gait data acquisition 

and processing) cohort study allowed adjustment for potential confounders that previous 

studies were unable to fully address. Unlike prior studies, our cohort was recruited 

predominantly from the community. We evaluated both peak KAM and KAM impulse and 

semiquantitative and quantitative outcomes. In some instances (medial TF BML 

progression; ≥ 5% cartilage thickness loss at the medial tibial and femoral surfaces and each 

subregion), KAM impulse, but not peak KAM, was significantly associated with the 

outcome. Integrating both load magnitude and duration, KAM impulse may more 

comprehensively represent cumulative medial load experienced during gait than peak KAM. 

Compared to peak KAM, KAM impulse has been shown to be more sensitive in 

discriminating OA disease severity (30) and symptoms (31), and a better predictor of 

medial-to-lateral ratio of proximal tibial bone mineral density (32). Our findings provide 

evidence that KAM parameters should be a target in load-modifying interventional trials for 

persons with medial knee OA.

Using a semi-quantitative approach, we found KAM parameters were associated with bone 

marrow lesion but not cartilage damage progression. Since baseline presence of bone 

marrow lesions predicted subsequent site-specific cartilage loss in persons at risk for or with 

knee OA (33–35), baseline-to-2-year worsening of bone marrow lesion may be a harbinger 

for future cartilage damage progression. Alternatively, it may require more than 2 years to 

detect an association with cartilage damage progression using this measure of outcome. 

Normalized and non-normalized KAM parameters strongly correlated and shared a similar 

pattern of significant associations with the outcomes.

Contrary to our hypothesis and to a recent report (13), there was no association between 

baseline peak KFM and any outcome 2 years later. In recent years, the role of peak KFM 

during gait in medial compartment knee contact load has received more attention. Walter 

and colleagues (14) showed that the effect of KAM reduction by gait modification did not 

necessarily guarantee a corresponding decrease in peak medial knee load, likely due to a 

concurrent deleterious increase of peak KFM. Medial knee load was suggested to be best 

estimated by a combination of peak KAM and peak KFM (14,15,36). We did not find a link 
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between peak KFM and disease progression, suggesting that a compensatory increase in 

KFM associated with KAM reduction may not necessarily be deleterious in the structural 

progression of knee OA. It is plausible that KAM is more strongly associated with medial 

knee load and that the KFM contribution is less important. Indeed, multivariable regression 

models for medial knee load indicated that peak KAM had a much greater relative effect on 

peak medial load than peak KFM (14,36).

In the subregional analysis, KAM parameters were significantly associated with cartilage 

thickness loss in the medial tibial external and central subregions and central femoral 

subregion, in keeping with the concept that cartilage in these subregions is subject to greater 

continuous load in the environment of greater KAM. Although higher peak KFM during gait 

theoretically may impose greater load on the posterior tibial subregion, our results did not 

support a negative consequence for the cartilage by 2 years.

The interchangeable use of “KAM” and “medial knee load” has been questioned in recent 

years (14,15). To further clarify the relationship between KAM and instrumented-implant-

measured medial load in a larger sample, Kutzner and colleagues (37) found strong 

associations between KAM and medial load in early but not in late stance, and that KAM 

was highly correlated with medial-to-lateral load ratio throughout stance. In a single-subject 

interventional case report, wearing a medial knee load-modifying variable-stiffness 

intervention shoe during walking successfully reduced both the first peak KAM and peak 

medial knee load. KAM reduction strongly predicted reduction in medial load measured in 

vivo (38). Ideally, load-modifying interventions should aim at reducing medial load, not just 

KAM. Considering the invasive nature of instrumented knee implants and inherent 

limitations in musculoskeletal models for predicting knee load, KAM may be a sensible 

alternative. The link between KAM parameters and subsequent disease progression 

demonstrated in our study confirmed that KAM, although only a determinant of medial knee 

load, is a reasonable biomechanical target for disease-modifying interventions.

There are several limitations in this study. Follow-up time longer than 2 years may be 

needed to detect associations between baseline KAM parameters and semi-quantitative 

cartilage damage progression. Employing an alternative within-grade WORMS scoring 

method may increase the sensitivity to longitudinal change of cartilage damage (39). 

Although KFM was not associated with disease progression, alternative novel knee load 

indices, e.g., the total knee reaction moment (40,41), which represents the magnitude of 

external knee moments in all three planes, may potentially better capture medial knee load 

and predict disease progression. Mean BMI of our sample was in the overweight range; 

results may not be generalizable to a healthy-weight or obese population. Lastly, our sample 

included knees predominantly with mild OA; findings may differ in knees at a later stage of 

disease.

As the trajectory and experience of pain in knee OA often does not correspond well to the 

trajectory of disease progression, future studies should carefully evaluate this outcome. Both 

quantitative and qualitative aspects of physical activity are important in further 

understanding the association between KAM and disease progression knee OA. The role of 
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physical activity in the KAM-disease progression relationship should be evaluated in future 

studies.

In conclusion, in persons with knee OA, greater baseline peak KAM and KAM impulse 

were each associated with baseline-to-2-year worsening of medial tibiofemoral bone marrow 

lesions but not cartilage damage assessed semi-quantitatively. Higher baseline KAM 

impulse predicted 2-year medial cartilage thickness loss assessed quantitatively both as 

percent loss and as loss defined by a threshold, whereas peak KAM was related to medial 

cartilage loss only as % loss. There was no evidence of a relationship between baseline peak 

KFM and any measure of progression. These findings support targeting KAM parameters in 

an effort to delay medial OA disease progression.
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Figure 1. 
Scatterplot of KAM impulse normalized to body weight and height (s*% body wt*ht) vs. 

non-normalized KAM impulse (Nm*s) in 197 right knees at baseline. The Spearman 

correlation coefficient for this association was 0.83 (p<0.0001). For the association between 

normalized and non-normalized peak KAM values, the correlation coefficient was 0.64 

(p<0.0001).
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