
The tissue mechanics of vertebrate body elongation and 
segmentation

Patrick McMillen and Scott A. Holley
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 
06520

Abstract

England’s King Richard III, whose skeleton was recently discovered lying ignobly beneath a 

parking lot, suffered from a lateral curvature of his spinal column called scoliosis. We now know 

that his scoliosis was not caused by “imbalanced bodily humors”, rather vertebral defects arise 

from defects in embryonic elongation and segmentation. This review highlights recent advances in 

our understanding of post-gastrulation biomechanics of the posteriorly advancing tailbud and 

somite morphogenesis. These processes are beginning to be deciphered from the level of gene 

networks to a cross-scale physical model incorporating cellular mechanics, the extracellular 

matrix, and tissue fluidity.

Introduction

The posterior leading edge of the growing vertebrate embryo, named the tailbud, consists of 

motile progenitors of the axial skeleton, musculature, blood, vasculature and spinal cord, as 

well as bipotential neural/mesodermal stem cells [1–3]. Musculoskeletal progenitors enter 

the paraxial mesoderm, which consists of two columns of cells that flank the notochord. 

Concomitant with axis elongation the paraxial mesoderm stiffens and is segmented into 

somites whose metameric organization patterns the vertebral column. The somites also give 

rise to the skeletal muscle of the trunk, tail and limbs, as well as tendons and the dermis. 

Body elongation and somite morphogenesis are powerful cross-scale models for studying 

how cellular processes including cell proliferation, cell migration, and cell adhesion 

organize the biomechanical landscape of a complex tissue.

Cell Proliferation

In zebrafish, the progenitors of the paraxial mesoderm undergo two rounds of cell division 

during gastrulation. After gastrulation and during body elongation the bipotential stem cells 

located in the dorsal posterior tailbud do not proliferate due to absence of expression of the 
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cell cycle regulator cdc25a [4••]. Upon migration into the ventral posterior tailbud, the cells 

begin to express both cdc25a and mesoderm specific transcription factors such as spadetail/

tbx16, tbx6l and mesogenin [4••, 5••, 6••, 7•]. These mesodermal progenitor cells undergo 

one round of cell division before both daughter cells differentiate [4••]. This modest level of 

proliferation in the tailbud is consistent with studies in zebrafish and chick that found that 

trunk and tail elongation is driven more by cell migration than cell proliferation [8–12].

Cell migration

Cell migration in the tailbud has been best described in zebrafish and chick with initial 

studies finding that cell motion is more disordered among the mesodermal progenitors in the 

posterior tailbud than in the presomitic mesoderm (PSM) [13,14]. More recent systematic 

studies have elaborated on these findings [12,15••,16••]. In both organisms, the 

instantaneous cell velocities are higher in the posterior tailbud, and there is extensive cell 

mixing. The PSM grows posteriorly as motile posterior progenitors decrease their cell 

motion and assimilate into the tissue. Thus, elongation of the paraxial mesoderm is not due 

to directed migration within the PSM. During trunk elongation in the chick, new cells are 

added to the posterior mesodermal progenitors from a more posterior pool of cells [12]. By 

contrast, during zebrafish trunk elongation, new cells enter the dorsal tailbud as a coherent 

posterior flow of cells dorsal to the notochord. As cells move from the dorsal to ventral 

posterior tailbud, this flow loses coherence resulting in an increase in cell mixing (Figure 

1A) [15••,16••]. Computer simulations suggest that this cell mixing may help synchronize 

the segmentation clock that generates the segmental prepattern in the PSM [17•]. As 

mesodermal progenitors enter the posterior PSM, cell motion declines concomitantly with 

the assembly of an extracellular matrix (ECM) composed of Fibronectin and Laminin [15••,

18]. While cell-Fibronectin interactions are not required for this transition in cell migration, 

Cadherin 2 dependent cell-cell adhesion promotes coherent cell motion throughout the 

zebrafish tailbud [15••,16••].

Fgf and Wnt regulate transitions in tissue fluidity

Fgf and Wnt are expressed in gradients from the tip of the tailbud. Fgf signaling promotes 

the rapid movement and mixing of cells in the posterior chick tailbud and misregulation of 

Fgf slows body elongation [12]. Similarly, temporally controlled inhibition of Fgf signaling 

in zebrafish leads to a shorter body axis. These phenotypes contrast with inhibition of Wnt 

signaling which caused non-linear body elongation. Quantification of cell motion indicates 

that reduction of Wnt signaling leads to a premature loss of coherence in cell motion in the 

dorsal tailbud while Fgf inhibition causes both a loss of coherence and a reduction in flux of 

cells into the posterior tailbud. Computer modeling of cell motion suggests that loss of 

coherence combined with high flux, as after Wnt inhibition, leads to jamming within the 

flow of cells. When the jam resolves, bilaterally symmetric flow can be disrupted leading to 

a bend in the body axis. In contrast, the loss of flux following Fgf inhibition compensates for 

the loss of coherence to prevent jamming, and the trunk elongates linearly albeit more 

slowly than wild type [16••].
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The notochord

The notochord, which is located between the two columns of the paraxial mesoderm, also 

contributes to body elongation. It is assembled from axial mesoderm precursors during trunk 

elongation as cells intercalate along the dorsal midline [19]. This elongation persists in the 

absence of normal paraxial mesoderm growth but causes the notochord to buckle as it 

presses against the posterior tailbud [15••]. As tail formation begins at the 16 somite stage, 

notochord vacuoles begin to enlarge via endosomal trafficking [20]. An ECM consisting of 

collagen, elastin and laminin forms around the notochord and prevents radial expansion 

[19]. Thus, vacuole maturation causes elongation of the notochord along the anterior-

posterior axis in a process called directed dilation [19]. Failure of vacuole maturation or of 

peri-notochord ECM integrity can lead to a shorter body axis, scoliosis and fusion of 

vertebrae [20,21].

ECM and the Mechanics of trunk elongation

Fibronectin is a prominent ECM protein in early vertebrate embryos, and cell-Fibronectin 

interactions are required for embryonic axis elongation and segmentation [15••,18,22–33]. 

Live imaging of both the Fibronectin matrix and cell migration during avian embryogenesis 

found that the ECM undergoes complex movements that closely mirror the pattern of cell 

migration [12,34–36]. These latter studies suggest that rather than acting primarily as a 

substrate for cell migration, the ECM may have a greater structural/mechanical function in 

force transmission or force generation during morphogenesis [36]. Indeed, cell-Fibronectin 

interactions in the paraxial mesoderm are required for trunk elongation but not cell 

migration. The Fibronectin matrix coats the zebrafish paraxial mesoderm and mechanically 

couples the bilateral halves of the paraxial mesoderm to the notochord and periderm [15••]. 

In Xenopus, the boundary between the paraxial mesoderm and notochord is induced by Eph/

Ephrin signaling which increases cytoskeletal contractility and prevents Cadherin clustering 

along the boundary between the two tissues [37]. Eph/Ephrin also induces membrane 

blebbing along the tissue boundary, and in zebrafish, reduction of Fibronectin matrix 

increases cellular blebbing along the tissue boundary of the paraxial mesoderm [15••,37]. 

Cellular blebbing is driven by intracellular hydrostatic pressure [38]. Thus the appearance of 

blebbing behavior on the surface of the paraxial mesoderm suggests linkages between Eph/

Ephrin signaling and cell-Fibronectin interactions in generating local cellular mechanics 

along the surface of the tissue.

Fibronectin forms a dense matrix on the surface of the paraxial mesoderm and the ability to 

assemble this ECM is an intrinsic property of both the zebrafish and chick paraxial 

mesoderm [39,40]. In zebrafish, removal of the Fibronectin receptors Integrin α5 and αV 

strongly reduces the amount of Fibronectin matrix, and the fibers that do form exhibit an 

abnormal medial-lateral anisotropy [15••]. Fibronectin fibrillogenesis is driven by 

cytoskeletal contractile forces transmitted to Fibronectin via linkage to the cytoplasmic 

domain of Integrins [41]. In 2D cell culture, mechanical stress is applied to the ECM in the 

direction of cell motion prior to migration [42], and ECM fibers often align along the 

direction of cell motion in both cell culture and the Xenopus gastrula [43,44]. The anisotropy 

of Fibronectin fibers in embryos lacking Integrin α5 and αV suggests a medial-lateral 
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alignment of stresses on the surface of the paraxial mesoderm. This phenotype implies that a 

countervailing anterior-posterior stress produces a Fibronectin matrix with no bias in fiber 

alignment in wild-type embryos [15••].

Mechanical stiffening of the axis

Tissue stiffening within the Xenopus gastrula and neurula has been quantified using explant 

culture. During this developmental time period, the tissues stiffen by more than four fold 

with the paraxial mesoderm being twice as stiff as the notochord or neural plate and an order 

of magnitude stiffer than the endoderm [45,46]. Partial knockdown of Fibronectin does not 

affect the stiffening, but manipulation of the actin cytoskeleton does [46,47]. The 

morphology of the Xenopus laevis paraxial mesoderm is distinguished by medial-laterally 

elongated cells in the PSM whereas the other model systems have mesenchymal PSM [48]. 

Mechanical stiffening of the paraxial mesoderm has not been directly measured in other 

model species. Thus, it is unclear whether the apparent discrepancy between the role of 

Fibronectin in paraxial mesoderm mechanics in Xenopus and zebrafish is real and perhaps 

due to differences in tissue morphology.

The cells and ECM appear to exist as an integrated mechanical unit whose fluidity is 

modulated throughout tissue morphogenesis. Tissues and cell aggregates can be modeled as 

viscoelastic materials which have both flow and elastic characteristics. The response of 

viscoelastic materials to stress (force per unit area) changes with time. Under stress, 

viscoelastic fluids will eventually deform (flow) until stress equals zero while viscoelastic 

solids deform over time but retain some elastic form and ability to bear stress. Prior in vitro 

analyses of cell aggregates found that modulating levels of Fibronectin and Itgα5β1 leads to 

tissue phase transitions between a viscoelastic-fluid and a viscoelastic-solid. The reduction 

in matrix fibers may reduce apparent tissue viscosity by diminishing global interconnectivity 

within the cell aggregates [49]. The assembly of the paraxial mesoderm during trunk 

elongation can be thought of as a transition from a viscoelastic fluid to a viscoelastic solid 

(Figure 1B).

Somite morphogenesis

The segmentation clock creates metameric stripes of gene expression that initiate somite 

morphogenesis (Figure 2). In mouse, chick and zebrafish, somite morphogenesis entails a 

mesenchymal to epithelial transition, giving rise to an epithelial somite with a core of 

mesenchyme. The internal mesenchyme is not necessary for morphological segmentation as 

somites containing only anterior and posterior border cells can form in the absence of 

convergence-extension [50]. In Xenopus laevis and some other amphibians, somite 

morphogenesis involves a 90° rotation of elongated cells to give rise to muscle cells that 

span the anterior-posterior length of the somite [48]. There is a 10 fold variation in the 

number of cells per somite with zebrafish somites containing 100–150 cells while chick 

somites comprise ~1000 cells. The larger number of cells would take longer to sort during 

somite morphogenesis. in silico studies have modeled the mechanics of segmentation at the 

tissue, cellular and molecular scales [51•,52]. One of the studies suggests that the temporal 

delay after segmental patterning and before somite morphogenesis is functional. The delay 
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facilitates error correction as cells sort along the segment boundary according to changes in 

cell adhesion [51].

In response to patterning by the segmentation clock, the receptor tyrosine kinase ephA4 is 

segmentally expressed along the posterior of the nascent somite border while its membrane 

bound ligand ephrinB2 is transcribed along the anterior of the border in mice, chick and 

zebrafish [53–57]. This juxtaposed expression of the receptor and ligand activates EphA4 

along nascent somite borders [39]. In turn, Eph/Ephrin signaling can induce the 

mesenchymal to epithelial transition, inside-out Itgα5 activation and FN matrix assembly 

[39,53,54,57,58]. Formation of the Fibronectin matrix is necessary for the completion of 

somite epithelialization and cell sorting [28,29,39,59].

A number of other proteins have been implicated in somite morphogenesis, though an 

integrated understanding of the system at the molecular level remains elusive. rap1b is a 

GTPase known to regulate Integrin activation and epithelial cell morphology, and it 

functions with itgα5 to promote Fibronectin assembly at the zebrafish somite border [60]. In 

Xenopus, the cytoskeletal regulator Ena/Vasp is necessary for Fibronectin matrix assembly 

and cell rearrangement. In chick, the small GTPase Cdc42 restricts the mesenchymal to 

epithelial transition, while proper Rac1 levels are necessary for epithelialization [61]. Focal 

Adhesion Kinase (FAK), which mediates Integrin signaling is also required for boundary 

matrix formation [62].

Conclusion

The field of developmental biomechanics and biophysics has been reinvigorated by recent 

advances in instrumentation and conceptually by interdisciplinary research combining 

biology, physics and engineering. In fact, in September of 2014 the Lorentz Center at Leiden 

University in the Netherlands hosted a weeklong interdisciplinary workshop focusing 

specifically on the mechanobiology of somitogenesis. More broadly, integrating gene 

network function and biomechanics across multiple spatial and temporal scales promises to 

be a fertile field of inquiry that will contribute to our fundamental understanding of 

organogenesis, homeostasis and tissue engineering.
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Figure 1. Tissue mechanics during zebrafish trunk elongation
(A) Cell motion in the tailbud can be quantified using metrics from fluid mechanics and thus 

described as cell flow. The first major transition in cell flow occurs as mesodermal 

progenitors migrate from the Dorsal Medial Zone into the Progenitor Zone (PZ) where they 

begin to express mesoderm specific transcription factors such as tbx16, tbx6 (in the mouse 

and chick) /tbx6l (in zebrafish) and mesogenin. The second transition in tissue fluidity 

occurs as Progenitor Zone cells assimilate into the Presomitic Mesoderm (PSM). (B) During 

assembly of the PSM, rapidly moving PZ cells (green; time point 1), reduce their 

instantaneous velocities, (time point 2). This transition coincides with the assembly of a 

Fibronectin matrix on the surface of the paraxial mesoderm, but the Fibronectin matrix is not 

necessary for the transition in cell motion. The Fibronectin matrix is required for normal 

elongation of the bilateral columns of paraxial mesoderm. In addition, the Fibronectin 

matrix mechanically couples the paraxial mesoderm and elongating notochord.
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Figure 2. Somite morphogenesis
The S0 is the region in the anterior presomitic mesoderm that will form the next somites. 

The SI is the most recently formed somite and the SII is the preceding somite. In the 

presomitic mesoderm, the segmentation clock creates a segmental prepattern and stripes of 

expression of the transcription factor Mesp, which in turn sets up stripes of EphA4 and 

EphrinB2 expression flanking the somite boundary. Eph/Ephrin signaling activates Integrin 

α5 which then initiates assembly of Fibronectin matrix along the somite boundary. Integrin 

αV, Rap1, Ena/Vasp and FAK also promote Fibronectin matrix assembly. Upon initiation of 

boundary formation, the somite boundary cells undergo a mesenchymal to epithelial 

transition. This transition is inhibited by Cdc42 in the presomitic mesoderm and promoted 
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by Rac1 in the forming somite. Eph/Ephrin signaling and Integrin α5/Fibronectin also 

promote the mesenchymal to epithelial transition.
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