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Summary

The increasing exposure of human populations to excessive levels of metals continues to represent 

a matter of public health concern. Several biomarkers have been studied and proposed for the 

detection of adverse health effects induced by lead (Pb), arsenic (As) and manganese (Mn); 

however, these studies have relied on exposures to each single metal, which fails to replicate real-

life exposure scenarios. These 3 metals are commonly detected in different environmental, 

occupational and food contexts and they share common neurotoxic effects, which are progressive 

and once clinically apparent may be irreversible. Thus, chronic exposure to low levels of a mixture 

of these metals represents an additive risk of toxicity. Building upon their shared mechanisms of 

toxicity, such as oxidative stress, interference with neurotransmitters and effects on hematopoietic 

system, we address putative biomarkers, which may be assist in assessing onset of neurological 

diseases associated with exposure to this metal mixture.
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1. Metals in the environment

Pollution is a worldwide problem with immeasurable health consequences, resulting in 

overexposure to toxic metals. Globally, environmental contamination of heavy metals 

continues to grow and exposure in the general population, by air, food or drinking water has 

become an increasing global phenomenon [1–3].

1.1. Environmental exposure to metal mixtures

Metals are often introduced into the environment as mixtures [4]. Accordingly, the U.S. 

Environmental Protection Agency (EPA) recommends greater emphasis on understanding 

the combined toxic effects of metals [4, 5]. To date, emphasis has been focused largely on 

single metal exposures [6, 7]. Given that mixtures are commonly viewed as a simple 

collection of chemicals, understanding the magnitude of toxicological interactions has yet to 
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be fully appreciated [5]. Notably, the practical consequence of studying single metal 

exposures likely underestimates their health risks in affected populations [6, 8].

Exposures to metal mixtures may synergize or be additive thus leading to adverse health 

effects exceeding those noted upon exposures to a single metal [9, 10]. Furthermore, while 

low doses of a single metal may not cause health effects, when combined with other metals, 

they may present increased health risk [9]. This matter was recently recognized by the U.S. 

EPA as a key gap in metal risk assessment [11].

1.2. Criteria for the selection of metal mixtures

Given the almost infinite number of chemical mixtures, regulators are faced with the 

problem of how to assess and regulate their toxicity [6, 12]. Recently it has been argued that 

grouping criteria should focus on common adverse outcomes, with less emphasis on 

similarity of mechanisms [6], and that attention should be focused on those having the 

greatest potential impact on human health [12]. In addition, for practical purposes, criteria 

are needed to define the relevant components of a mixture. Such criteria cannot rely simply 

on the concentrations of the compounds in the mixture, but must also take note of their 

expected contribution to relevant endpoints of toxicity [6]. In this context exposure to 

neurotoxic agents represents a concern of high priority, given the increased prevalence of a 

number of neurodegenerative diseases [13, 14].

1.3. Sources of lead (Pb), arsenic (As) and manganese (Mn)

A recent assessment on the global health impacts of contaminants, identified As and Pb 

among the six most toxic pollutants threatening human health [15]. Mn is also of great 

environmental and public health significance due to its broad usage in the ferroalloy industry 

[16].

Pb is naturally present in the earth’s crust [17]. Its anthropogenic releases to ambient air 

from gas, coal, oil and waste have persisted, representing a continued health risk. It is 

estimated that body burdens of Pb in humans in the modern era are 1000-fold higher than 

during the preindustrial era [18]. Fortunately, over the last few decades, Pb emissions in 

developed countries have markedly decreased, largely due to the abolishment of leaded 

gasoline, which has been paralleled by a decrease in blood Pb levels in the general 

population, especially children [19]. However, since Pb is a persistent element [20] and 

given its long half-life, past emissions remain a matter of concern. Airborne Pb can be 

deposited in soil and water, reaching humans via the food chain. Drinking water is also a 

potential source of Pb exposure [20]. Occupational cohorts may be exposed to Pb in the 

process of manufacturing of batteries, sheet lead, bronze plumbing, ceramic glazes, 

caulking, radiation shields, circuit boards and military equipment [20], as well as the glass 

industry [19].

The metalloid As is particularly difficult to characterize as a single element because it has a 

complex chemistry and there are numerous As compounds, with different oxidation states, 

and differential toxicities. This element naturally occurs in rocks, soil, water and air [19, 21] 

where it is largely present in the trivalent or pentavalent forms; the trivalent form is the most 

toxic. Organic As compounds may also be trivalent or pentavalent and they occur in 
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methylated forms; when compared with inorganic As, the methylated metabolites are less 

reactive with tissue constituents, less toxic upon acute exposures, likely reflecting their fast 

excretion in urine [22, 23]. Arsenical compounds are known since primordial times as 

poisons [21, 24, 25]. Exposure to As-contaminated water is a major concern in several Asian 

countries, where groundwater may be highly contaminated with As [19, 26, 27]. Smelting of 

non-ferrous metals and the production of energy from fossil fuel represent two major 

industrial processes that lead to As contamination of air, water and soil. Occupational 

exposures to As occur as well in several industries, particularly in nonferrous smelting, 

electronics, wood preservatives, glass manufacturing and application of arsenical pesticides 

[27].

Mn is the 12th most abundant element in the earth’s crust [2] and is an essential element. 

Few cases of Mn deficiency have been reported in humans, its deficiency can lead to serious 

health disorders [28]. Excess Mn may cause a wide range of deleterious effects [17]. Diet, 

contaminated drinking water and inhalation represent the main sources of exposure [29]. In 

recent years, Mn has received increased attention, since organic Mn has been used as an 

antiknock gasoline additive - methylcyclopentadienyl manganese tricarbonyl (MMT) in 

several countries [30, 31]. The most prominent occupations where Mn exposures are 

common include mining, ore-crushing, ferromanganese production, smelting and welding 

[32]. Mn is also found at high concentrations in various other industrial settings, such as the 

manufacturing of dry-cell batteries, production of Mn-containing organic pesticides, 

fireworks, ceramics, glass, leather, textiles, paint and cosmetics [2, 33].

Despite the existence of a reasonable amount of information pertaining to the health effects 

induced by Pb, As or Mn exposure [17, 20, 26], the majotiry of the studies focus on solitary 

exposures to these metals. However, Pb, As and Mn are frequently found as mixtures [34–

38], and whenever mixtures are treated as a single complex substance, uncertainties may 

range from inexact descriptions of exposure to inadequate toxicity outcome information [5]. 

Therefore, the toxic effects induced Pb, As and Mn alone and also as binary mixtures, will 

be described.

2. Toxicity of metals

Pb is a potent health hazard [39] that may cause neurotoxicity, hypertension, anemia, renal 

impairment and interfere with sperm production [16, 20, 40]. Pb compounds may also be 

carcinogens [16]. The metalloid As can induce cancer, genotoxicity and affect the 

hematopoietic system, liver, kidneys, skin and brain [41]. Exposure to As has also been 

reported to increase the risk of cancer in skin, liver, bladder and lungs. Long-term Mn 

exposure is commonly associated with central and peripheral nervous system disorders. 

Reproductive outcomes might be affected, with decreased libido, impotence and sexual 

dysfunction. There is no evidence that Mn causes cancer in humans or animals [17].

Lead

Exposure to high Pb levels may result in acute encephalopathy with compromised blood-

brain barrier (BBB) function [42]. This structure is highly vulnerable to the toxic effect of 

Pb and once damaged, Pb itself and other toxicants can easily enter in the brain [43]. In vivo 
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experiments have established that the cerebral cortex and the basal ganglia are affected by 

Pb [44, 45]. Because Pb exposure may affect several neurotransmitters (dopaminergic, 

cholinergic and glutamatergic), most frequently early symptoms of human Pb neurotoxicity 

include irritability, fatigue, depression, headache, decreased attention, memory loss and low-

level cognitive impairment [20]. Other concern related to chronic Pb exposures is associated 

with the propensity of Pb to accumulate in bones [22] where it has a long half-life. 

Accordingly, bone acts as a reservoir for Pb with continuous release of this metal, when 

bones are remodeled [46].

Arsenic

To date, limited information exists on the effects of As exposure on cellular and molecular 

mechanisms of the induced neurological effects [47]. This metal easily crosses the BBB. 

The basal ganglia are particularly vulnerable; As can also have marked effects on the 

hippocampus and cortex [48]. As exposure has been suggested as a risk factor for 

Alzheimer’s disease (AD) [21] as well as Parkinson’s disease (PD) [49]. Children exposed 

to As show impaired learning and memory, sleep disturbances, abnormal performances and 

altered latency of auditory evoked potentials [48, 50]. Patients with occupational exposure to 

As may develop encephalopathy, characterized by impairments of higher neurological 

functions, such as learning, memory and concentration [21, 50].

Manganese

Epidemiological data suggest that high Mn concentrations in drinking water may be 

associated with neurological impairment [32]. Nevertheless neurotoxic effects induced by 

Mn in humans emerge mostly subsequent to inhalation exposure [51] where the metal can 

enter the brain through the olfactory pathways, providing a direct path into brain tissue [32, 

52]. Inhaled Mn at exceedingly high levels may lead manganism, which is characterized by 

motor and postural signs consistent with those inherent to Parkinson’s disease [53]. The 

subclinical deficits observed in Mn-exposed subjects are consistent with damage of the basal 

ganglia [51]. In the early stages of intoxication the symptoms may be reversible [54].

2.1.2. Binary mixtures—Practically no reports are found on the neurotoxic effects 

induced by the mixture of Pb, As and Mn, except a few experimental studies on binary 

mixtures, demonstrating interactions between these metals. The co-administration of Pb and 

Mn to rats has been associated with reduced brain weight to a greater extent than upon 

exposure to either metal alone [55]. Pb levels were also increased in several brain regions, 

such as the cerebellum, cerebral cortex, corpus striatum, hippocampus and midbrain, as 

compared with the administration of Pb alone [56]. ln addition, Pb increased the 

concentration of Mn in corpus striatum and midbrain as compared with Mn alone [12, 56]. 

Low doses of Pb plus Mn raised the striatal Mn and Pb concentrations [56]. Behavioral 

changes were also observed, such as a significant hypoactivity and aggravation of Pb-

induced aggressive behavior [57]. Tests on learning ability, where conditioned avoidance 

responses were measured, showed that a mixture of Pb and Mn impaired learning to a 

greater extent than the single administration of Pb. These results suggest a synergistic effect 

of binary metal mixtures even at subclinical levels [56]. Accordingly, the EPA highlighted 

the need for further refined assessment of the potential hazard to public health of combined 
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Mn/Pb mixtures, with emphasis on neurological endpoints [12]. In humans, a positive 

correlation between Mn and Pb in blood was detected, while co-exposure to environmental 

Pb and Mn has been shown to affect the intelligence of school-aged children [58]. Several 

studies were performed with other binary mixtures, such as Pb and As, resulting in increased 

Pb brain levels, along with decreased As concentrations [50]. Neurotransmitter changes 

were also noted, which were absent when animals were treated with either metal alone [59]. 

The mixture of As and Pb was shown to cause neuropsychological effects in children living 

in Morales (Mexico); however, no conclusive results were reached regarding the interactions 

between these metals [59]. Several studies have also addressed the effects of a mixture of As 

and Mn [37], noting that As and Mn exposures led to a greater accumulation of these metals 

in rats’ brains when compared to animals exposed to single metals. In addition, higher hair 

As and Mn levels in humans were associated with significantly lower scores on IQ test, 

verbal learning and memory. In several cases, a significant interaction was noted for Mn and 

As [29]. With respect to the mixture of the three elements one study reported that when 

combined, Pb, As and Mn caused changes in neurotransmitter levels. The authors concluded 

that the findings were complex, but the data supported the concept that co-exposure to 

multiple metals may cause neurotoxic effects which is absent with exposure to a single 

metal at similar doses [60].

3. Mechanisms of toxicity induced by lead (Pb), arsenic (As) and 

manganese (Mn)

3.1. Oxidative stress

Oxidative stress is a shared mechanism of Pb, As and Mn toxicity [61–64, 40]. The 3 metals 

can generate reactive oxygen species (ROS) [23, 61, 64–67] and affect ROS-metabolizing 

enzymes, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase 

(GPx) [20, 23, 40, 61, 66, 68–70] and interfere with cellular redox status, characterized by 

reduction in intracellular glutathione (GSH) levels [61, 66, 23, 69]. Decreased levels of 

reduced GSH levels render cells more susceptible to oxidative damage [63] and may 

sensitize cells to toxicity associated with other metals [23].

3.2. Interference with the nervous system

Several chemicals inhibit acetylcholine esterase (AChE), causing neurotoxicity [71] via ACh 

accumulation in the synaptic cleft with an ensuing overstimulation of muscarinic and 

nicotinic ACh receptors. AChE is anchored to the plasma membrane and there is evidence 

that lipid peroxidation arising from oxidative stress may alter its activity [72–74]. Indeed, 

and although much less studied than the dopaminergic system, cholinergic functions are 

altered by Pb [72], As [21] and Mn [17]. Block of ACh release by Mn and Pb has been 

proposed as a putative toxic mechanism for interference with cholinergic functions [18, 75]. 

Furthermore, Pb, As and Mn can affect dopaminergic functions [37, 40, 76–80]. Several 

studies have demonstrated that interference with neurotransmission in cholinergic or 

dopaminergic neurons is accompanied by oxidative events [40, 48, 65, 74, 77, 81, 82].
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3.3. Interference with the hematopoietic system

Pb, As and Mn exert several effects on the hematopoietic system [83–85], including 

interference with heme synthesis [40, 62, 86]. Several enzymes that catalyze the heme 

synthesis metabolic pathway [87, 88] are susceptible to As and Pb [89–91], secondary to 

their affinity for the functional thiol (-SH; sulfhydryl) groups [61, 92]. Limited information 

exists on its potential to alter the activity of heme synthesizing enzymes [93], but it has been 

established that Mn can alter heme metabolism in an in vitro assay in rat neurons [94]. 

Interference with heme biosynthetic pathway is commonly characterized by excessive 

accumulation and excretion of delta-aminolevulinic acid (ALA) and/or porphyrins [95, 96]. 

Because individual porphyrins differ in their side-chain substituents, different metals may 

induce signature-specific changes in porphyrin excretion patterns [92].

Delta-aminolevulinic acid dehydratase (ALAD) is highly sensitive to Pb and As by virtue of 

its sulfhydryl moiety, and the inhibition of ALAD leads to the accumulation of delta-ALA 

[61, 63]. At physiological pH, metal catalyzed autoxidation of delta-ALA generates a carbon 

centered radical (ALA•) as well as O2−•. The ALA• further oxidizes to the imino form of 

delta-ALA, producing O2−•, which dismutates to H2O2 [40, 63, 86, 97, 98]. Delta-ALA-

generated O2−• also promotes Fe release from the endoplasmic reticulum, which may 

contribute to the generation of •OH through the Haber-Weiss reaction [99]. Furthermore, the 

coupled autoxidation of delta-ALA with oxyhemoglobin [Hb-Fe (II)] produces 

methemoglobin and H2O2 [98]. Disruption of mitochondrial membrane potential and 

promotion of Ca2+ (II) release from the intramitochondrial matrix, with subsequent 

mitochondrial damage may also occur [95, 99].

Pb can also interfere with coproporphyrinogen oxidase and ferrochelatase (FECH) [97, 63, 

100,] and coproporphyrinogen oxidase is also affected by As [91]. Porhyrins, when in 

excess may also act themselves as toxins [87, 101] given their lipophilic nature and 

propensity to generate ROS upon exposure to light (430–635 nm), via photochemical 

reactions [98, 101]. Porphyrins may also form a porphyrin anion radical, which may 

substitute for O2−• in Fenton-type reactions or produce O2−• by reducing O2 [98]. These 

events may cause oxidative damage to membrane components, with proteins and lipids as 

the main targets of photo-damage, leading eventually to cell death [101, 102].

4. Human control of chemical exposure

Neurological diseases induced by the exposure to neurotoxic agents are most frequently 

chronic progressive disorders, where traditional early warning symptoms of the development 

of the disease may be lacking. They may be only clinically apparent long after exposure to 

the initiating factor/s, at a point where the disease is irreversible [27]. Accordingly, great 

effort has been made to identify neuropathological and biochemical biomarkers of 

neurotoxicity as early indicators of disease [27,103]. A common concept underlying 

biomarkers of effect is that they should reflect early and reversible biochemical 

modifications that precede structural or functional damage and may also be predictive of 

later responses. Still, challenges and imitations exist concerning biomarkers of neurotoxicity 

[104].
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5. Biomarkers for lead (Pb), arsenic (As) and manganese (Mn)

To date several biomarkers have been studied and proposed for exposure and susceptibility 

assessment, as well as the detection of adverse health outcomes induced by Pb, As or Mn

5.1. Biomarkers of exposure

Biomarkers of exposure are often obtained from measurement of the parent compound or its 

metabolites in biological samples [105]. Determination of metal levels in biological samples 

has been the most common surrogate of exposure [106] with body burdens generally 

determined in blood or urine [27].

Biomarkers of exposure to Pb are characterized by measurements of total Pb levels in tissues 

or body fluids, and from these, blood Pb concentration is the most widely used parameter in 

general clinical practice and public health surveillance [16, 107, 108]. The elimination half-

life of Pb in blood is approximately 30 days, and therefore, Pb concentration in blood 

reflects mainly the exposure history of the previous few months [16].

Several attempts were made to use urinary Pb as a surrogate of blood Pb levels [16, 108], 

but caution is advised: i) urinary Pb concentration exhibits relatively high intra-individual 

variability even at similar concentrations of Pb in the blood [16, 109]; ii) estimation of Pb in 

blood from urinary Pb may be possible on a group basis, but has limited value on an 

individual basis [108]; iii) for low level exposures urinary Pb levels are close to the 

detection limit of the analytical methods; iv) Pb urinary excretion reflects mainly recent 

exposure; and v) the determination of Pb in urine is further complicated by altered kidney 

function, in association with the nephrotoxic Pb effects [16].

The metalloid As is rapidly cleared from blood, which is the reason why measurements of 

blood As reflect recent exposures or exposures to high As levels [26, 110]. Urinary As 

measurements have been considered more reliable than blood, because urinary elimination is 

the major route for the excretion of this metalloid [26, 110, 111]. Therefore, urinary As has 

been the most used biomarker in epidemiological and occupational studies as indicator of 

recent As exposure [110]. Speciation of urinary As may also indicate the extent of past 

cumulative exposure to the metalloid, more specifically by measuring the levels of 

monomethylarsenic (MMA) and dimethylarsenic (DMA) [26], resulting from metabolic 

methylation of ingested or inhaled inorganic As [112]. Total urinary levels of As are used as 

exposure biomarkers [110].

Mn levels in biological samples, such as blood and urine, have been investigated as 

biomarker of exposure [17], but their suitability is highly controversial [106]. While they 

may indicate average levels of exposure on a group basis [17] they are not suitable for 

individual assessment [17, 113, 114]. Another limiting factor is the rapid rate of Mn 

clearance from the body, because excess Mn in blood is rapidly removed by the liver and 

excreted into the bile. Thus, levels of Mn in blood have been used as an indicator of recent 

exposure, generally less than one month [17, 28, 107]. Since the urinary excretion of Mn is 

approximately 3% of total excretion urinary Mn has limited clinical validity [107, 28]. Some 

authors recommend that urinary Mn should be abandoned as a biomarker of exposure [114].
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5.2. Biomarkers of susceptibility

Biomarkers of susceptibility reflect an inherent or acquired ability of an organism to respond 

to the challenge of exposure to a specific chemical substance [115].

It has been known that there is large variation in susceptibility to Pb exposure, with some 

individuals experiencing toxic effects at levels that others can sustain without any ill effects. 

Some of these differences may have a genetic basis, namely polymorphisms in ALAD, 

which is the major Pb-binding protein in the blood [116, 117]. Indeed ALAD2 carriers have 

a lower risk of toxic effects than ALAD1 homozygotes at the same level of exposure, and 

some authors suggest that the effects of Pb on neurobehavioral functions tends also to be 

worse among ALAD1 homozygotes [118].

Much of the susceptibility to As-related health effects is determined by large interindividual 

variation in As methylation [119]. The trivalent metabolites (particularly MMA III) are most 

commonly associated with adverse health outcomes and the distribution of urinary As 

metabolites is determined to a greater extend by genetic variations and is illustrated by the 

aggregation of methylation patterns within families [120, 121]. Mn secretion in the bile may 

vary according to individuals’ genotypic status. A significant association between the 

CYP2D6*2 polymorphism (a biomarker of susceptibility) and the latency of chronic Mn 

poisoning has been reported [122].

5.3. Biomarkers of effect

The knowledge on the toxicity mechanisms of metals at tissue, cellular and molecular levels 

are crucial for the discovery of new biomarkers. On the basis of oxidative stress, 

dopaminergic, cholinergic and heme synthesis alterations induced by Pb, As or Mn, several 

potential biomarkers of effect are summarized in Table 1 and will be described below.

Lead—Serum prolactin (PRL) has been mentioned as an indicator of the dopaminergic 

function, which is a target of Pb [123]. While Pb’s ability to affect PRL levels has been 

inconsistent across various studies, PRL is generally increased by exposure to this metal [80, 

124]. Pb exposure has been also positively associated with PRL levels in occupationally 

exposed men [123]. However, in other studies PRL levels failed to change upon exposure to 

Pb [16].

The effects of Pb on cholinergic functions have been consistently reported, with alterations 

preceding the well-known neurobehavioral and neurophysiological endpoints associated 

with Pb neurotoxicity [72]. It was suggested that AChE activity in erythrocytes may serve as 

a peripheral surrogate dose–effect index of neurotoxicity on cholinergic function in 

occupational exposure to Pb [72]; indeed, decreased AChE erythrocytic levels were 

observed in workers exposed to this metal [32]. Free radicals can decrease AChE activity, 

leading to speculation that the inhibitory effect of Pb on AChE observed in the workers may 

be due to free radicals produced by Pb [75]. Pb effects on heme synthesis are well 

documented [125, 126] and delta-ALA and ALAD levels in blood are considered the most 

reliable indicators of Pb intoxication [40, 127, 128], even at relatively low Pb blood 

concentrations [40]. Since inhibition of ALAD activity results in elevated delta-ALA levels 
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in blood, consequential increase of urinary delta-ALA excretion is expected, and in fact, 

urinary delta-ALA has been used in clinical diagnosis of chronic occupational Pb 

intoxication [129]. However, urinary delta-ALA does not seem to be a sensitive indicator 

when Pb exposure is low [130]. Patients with Pb poisoning also show accumulation of 

porphyrins due to the inhibition by Pb of heme biosynthetic enzymes. These enzymes are 

ALAD, coproporphyrinogen oxidase and FECH [63, 97, 100]. Typically increased urinary 

excretion of coproporphyrin, as well as accumulation of protoporphyrin in erythrocytes is 

observed [90].

Arsenic—There are practically no studies evaluating the effects of As exposure on PRL 

release, but a few have documented that exposure to As leads to reductions in dopamine 

(DA) content in brain areas involved in the regulation of PRL release [131] and recent 

reports mention that sodium arsenite can cause a reduction in plasma PRL levels [132]. Both 

arsenite and arsenate can cause cholinergic dysfunctions in rats in a dose dependent manner, 

with concomitant AChE inhibition [21, 133, 134] and consequent disturbances in nervous 

activity [135]. Increased blood ALAS levels [26] and changes in ALAD activity have been 

noted upon exposure to both As (III) and (V) [136] and it has been posited that ALAD 

activity in blood may be used to estimate its enzymatic brain activity [40]. Increases in 

urinary coproporphyrins were found in smelter workers exposed to arsenic trioxide dust, but 

the mean concentration of uroporphyrin was analogous to that of controls [101]. In contrast, 

increased urinary uroporphyrin and coproporphyrin levels were observed in individuals 

exposed to As released from a burning contaminated coal [91]. Further studies are required 

to clarify this apparent discrepancy in the effect of As among human populations [137].

Manganese—The investigation of Mn effects on PRL has led to inconsistent results. 

Serum PRL has been proposed as a biomarker of occupational Mn exposure [76], reflecting 

Mn’s effect on DA neurotransmission [138]. Negative results have also been reported [17, 

55, 139]. Some salient features of manganism, such as the intensity of mood disturbances 

cannot be explained only by the disruption of dopaminergic systems, and likely 

encompasses the cholinergic system as well. The latter is known to play a crucial role in 

modulating emotional response and higher cognitive functions. [18]. Miners chronically 

exposed to exceedingly high levels of Mn may exhibit changes in the activity of blood 

AChE and ACh [17], as well as red blood cells (RBC)-AChE [18]. Inconsistent finding exist 

regarding Mn-induced hematological effects. In vivo studies in rats exposed to Mn by 

dietary intake have documented decreased hematocrit and hemoglobin levels [12]. Even less 

information is available on Mn’s propensity to affect heme biosynthetic pathway. One such 

study suggested that Mn can interfere with heme biosynthesis by inhibiting ALAS activity 

[93]. In addition, Mn has been shown to inhibit liver and erythrocytes ALAD [93] and 

competitively inhibit FECH [87].

5.4. Biomarker(s) for metal mixtures

In real life scenarios people are co-exposed to an almost infinite number of chemical 

mixtures and thus, it is barely impossible to determine all the components of a mixture 

present in an environmental setting [12]. For practical purposes, if mixtures’ components are 

not usually well known, criteria are needed to define the relevant components of a mixture. 
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Such criteria cannot rely simply on the concentrations of the compounds in the mixture, but 

must also take note of the expected contribution to relevant endpoints of toxicity [6].

Recently, it has been argued that grouping criteria should focus on common adverse 

outcomes [6]. This approach could allow the use of shared effect biomarkers, even 

unspecific, since when used in combination it may reflect specific patterns of biochemical 

changes (signatures) induced by a mixture of chemicals. However to date, most of the 

outcomes pertaining to Pb, As and Mn biomarkers have relied on single exposure studies, 

and they do not permit extrapolation to their combined effects in humans (see Table 1).

With respect to biomarkers of effect induced by metal mixtures, even less progress has been 

achieved [146], despite the knowledge on interactions between metals at numerous 

biological levels [4]. Interactions between metals may also result in altered toxicokinetics 

and toxicodynamic processes [147]. Added effects of Pb and As on the monoaminergic 

systems in have been shown [50]. Depressed levels of DA were found in the brain of rats co-

exposed to Pb and Mn [51]. Changes in the dopaminergic marker serum PRL in children 

were associated with the environmental exposure to a mixture of four metals that included 

Pb, As and Mn [145]. Concomitantly the experimental co-exposure to Pb and As caused 

synergistic inhibition of ALAD and increased ALA urinary excretion as compared to a 

single exposure either to Pb or As [143, 144].

Concluding Remarks

The Pb, As and Mn mixture is present in several environmental, occupational and food 

contexts. This mixture may induce synergetic or added toxic effects to those inherent to 

single metal exposure, rendering the risk of increased toxicity a likely scenario. The 

selection of biomarkers based on analogous endpoints of toxicity should be a useful tool for 

predicting and preventing the risk of toxicity. Induction of oxidative stress, interference with 

cholinergic or dopaminergic systems and altered heme synthesis are shared mechanisms of 

Pb, - As- and Mn-induced toxicity. A better understanding on the interactive toxic 

mechanisms is necessary to further delineate a rational basis for the their biomarkers of 

effect, thus enhancing the tool-kit available for risk assessment, and ultimately limiting 

exposure and preventing health risks in exposed populations.
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Table 1

Proposed biomarkers of effect in peripheral samples for Pb, As, Mn and mixtures of these elements

Exposure Biological Sample Biomarker References

Pb Serum PRL [123, 140]

Blod erythrocytes AChE [32, 72]

Blood ALA and ALAD [40,127,128]

Urine ALA [141]

Blood erythrocytes Protoporphyrin [100]

Urine Coproporphyrin [100]

As Serum PRL [132]

Blood ALA, ALAS, ALAD [26,40,136]

Urine Uro- and coprophophyrin [91,101,137]

Mn Serum PRL [17,76, 123,138,142]

Blood and blood erythrocytes Ach and AChE [17, 18]

Pb + As Urine ALA [143, 144]

Pb+As+Mn+others Serum PRL [145]
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