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Abstract

The gonads form bilaterally as bipotential organs that can develop as testes or ovaries. All 

secondary sex characteristics that we associate with ‘maleness’ or ‘femaleness’ depend on whether 

testes or ovaries form. The fate of the gonads depends on a cell fate decision that occurs in a 

somatic cell referred to as the ‘supporting cell lineage’. Once supporting cell progenitors commit 

to Sertoli (male) or granulosa (female) fate, they propagate this decision to the other cells within 

the organ. In this review, we will describe what is known about the bipotential state of somatic and 

germ cell lineages in the gonad and the transcriptional and antagonistic signaling networks that 

lead to commitment, propagation, and maintenance of testis or ovary fate.

Formation of the gonad

Gonads form as paired, bilateral organs that are composed of several lineages of somatic 

cells as well as the population of germ cells. Precursors of many of the somatic cells in the 

gonad arise from proliferation of the SF1 (steroidogenic factor 1, aka NR5A1)-positive cells 

in the coelomic epithelium (CE) overlying the region of the intermediate mesoderm called 

the mesonephros. The CE begins to thicken in this region at approximately embryonic day 

(E) 10.0 and contributes to at least two distinct somatic precursor lineages that are 

bipotential: first, supporting cell precursors, which give rise to Sertoli cells in the testis or 

fetal granulosa cells in the ovary, and second, steroidogenic progenitors, which give rise to 

Leydig cells in the testis or theca cells in the ovary [1,2]. Genes including Wt1 (Wilms 

tumor 1 homolog) [3], Lhx9 (LIM homeobox protein 9) [4], Emx2 (empty spiracles 

homeobox 2) [5], Sf1 [6], M33 (Cbx2, chromobox 2) [7,8], Gata4 [9] and Six1/4 (sine 

oculis-related homeobox 1/4) [10•] are essential to establish the bipotential population of 

somatic cells in the gonad.

The bipotential stage

The early somatic progenitors are capable of adopting either male or female fate. In accord 

with classic theory in the field, the transcriptomes of whole XX and XY gonads are nearly 

indistinguishable at E10.0 through E11.2 [11••,12]. At this bipotential stage, genes that are 

later associated with testis fate (i.e. Sox9 (Sry (sex determining region of the Y)-box 9) and 

Fgf9 (fibroblast growth factor 9)) and ovary fate (i.e. Wnt4 (wingless-type MMTV 

integration site family, member 4) and Rspo1 (R-spondin homolog 1)) are expressed at 
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similar levels in XX and XY gonads [11••]. This is also true if different cell types in the XX 

and XY gonad are isolated by flow cytometry and analyzed separately at E11.5 [13]. These 

results suggest that the bipotential plasticity of the mammalian gonad results from a transient 

balanced transcriptional state in which many genes later associated with male or female fate 

are expressed at similar levels in supporting cell precursors of both XX and XY gonads. 

Although the gonad is poised to follow either pathway at this bipotential stage, the 

supporting cell lineage expresses more genes later associated with the female than the male 

pathway, suggesting a female bias in the underlying program [13].

The first steps of male or female fate commitment

Sex determination initiates by tilting the balance in the transcription network toward the 

male or female fate. The switch to initiate the male pathway in the poised supporting cell 

progenitors is the Y-linked gene, Sry. An Sry transgene, driven in the XX gonad from its 

own promoter, caused differentiation of a testis [14]. This experiment showed that first, Sry 

is the only gene from the Y chromosome that is required for male sex determination, and 

second, the molecular environment of the XX gonad is fully competent to activate Sry and 

initiate testis development (for a recent excellent review focused on the regulation of Sry 

itself, see [15]).

Sry gene expression initiates just after E10.5 (10 tail somites (ts)) based on an RNase 

protection study [16]. Using in situ hybridization, expression is detectable in the middle of 

the gonad at ts14 (~E11.0) and expands toward the anterior, then posterior poles [17]. The 

timing and level of expression of Sry are critical. XY mice carrying a weak allele of Sry that 

shows a decrease/delay in expression, are susceptible to male-to-female sex reversal [18–

20]. Experiments that drive Sry expression in XX gonads using a heat shock promoter, 

revealed a requirement for Sry in the 6-h time window between E11.0 and E11.25 [21]. If 

expression is delayed, the testis pathway is aborted and ovarian development ensues. 

Exactly why the window of opportunity to initiate the male pathway closes at E11.25 

remains unclear. Downstream of Sry expression, Sox9 is the earliest gene to be upregulated 

in the male pathway at E11.2, closely followed by Cited4 (Cbp/p300-interacting 

transactivator-4, with Glu/Asp-rich carboxy-terminal domain, and Sox13 (SRY-box 13) at 

E11.4, and a larger group at E11.6 [11••]. Many of these genes are critical to establish male 

fate [22–24].

Genes associated with the female pathway become dimorphic slightly later, between E11.4 

and E11.6, including Wnt4, Rspo1, Irx3 (Iroquois related homeobox 3), Lhx9, Fst 

(follistatin), and Lef1 (lymphoid enhancer binding factor 1) [11••,13]. The downstream effect 

of WNT4/RSPO1 signaling is the stabilization of β-catenin [25,26]. β-Catenin accumulates 

in the nucleus [27,28] where it may interact with the transcription factor LEF1 leading to the 

activation of downstream genes, as in other systems [29]. Stabilization of β-catenin in the 

XY gonad leads to down-regulation of SOX9 and male to female sex-reversal [30]. 

Antagonism between SOX9 and β-catenin may underlie the molecular decision in individual 

cells. However, loss of Wnt4 and/or Rspo1 and/or β-catenin does not lead to complete 

female to male sex reversal until perinatal stages [27,31–33].
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Female fate is also regulated by the transcription factor Foxl2 (forkhead box L2). FOXL2 

co-operates with BMP2 (bone morphogenetic protein 2) to up-regulate the expression of Fst 

[34]. In goats, loss of function of Foxl2 leads to female to male sex reversal in fetal life 

[35••]. However, in mice and humans, disruption of the female pathway does not occur until 

neonatal stages. Although loss of Foxl2 in combination with Rspo1 or Wnt4 slightly 

accelerates the sex reversal phenotype in mice [36,37], no gene has been discovered whose 

loss leads to female to male sex reversal at early fetal stages. Since the bipotential gonad is 

initially biased toward the ovarian fate, a gene with a comparable role to Sry may not be 

required to initiate the female pathway. It may be sufficient not to initiate the male pathway.

Supporting cell precursors enter a quiescent state by E12.5 in XX gonads [38], consistent 

with the upregulation of negative regulators of the cell cycle observed in transcriptome 

studies [13,39]. The quiescent state of progenitor cells in the ovary may protect them from 

switching fate until proliferation resumes around the time of birth [38,40•]. In contrast, 

supporting cell progenitors in the XY gonad upregulate proliferation immediately 

downstream of Sry, and blocking proliferation disrupts the male pathway [2,41]. Whether 

proliferation is important for intracellular fate commitment or is required to establish a 

threshold population of Sertoli progenitors is still unclear.

Sexually dimorphic expression can result from activation in one sex, repression in the other 

sex, or a combination of both mechanisms. All of these patterns were evident in a study in 

which the gene expression profile for each gene was compared in XX and XY gonads at fine 

time points between E11.0 and E12.0 [11••]. Enrichment of male pathway genes occurred 

primarily through activation in the XY gonad with a minor contribution from repression of 

male genes in the XX gonad. In contrast, about half of the genes that became enriched in the 

female gonad did so due to repression in the XY gonad (Figure 1). This is a critical feature 

of the counterbalanced system that controls sex determination and gonadal fate: to establish 

a fate decision in the gonad, it is not sufficient to activate one of the alternative pathways — 

it is also necessary to repress the other.

Propagation of fate commitment across the gonad field

Subsequent to the primary fate decision in both differentiation pathways, feedback 

mechanisms are activated that canalize the chosen sexual fate. This occurs within individual 

cells and across the gonad field.

Although XX ⇔ XY chimeras typically have a similar number of XX and XY cells in the 

fetal gonad (as in other organs), more than half develop as males. This result suggests that a 

threshold number of XY cells can establish the testis pathway throughout the organ, but in 

cases where this cell threshold is not met, the gonad develops as an ovary. In the adult testes 

of chimeras, most of the Sertoli cells are XY, however, a small number of XX Sertoli cells 

are reproducibly found, indicating that XY supporting cells in the gonad can recruit XX cells 

(that do not have a Y chromosome or Sry gene) to Sertoli fate, presumably through paracrine 

signals [42,43]. These results indicate that in addition to the fate determination step that 

occurs in each supporting cell (likely based on antagonism between SOX9 and β-catenin), 

there is a community decision that takes place across the field of the gonad.
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Two paracrine signaling molecules downstream of SOX9, FGF9 and PGD2 (prostaglandin 

D2 synthase), are known to contribute to propagation and maintenance of the male fate 

decision [44–50]. Fgf9 is required to signal from the central part of the gonad and establish 

Sox9 expression in the two ends [51]. Fgf signaling functions to antagonize Wnt signaling 

[45]. Elimination of the expression of Fgf9 or its receptor Fgfr2 (fibroblast growth factor 

receptor 2), leads to upregulation of the Wnt pathway and male-to-female sex reversal 

[44,52–54]. On the other hand, elimination of Wnt4/Rspo1/β-catenin leads to female-to-male 

sex reversal near birth [27,31–33], suggesting that the Fgf9 and Wnt4 signaling pathways 

have antagonistic roles in sex determination. Deletion of both Fgf9 and Wnt4 or Fgfr2 and 

Wnt4 rescues the male-to-female sex reversal phenotype in the XY gonad. In double mutants 

both somatic cells and germ cells express markers associated with male development, 

strongly suggesting that the primary role of Fgf signaling in XY gonad development is to 

repress the Wnt pathway [55]. Similar results were obtained by paired deletion of several 

other sets of antagonistic factors. For example, deletion of Sox9 leads to male to female sex 

reversal, but rescue of the male fate occurs when Sox9 and Rspo1 are simultaneously deleted 

[56]. Similarly, when Wnt4 and ActivinβB were simultaneously deleted, the female fate was 

rescued [57]. These studies and others indicate a multi-layered input into sex determination 

and suggest that many coding genes and perhaps microRNAs [58] affect the balance 

between male and female fate.

Relatively little is known about how other somatic lineages across the gonad field commit to 

a testis or ovary fate. However, it is clear that this occurs downstream of the fate 

commitment step in the supporting cell precursors. The steroidogenic precursor lineage in 

XX and XY gonads shares an indistinguishable transcriptional profile at E11.5 [13]. At 

E12.5, XX and XY steroidogenic progenitors begin to show divergent expression patterns 

downstream of morphological changes that occur in the XY gonad including the formation 

of the male-specific vasculature. Disruption of Dhh [23,24] or Pdgfrα [59,60] leads to 

defects in Leydig cell development in the testis, but it is somewhat unclear whether these 

effects are direct, or are indirectly mediated by effects on the vasculature. Disruption of the 

male-specific vasculature also disrupts Leydig cell development, likely through Notch/Jag1 

signaling [61•]. In the fetal mouse ovary, NR2f2 and MafB label the progenitors of a cell 

type distinct from the supporting cell lineage [62•,63]. Steroidogenic cells in the ovary begin 

to produce hormones around birth. Like the steroidogenic lineage in the testis, they likely 

have a mixed origin, and differentiate in response to induction signals in their testis or ovary 

environment [64,65].

Germ cell fate commitment

Germ cells arise at the base of the allantois in the E6.25 embryo, migrate within the gut 

epithelium, and arrive in the gonad during the early stages of gonadogenesis. During these 

stages, the germ cell genome is stripped of most of its methylation [66]. Like ES cells, germ 

cells carry bivalent histone marks on many developmentally regulated genes [67•], are 

highly pluripotent, and can readily give rise to embryonic germ cells (EG cells) [68]. Fate 

determination in the germ cell lineage involves a repression of pluripotency and a 

commitment to differentiate as one of two specialized gamete precursors: spermatogonia or 

oogonia.
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Germ cells differentiate as spermatogonia or oogonia irrespective of their genetic sex, but 

based on cues from their somatic environment. Unlike the supporting cell lineage, germ cells 

at the bipotential stage express more genes associated with a male fate, than with a female 

fate [13], suggesting that female germ cells take the more divergent path at this stage of 

development. At E11.5, XX and XY germ cells have very similar transcriptomes, The only 

differences are detected in levels of a few Y-linked and X-linked genes [11••]. Regardless of 

these differences, both XX and XY germ cells are capable of responding to either male or 

female gonadal cues up until E12.5, after which their fate is fixed [69].

XX and XY germ cells enter meiosis in an ovarian environment, or in cases where they are 

lost in the mesonephros or adrenal. In contrast, in a testis environment germ cells arrest in 

G0 of the mitotic cell cycle [70]. Recently a molecular explanation for this behavior has 

emerged that provides both a repressor of meiosis in the XY gonad, as predicted by 

McLaren and Southee [69], and an activator of meiosis in the XX gonad, as proposed by 

Byskov et al. [71].

In XX gonads, retinoic acid (RA) signaling initiates meiotic entry via activation of Stra8 

(stimulated by RA gene 8). RA is synthesized in the mesonephros, and may be transported 

by the mesonephric tubules that are physically connected with the anterior end of the gonad. 

This could explain the anterior-to-posterior wave of Stra8 expression that triggers meiotic 

entry between E13.5 and E15.5 [72–74]. The timing of meiotic entry is controlled by 

polycomb complex 1 (PRC1), which represses expression of Stra8 prior to E13.5 in XX 

germ cells [75•]. Germ cells in the female gonad progress through leptotene, zygotene and 

pachytene, and arrest in diplotene near the time of birth.

RA is also produced from the mesonephros in XY embryos (as in XX), however, the P450 

enzyme CYP26B1 (cytochrome P450, family 26, subfamily b, polypeptide 1) is synthesized 

early in the male pathway by somatic cells in the testis, and functions to degrade RA and 

block activation of Stra8 and meiosis [76,77]. In mouse genetic models where Cyp26b1 is 

disrupted, germ cells enter meiosis in the testis [77,78].

Additional factors regulate the divergence of male and female germ cell fates. In addition to 

their role in somatic sex determination, the antagonistic signaling pathways, Wnt/Rspo and 

Fgf, also affect germ cell fate. Wnt/Rspo signaling acts through β-catenin to regulate 

proliferation of XX germ cells and promote their entry into meiosis [79]; whereas, loss of 

Wnt4 leads to an anterior to posterior loss of female germ cells [40•]. In contrast, loss of 

Fgf9, which is upregulated early in the Sertoli cell differentiation pathway leads to sex-

specific apoptosis of germ cells in the testis and up-regulation of meiotic markers [80,81].

FGF9 is required for the up-regulation of Nanos2 [81,82], a key RNA-binding protein (RBP) 

that is critical for initiating the male pathway in germ cells. RBPs, including NANOS2/3 

[83,84•], TDRD1, a tudor domain containing RBP [85,86], DND1 (dead end homolog 1) 

[87,88], and PUMILIO [89] play a prominent role in male germ cells. In the absence of 

Nanos2, male germ cells enter meiosis and/or undergo apoptosis [90]. NANOS2 and 

NANOS3 associate in the CNOT complex to control adenylation of multiple mRNA targets 

and promote degradation of mRNAs encoding meiotic genes [83,84•]. Dnd1 also promotes 
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translation of several negative regulators of the cell cycle, including P21 (Cdkn1a, cyclin-

dependent kinase inhibitor 1A) and P27 (Cdkn1b, cyclin-dependent kinase inhibitor 1B) 

[87,91]. Accumulation of negative cell cycle regulators is believed to bring male germ cells 

into mitotic arrest in G0, where they remain until perinatal stages when mitosis resumes 

prior to the establishment of the spermatogonial stem cell population [92,93]. Some 

evidence suggests that cell cycle arrest in male germ cells is critical to repress pluripotency 

and establish spermatogonial fate. Germ cells that fail to enter G0 by E15.5 in the male 

gonad are susceptible to teratoma formation, a strong indication that germ cells have not 

repressed their pluripotent state [87,94,95].

Although FGF9 also has been assigned a role in up-regulation of p15INK4B (Cdkn2b cyclin-

dependent kinase inhibitor 2B) [81], if both Fgf9 and Wnt4 are deleted, the XY gonad 

embarks on the testis pathway, and XY germ cells fail to enter meiosis and express normal 

markers of the male pathway [55]. This has been interpreted to mean that other Fgfs can 

compensate for this function of Fgf9, or that there are layers of antagonistic signals that 

control germ cell fate similar to those that control somatic cell fate.

Maintaining Sertoli or granulosa cell fate in adult life

Transdifferentiation from one committed fate to another is an unusual phenomenon that 

occurs naturally when germ cells are depleted from the adult ovary: in this situation 

granulosa cells transdifferentiate to Sertoli cell fate [96,97]. While transdifferentiation was 

regarded as an indirect effect of germ cell loss, in the past decade, several genes have been 

identified that are directly involved in active maintenance of supporting cell fate in adult 

life.

In the female gonad, FoxL2 plays a key role in maintaining ovarian fate postnatally. In 

cooperation with the estrogen receptors 1 and 2 (ESR1/2), FOXL2 antagonizes the male 

pathway by direct binding to the TESCO regulatory region of SOX9 to repress its 

expression. When FOXL2 is lost in adult life, granulosa cells transdifferentiate prior to germ 

cell loss, and theca cells also begin to produce testosterone [98]. Null mutations in Esr1/

Esr2, or in P450 aromatase (Cyp19a1) also result in transdifferentiation in the postnatal 

ovary accompanied by germ cell loss [99,100]. While it is difficult in these instances of 

transdifferentiation to disentangle the effects of germ cell loss, it is likely that they are due at 

least in part to direct effects of estrogen on maintenance of granulosa cell fate.

In the adult testis, DMRT1 (doublesex and mab-3 related transcription factor 1) binds to 

regulatory regions of testis-promoting and ovary-promoting genes. DMRT1 activates testis-

promoting genes such as Sox8, Sox9 and Ptgdr (prostaglandin D receptor), and represses 

ovary-promoting genes such as FoxL2, Wnt4, and Rspo1. DMRT1 may be important to 

antagonize the influence of RA, which is produced in the adult testis to drive entry of 

spermatogonia into meiosis, and may have a feminizing influence on Sertoli cells [101••]. 

These results suggest that maintenance of testis or ovary fate is an active process in adult 

life.
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Summary

Commitment of the bipotential gonad to testis or ovary fate is the result of antagonistic male 

and female pathways that compete to control the differentiation of supporting cell 

precursors, likely through regulation of SOX9 and β-catenin (Figure 2). Sertoli or granulosa 

cell fate commitment involves the activation of one program and the repression of the 

alternative pathway of development. The decision is then propagated across the gonad field, 

and controls the fate of other somatic lineages as well as the germ cell lineage. In the adult 

testis and ovary, transdifferentiation can occur between Sertoli and granulosa cell fates. 

Many differentiated cells in other organs share a common bipotential progenitor, however, it 

is unclear whether the phenomenon of transdifferentiation between differentiated fates 

occurs naturally in other systems, or whether it is specific to gonadal cells. It could be an 

evolutionary remnant of the ability of some fish to switch sex in adult life [102] or of some 

vertebrates’ ability to function as ‘natural hermaphrodites’ by maintaining a gonad with 

seasonally expanding ovarian and testicular regions such as the mole and alligator 

[103,104]. It will be interesting to see how this plasticity of cell fate is related to the 

epigenetic landscape at the bipotential stage, and in Sertoli and granulosa cells during fetal 

and adult life.
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Figure 1. 
Commitment to the male pathway involves the down-regulation of many genes associated 

with female development. Diagram depicting the change in the expression of each gene in 

the XX gonad (X-axis) and XY gonad (Y-axis) between E11.0 and E12.0. Both of these 

changes can contribute to sexually dimorphic expression. Line graphs show changes in 

expression of two representative male genes (Dhh and Sox9) and two representative female 

genes (Msx1 and Wnt4) in the XY (blue line) and XX (red line) gonads. Higher expression 

of the male pathway genes, Dhh and Sox9, occur primarily through up-regulation in the XY 

gonad. Sexually dimorphic expression of many of the genes in the female pathway, Msx1 

and Wnt4, occurs through down-regulation in the XY gonad. Adapted from Munger SC et 

al. [11].
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Figure 2. 
Commitment and maintenance of gonadal cell fate. In XX and XY gonads at the bipotential 

stage, supporting cell precursors are exposed to male and female promoting signals that 

antagonize each other. In the XY gonad, expression of Sry triggers up-regulation of Sox9 

and Fgf9, which activate the male pathway and repress signals that promote the female 

pathway (WNT4/RSPO1 and β-catenin). Supporting cell precursors commit to Sertoli cell 

fate and orchestrate testis development by promoting Leydig cell differentiation from 

steroidogenic progenitors, and regulating mitotic arrest in germ cells. In the XX gonad, in 

the absence of Sry to initiate the male pathway, Wnt4 and Rspo1 maintain β-catenin 

signaling to promote the female pathway. Supporting cell precursors commit to granulosa 

cell fate and orchestrate ovary development by promoting Theca cell differentiation from 

steroidogenic progenitors, and regulating meiotic entry in germ cells. Reinforcing signals 

(dotted lines) exist between somatic and germ cells in the developing testis and ovary. In the 

adult testis, Dmrt1 is required for maintaining Sertoli cell fate by repressing female 

promoting signals, while in the adult ovary, abolishing female promoting signals leads to 

loss of granulosa cell fate and up-regulation of Sox9 and other markers of Sertoli fate.
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