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Abstract
Accurate estimation of diffuse attenuation coefficients in the visible wavelengths Kd(λ) from

remotely sensed data is particularly challenging in global oceanic and coastal waters. The

objectives of the present study are to evaluate the applicability of a semi-analytical Kd(λ) re-

trieval model (SAKM) and Jamet’s neural network model (JNNM), and then develop a new

neural network Kd(λ) retrieval model (NNKM). Based on the comparison of Kd(λ) predicted

by these models with in situ measurements taken from the global oceanic and coastal wa-

ters, all of the NNKM, SAKM, and JNNMmodels work well in Kd(λ) retrievals, but the NNKM

model works more stable and accurate than both SAKM and JNNMmodels. The near-infra-

red band-based and shortwave infrared band-based combined model is used to remove the

atmospheric effects on MODIS data. The Kd(λ) data was determined from the atmospheric

corrected MODIS data using the NNKM, JNNM, and SAKMmodels. The results show that

the NNKMmodel produces <30% uncertainty in deriving Kd(λ) from global oceanic and

coastal waters, which is 4.88-17.18%more accurate than SAKM and JNNMmodels. Fur-

thermore, we employ an empirical approach to calculate Kpar from the NNKMmodel-derived

diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results

show that our model presents a satisfactory performance in deriving Kpar from the global

oceanic and coastal waters with 20.2% uncertainty. The Kpar are quantified from MODIS

data atmospheric correction using our model. Comparing with field measurements, our

model produces ~31.0% uncertainty in deriving Kpar from Bohai Sea. Finally, the applicabili-

ty of our model for general oceanographic studies is briefly illuminated by applying it to cli-

matological monthly mean remote sensing reflectance for time ranging from July, 2002-

July 2014 at the global scale. The results indicate that the high Kd(λ) and Kpar values are

usually found around the coastal zones in the high latitude regions, while low Kd(λ) and Kpar

values are usually found in the open oceans around the low-latitude regions. These results

could improve our knowledge about the light field under waters at either the global or basin

scales, and be potentially used into general circulation models to estimate the heat flux be-

tween atmosphere and ocean.
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Introduction
Sunlight provides the major energy source fueling for marine ecology in our blue planet. Due
to the fact that all benthic substrates should receive enough light to sustain photosynthesis for
primary production (conspicuous as sea grasses [1], algae and corals, and less conspicuous
such as the microflora thriving in sandy and muddy bottoms [2]), the light in the shallow
ocean should receive much more attenuation than it presently doses. Traditionally, the light
available in the water column in the visible parts of the spectrum (400–700 nm) is usually de-
fined as photosynthetically active radiation (PAR) [3, 4]. As a natural component of irradiance
arriving at the Earth, the PAR is an important factor that could influence the ecological pro-
cesses, heat budgets, and biogeochemical cycles in the upper layer of oceans [5, 6]. Generally,
the PAR attenuation is quantified as the diffuse attenuation coefficient of the downwelling
spectral irradiance (Kd(λ), where λ refers to wavelength) at wavelength 490 nm [3, 7]. However,
due to the fact that longer wavelengths are disproportionately absorbed in near-surface waters
[8], using Kd(λ) at a single band yields a poor approximation of PAR in the upper layers of
oceans [9]. To account for this, the spectral Kd(λ) should be known in the future.

At present there is a compelling need for a spectral Kd(λ) model for turbid waters, as the ex-
isting models are essentially applicable only for Kd(488) [10–12]. Recently, based on the radia-
tive transfer equation (RTE), Lee et al. [8] developed a semi-analytical Kd(λ) retrieval model
(SAKM) that can retrieve Kd(λ) from the known spectral absorption (a(λ)) and backscattering
(bb(λ)) coefficients. The model was further evaluated by dataset simulated using the widely ac-
cepted numerical code with input bio-optical conditions generated based on extensive mea-
surements made in the field [13], indicating that the model-derived Kd(λ) matched with the
simulation results very accurately. However, the retrieval accuracy of SAKMmodel strongly
depends on the estimation accuracy of quasi-analytical model (QAA)-derived a(λ) and bb(λ)
[8]. Actually, the QAA model is able to suppress the effect of total backscattering coefficient,
bb(λ), instead of eradicating it completely [14], which in turn lead to the violation of QAA
model in turbid coastal waters. Moreover, Wang et al. [10] and Chen et al. [11] also suggested
that some problems may be encountered, when the SAKMmodel is used to derive Kd(λ) from
turbid coastal waters. Therefore, a model which is capable of providing a higher level of accura-
cy for Kd(λ) estimation remains desired.

As the purely radiative transfer approach is hindered by the rigorous model’s inputs such as
the profile information of the inherent optical properties of the water and atmosphere, the em-
pirical methods are still a good choice if the optical behaviors of optically activity constituents
could be assimilated into the models [15]. One possible method in this direction is the applica-
tion of a neural network Kd(λ) retrieval model (NNKM). For example, Jamet et al. [16] re-
ported that the Kd(λ) could be retrieved from the remote sensing reflectance at MODIS bands
ranging from 412 to 667 nm using neural network model (JNNM). Unfortunately, MODIS sen-
sor has calibration and atmospheric correction problems at 412 nm [17, 18], which in turn de-
creases the accuracy and stability of JNNMmodel. Therefore, to improve the performance of
neural network models, it is necessary to optimize the model’s inputs.

The distribution of the PAR under sea-surface is mainly controlled by the waters’ optical be-
haviors expressed through the diffuse attenuation coefficient (Kpar), so the accurate estimation
of Kpar in the water column is critical for understanding the linkage between the physical pro-
cesses and biological processes in the euphotic zone [3, 19]. From an optical perspective, in ad-
dition to water molecules, light attenuation is mainly constrained by the concentration of three
independent optically activity constituents [20]: pigment, dissolved organic matter (CDOM)
and suspended particulate matters (SPM). Traditionally, the Kpar was measured by the ocean
color scientific community at 490 nm (K490) and the following primary study was investigated
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in 1970s [21]. Due to the wavelength selected absorbing characteristics of the optically activity
constituents [8, 22], once PAR penetrates into the sea, the spectral shape changes with the in-
crease of depth. For example, the PAR is easy to penetrate below the surface, but undergoes a
shift from the blue-green spectrum (400–500 nm) in open ocean waters to the green spectrum
(500–550 nm) in coastal waters, according to increasing water column turbidity [9, 23]. Ecolog-
ically speaking, the maximum optical depth at which phytoplankton can photosynthesize is de-
fined conventionally as 1–0.1% of the surface light [24], regardless of the longer wavelength,
red in this example, is rapidly attenuated in the water column relatively to the short wavelength
blue even for well-mixed waters [19], which in turn lead to the underestimation of PAR under
ocean-surface using the traditional K490-Kpar retrieval model.

For the estimation of Kd(λ) and Kpar, a model which is capable of providing a higher level of
accuracy remains desired. The specific goals of the study are as follows: (1) to assess the accuracy
of SAKM and JNNMmodels in retrieving Kd(λ) from the global oceanic and coastal waters; (2)
to improve the performance of SAKM and JNNMmodels by proposing the NNKMmodel; (3)
to develop an innovative NNKM-extended Kpar retrieval model (NKKM); and (4) to depict the
spatial and temporal variation of Kd(λ) and Kpar in global oceanic and coastal waters. The major
difference between this study and previous reports lies in that the spectral Kd(λ) in the visible re-
gions is developed and applied for retrieving Kpar from the global oceanic and coastal waters.

Data and Methods

Datasets used
A dataset consisting of 1873 paired (Tables 1 and 2), in situ measurements of multispectral
Rrs(λ) and Kd(λ) from diverse water types was used to train and test the accuracy and stability
of SAKM, JNNM, and NNKMmodels in deriving Kd(λ) from the global oceanic and coastal wa-
ters. These data came from various researchers around the United States and Europe and con-
tain mostly subsurface values of Rrs(λ) and Kd(λ). The training dataset was measured from two
measurement subsets collected by two independent research teams. The first subset (n = 1837)
was achieved by the NASA SeaWIFS Project as the NOMAD dataset [25], while the second sub-
set (n = 125) was collected from Bohai Sea during 2005 [11]. The testing dataset was also mea-
sured from two measurement subsets provided by another two independent research teams.

Table 1. Descriptive statistics of the field-measured Kd(λ) in training dataset, 1962 samples.

a. Calibration dataset taken from global oceanic and coastal waters, 1962 samples

Min Max Median Average SD

Kd(443), m
-1 0.009 4.114 0.072 0.201 0.417

Kd(488), m
-1 0.009 3.659 0.058 0.152 0.326

Kd(555), m
-1 0.025 3.311 0.009 0.152 0.240

Kd(667), m
-1 0.016 3.941 0.560 0.658 0.351

doi:10.1371/journal.pone.0127514.t001

Table 2. Descriptive statistics of the field-measured Kd(λ) in testing dataset, 174 samples.

Min Max Median Average SD

Kd(443), m
-1 0.035 2.338 0.229 0.350 0.442

Kd(488), m
-1 0.023 1.948 0.152 0.257 0.353

Kd(555), m
-1 0.064 1.426 0.138 0.227 0.260

Kd(667), m
-1 0.299 1.798 0.507 0.609 0.271

doi:10.1371/journal.pone.0127514.t002
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To evaluate the accuracy of NKKMmodel in quantifying Kpar, 664 samples consisting of re-
mote sensing reflectance (Rrs(λ)) and Kpar was obtained from NOMAD dataset. In addition to
these data, we collected 105 data points from China East Sea, China, 17 data points from Chesa-
peake Bay, USA, 21 data points from Ariake Bay, Japan, and 26 samples collected from Bohai
Sea, China. All of these datasets were consisting of synchronous Rrs(λ) and Kpar measurements
from above-surface and/or subsurface. These data were measured by various researchers around
United States, Europe, and Asia using various instrumentations, with all measurements closely
following rigorous and community-defined deployment and data processing protocols. To eval-
uate the accuracy of satellite-Kpar, three MODIS imageries scanned over Bohai Sea on September
1, 14, and 22 were collected in this study. These MODIS data were synchronized with the Bohai
Sea dataset. Finally, the five independent datasets (Table 3) were divided into three groups: (1)
the calibration dataset containing 664 samples, taken from NOMAD; (2) the validation dataset
consisting 143 samples, taken from the China East Sea, Chesapeake Bay, and Ariake Bay; and (3)
the match-up analysis dataset, consisting 26 samples taken from the Bohai Sea.

Construction of NNKMmodel
If properly initialized, the neural network model was able to yield accurate retrieval of Kd(λ) in
the turbid coastal waters [16, 26, 27]. A typical structure of neural network model includes an
input layer, one or more hidden layers and an output layer. The input layer only distributes the
input signals into the network, without processing them, but the nodes in the hidden layers
and in the output layer transform their input signal by an activation function. Therefore, the
neural network with no hidden layers could only be used to simulate the linear relationships,
while a single hidden layer with adequate nodes allowed the approximation of any function
that contained a continuous mapping from one finite space to another. Only for some particu-
larly complicated cases, two hidden layers were used, but there was absolutely no theoretical
reason to use more than two hidden layers, because more hidden layers would make the neural
networks be more prone to over fitting the data. Once the architecture of neural network
model is designed, the relationship between the inputs and outputs ultimately depends on the
weight values of the nodes. Generally, the weight values are determined by the supervised
learning technique.

It was well known that the increasing number of inputting parameters would result in an in-
crease of the “degree-freedom” of the model, which in turn may decrease the stability and accu-
racy of the neural network model [28]. Therefore, it was necessary to optimize the inputs of
neural network models. As [29] and Lee et al. [8] indicated that Kd(λ) could be denoted as a
function of a(λ) and bb(λ). Recently, Chen [14] suggested that a(λ) and bb(λ) could be retrieved
from logarithmic values of remote sensing reflectance (η(λ)) at 443, 488, 555, and 667 nm after
removing the Raman scattering effects. Moreover, many literatures [10–12, 30–32] reported
that Rrs(667)/Rrs(488) works better in turbid coastal waters, while Rrs(555)/Rrs(488) is more

Table 3. Descriptive statistics of the measured Kpar (m
-1) taken in NOMAD, China East Sea, Chesapeake Bay, and Ariake Bay, where Std refers to

the standard deviation.

Dataset Min Max Median Mean Std

NOMAD 0.005 0.825 0.077 0.127 0.125

China East Sea 0.058 0.342 0.167 0.171 0.058

Chesapeake Bay 0.403 0.792 0.670 0.611 0.142

Ariake Bay 0.284 2.176 0.427 0.546 0.402

Bohai 0.238 2.175 0.582 0.924 0.653

doi:10.1371/journal.pone.0127514.t003
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effectively in opening oceanic waters for Kd(490) estimations. Binding et al. [33] and D’Sa et al.
[34] proposed that red/green ratios work well in accounting for variations of suspended partic-
ulate matters in oceanic waters. These findings implied that the η(λ) at 443, 488, 555, and 667
nm could be used to construct the NNKMmodel for Kd(λ) retrieval. Therefore, the basic archi-
tecture as shown in Fig 1 is used to establish the NNKMmodel for estimations of Kd(λ).

The preparation of model inputs and determination of model architecture and parameters
are two important steps to model and simulate the Kd(λ) concentration in the global oceanic
and coastal waters using the NNKMmodel. The network was initialized using a training data-
set (Table 1). The weight values of NNKMmodel were calculated by a supervised learning ap-
proach, using a priori information about the actual output which corresponds to a set of
inputs. A back propagation learning procedure was used to iteratively compute the optimal
weights for neural network. The conjugate-gradient technique, an iterative optimization meth-
od adapted to multi-layer perceptron, was used as the back-propagation gradient. The activa-
tion function for hidden layers was a nonlinear hyperbolic tangent function, while the output
node was only applied with a bias transfer function. The architecture contained one hidden
layer with number of nodes varying from 1 to 50 was tested to find out the optimal architecture
for NNKMmodel. Overall considering the MRE value and number of neurons, the optimal ar-
chitecture was therefore composed of one hidden layer with 9 neurons.

Establishment of NKKMmodel
The Kd(λ) is the coefficient of the exponential attenuation of the spectral downward irradi-
ance [20]:

Edðl; zÞ ¼ Edðl; z ¼ 0ÞExp½�KdðlÞz� ð1Þ

Where, Ed(λ,z) is the downward spectral solar irradiance at wavelength λ and depth z. If the
visible spectral domain is considered, the PAR at depth z is traditionally defined as [35]:

PARðzÞ ¼
ð700

400

Eðl; z ¼ 0ÞExp½�KdðlÞz�dl ð2Þ

Fig 1. Basic architecture of the NNKMmodel used in this work.

doi:10.1371/journal.pone.0127514.g001
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Following the scheme of Eq (1), the vertical propagation of PAR is also commonly defined as:

Kpar ¼ � ln½PARðzÞ� � ln½PARð0Þ�
z

ð3Þ

Substitute Eq (2) into Eq (3), yields:

Kpar ¼ �
ln

ð700

400

wEExp½�KdðlÞz�dl
� �

z
ð4Þ

Where, wE refers to the ratio of solar irradiance at wavelength λ to the PAR just below the
sea-surface, whose value can be calculated using E(λ)/PAR(0). It is very difficult to find out a
general solution for Kpar in Eq (4), because this general solution not only relates to the varia-
tions of PAR at the top-of-atmosphere [35], but also associates with atmospheric optical be-
haviors such as light absorption and scattering [36]. However, Following Eq (4), we could
know that the Kpar is a function of Kλ. For simplicity, we assume that the Kpar may be approx-
imately expressed as:

Kpar ¼
Xn

i¼1

wiK
vi
li

ð5Þ

Where, wi and vi are the empirical coefficients at the ith wavelength. General speaking, no
simplified assumption can be made that is valid for all special cases existing in the natural
world, so no universal model can be used to describe the relationship between remote sensing
reflectance and Kλ with no uncertainty. These uncertainties will be inevitable to transfer from
the calculated Kd(λ) to Kpar, which in turn lead to the model-derived Kpar containing some
systematic and/or random noises due to the inaccuracy Kd(λ) retrieval results. Fortunately, it
is expected that the accuracy of Kpar retrieval model may be improved if the Kd(λ) and Kpar

estimations were combined together, because some noise generated in the Kd(λ) retrieval step
could be minimized during the procedures of the Kpar model initialization. Therefore, in this
study, we used the neural network model-derived Kd(λ) synchronizing with field-measured
Kpar data to initialize the NKKMmodel as shown in Eq (5).

Accuracy assessment
In this study, the root-mean-square of the ratio of the modeled-to-measured values is used to
assess the accuracy of the atmospheric correction. This statistic will be referred to asMRE and
is described by the following equation [11, 37, 38]:

AREi ¼
xmod;i � xobs;i

xobs;i

����
����� 100% ð6Þ

MRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ARE2
i

s
� 100% ð7Þ

Where, AREi is the relative uncertainty of the i
th observation, xmod,i is the modeled value of the

ith element, xobs,i is the observed value of the i
th element, and n is the number of elements.
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Results

Evaluation of SAKM and JNNMmodels
SAKM and JNNMmodels have been described in detail in various references [8, 16, 39].
SAKMmodel is a global algorithm that has been initialized using the global dataset [8, 40], so
the coefficients of this model would not be adjusted according to the bio-optical dataset collect-
ed in this study here. It was noteworthy that the SAKMmodel-required solar zenith angle was
computed for each station using information on time and location [41]. As Brewin et al. [41],
Lee et al. [8], and Chen et al. [39] indicated that SAKMmodel produced reasonable perfor-
mance against NOMAD data, only the weights of JNNMmodel were adjusted according to the
training dataset as shown in Table 1. Since the MODIS sensor has calibration and atmospheric
correction problems at 412 nm [17, 42, 43], the Kd(412) retrieval accuracy would not be pre-
sented and discussed in this study.

The model’s evaluation was based on comparison of the Kd(λ) predicted by SAKM and
JNNMmodels with field-measured Kd(λ), as shown in Fig 2. It was found that expect 667 nm
band, both SAKM and JNNMmodels performed reasonably well in deriving Kd(λ) from the
global oceanic and coastal waters. For example (expect 667 nm band), For Kd(λ) ranging from
0.009 to 4.114 m-1, the slopes of linear relationships between field-measured andmodel-predicted
Kd(λ) varied among 443–667 nm from 0.86 to 1.23, while the corresponding determination coef-
ficients did not smaller than 0.52. The determination coefficients had a significant band changing
pattern with values decreasing in the order of 555 nm>488 nm>443 nm>667 nm. Judging by

Fig 2. SAKM and JNNMmodels-derived plotting against field-measuredKd(λ) in global oceanic and coastal waters,1962 samples (1837 points
from NOMAD dataset and 125 points from Bohai Sea dataset).

doi:10.1371/journal.pone.0127514.g002
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determination coefficients, use of SAKM and JNNMmodels could account for 76–97% varia-
tions of Kd(λ) in the global oceanic and coastal waters. These findings implied that both SAKM
and JNNMmodels could be used to derive Kd(λ) from global oceanic and coastal waters.

However, some limitations could also be encountered, when the SAKM and JNNMmodels
were applied to retrieve Kd(λ) from training dataset. For example, for very clearly waters and
highly turbid waters, both SAKM and JNNMmodels became unstable and inaccurate. When
using SAKMmodel, the Kd(λ) was clearly overestimated in the low values (Kd(λ)<0.4 m-1),
while was significantly underestimated in the high values (Kd(λ)>0.6 m-1). The determination
coefficients of SAKM and JNNMmodels at 667 nm were very lower (<0.52), which may lead
to the result that both models could not meet the requirements for Kd(667) retrieval in the
global oceanic and coastal waters.

NNKMmodel training
Based on 1962 field samples, the model shown in Fig 3 was proposed as the optimal NNKM
model in quantifying Kd(λ) from global oceanic and coastal waters. It was found that the new
neural network model for retrieving Kd(λ) performed reasonably well with the determination
coefficients did not lower than 0.65. This was to say that use of NNKMmodel could account
for>65% variations of Kd(λ) in the training dataset. The determination coefficients had a sig-
nificant band changing pattern with values decreasing in the order of 488 nm>443 nm>555
nm>667 nm. For training dataset, the slopes of linear relationships between field-measured
and model-predicted Kd(λ) varied among 443–667 nm from 1.0 to 1.17. Judging by

Fig 3. NNKMmodel-derived plotting against field-measuredKd(λ) in global oceanic and coastal waters,1962 samples (1837 points from NOMAD
dataset and 125 points from Bohai Sea dataset).

doi:10.1371/journal.pone.0127514.g003
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determination coefficients, the NNKMmodel produced a superior performance to SAKM and
JNNMmodels. However, Fig 3 also revealed that the scatter plots of field-measured versus
NNKMmodel-derived Kd(λ) at 667 nm was significantly dispersed from 1:1 line, even though
the performance of SAKM and JNNMmodels in Kd(667) estimations was pronounced im-
proved by NNKMmodel. It seemed that the Kd(λ) values at 667 nm were much more difficult
to retrieve by SAKM, JNNM, and NNKMmodels than other wavelengths.

NNKMmodel validation and comparison
To investigate whether or not the SAKM, JNNM, and NNKMmodels of Kd(λ), developed for
global oceanic and coastal waters, perform well in optical complicated shelf seas, the dataset
taken from the Yellow Sea and East China Sea was used for model evaluations. Fig 4 and
Table 4 showed the scatter plots of SAKMmodel-derived versus field-measured Kd(λ) in test-
ing dataset (Table 2). It was found that the NNKMmodel produced an acceptable accuracy
(20.19%<MRE<29.17%) in deriving Kd(λ) from the Yellow Sea and China East Sea, even
though the field measurements in these shelf seas covered quite a wide variation of Kd(λ) (e.g.
0.03 m-1<Kd(490)<1.95 m-1). The slopes of linear relationship of field-measured vs. NNKM
model-derived Kd(λ) varied from 0.96 to 1.05, while the corresponding determination coeffi-
cients varied from 0.72 to 0.92. This was to say that use of NNKMmodel could account for
>72% variations of Kd(λ) in optically complex Yellow Sea and China East Sea. These findings
implied that the NNKMmodel did not require further optimization of the weight values of the
neural network to accurately estimate the Kd(λ) for the testing dataset collected from Yellow
Sea and China East Sea, even though the bio-optical properties of this dataset (Table 2) were
significantly different from the training dataset collected from the global oceanic and coastal
waters (Table 1). Therefore, it may conclude that if properly trained, the NNKMmodel could
yield accurate retrieval of Kd(λ) in the global oceanic and coastal waters.

In order to illuminate the advantages of NNKMmodel in Kd(λ) retrievals, the relationships
between SAKM and JNNMmodels-derived and field-measured Kd(λ) also presented here
(Table 4 and Fig 4). It was found that the SAKM and JNNMmodels worked well in deriving
Kd(λ) from Yellow Sea and China East Sea without further reinitializing the models’ empirical
coefficients and/or weights, with the exception of the SAKM and JNNMmodels-derived
Kd(667). Expect 667 nm band, the slopes of linear relationship between field-measured and
model-derived Kd(λ) varied from 0.77 to 1.12, while the MRE values varied from 26.92% to
31.32%. Use of SAKM and JNNMmodels could account for>52% variations of Kd(λ) at
MODIS blue and green bands in Yellow Sea and China East Sea. By comparison, the Kd(λ) re-
trieval accuracy had a significant band changing pattern with values decreasing in the order of
555 nm>488 nm>443 nm>667 nm. These finding implied that the both SAKM and JNNM
models could provide an acceptable Kd(λ) data at MODIS blue and green bands in Yellow Sea
and China East Sea without further optimize the models’ structure and empirical coefficients.

The Kd(λ) was significantly overestimated by SAKMmodel in the low values, while was
clearly underestimated in the high values. By comparison, the NNKMmodel had a superior
performance to both SAKM and JNNMmodels in deriving Kd(λ) from Yellow Sea and China
East Sea, especially at 667 nm. Use of NNKMmodel could decrease respective by 0.41–24.79%
and 1.77–45.07% MRE values from SAKM and JNNMmodels. Judging by MRE values, the
models’ retrieval accuracy had a changing pattern with MRE values decreasing in the order of
NNKMmodel>SAKMmodel>JNNMmodel. The relationship between ARE and Kd(λ) was
also presented to demonstrate the ability of the NNKM, SAKM, and JNNMmodels in estimat-
ing Kd(λ) in the Yellow Sea and China East Sea (Fig 5). It was found that the ARE value of the
NNKM and SAKMmodels decreased with the increasing Kd(λ) value, while the ARE value of
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JNNMmodel increased with increasing Kd(λ) value, but there is no statistically significant rela-
tionship between ARE value and Kd(λ). For 0.03 m

-1<Kd(490)<2.33 m-1, the ARE values of
the Kd(λ) predicted by the NNKM, SAKM, and JNNMmodels were below 165.99%. When
NNKM, SAKM, and JNNMmodels were applied to data at all bands together the model pre-
dicted Kd(λ) with a relative random uncertainty of 26.31%, 33.22%, and 41.85%, respectively.
The Kd(λ) at range of 0.1–1.0 m

-1 contributed greatly to MRE. These findings implied that all
of the NNKM, SAKM, and JNNMmodels could be used to retrieve Kd(λ) from shelf seas, but
the NNKMmodel (MRE = 26.31%) had a superior performance in comparison to both SAKM

Fig 4. Comparison of the NNKM, SAKM, and JNNMmodels-derivedKd(λ) with in situ measurements
from Yellow Sea and China East Sea (174 samples).

doi:10.1371/journal.pone.0127514.g004
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(MRE = 33.22%) and JNNM (MRE = 41.85%) models. Using the NNKMmodel for retrieving
Kd(λ) in the Yellow Sea and East China Sea decreased by 6.92% and 15.55%, respectively, from
SAKM and JNNMmodels.

Derive Kpar from NNKMmodel-derived Kd(λ)
NKKMmodel initialization. Most optical satellite sensors have calibration problems at

412 nm and near-infrared bands and/or performance of atmospheric correction was in these
part of the spectrum [17, 42]. In order to improve the practicability of Kpar retrieval using
ocean color satellite, the 412 nm band and near-infrared bands were avoided to use for con-
struction of NKKMmodel. Based on the synchronous field-measured Kpar and NNKMmodel-
derived Kλ, the recursive procedures proposed by Chen and Quan [44] were used to determine
the optimal coefficients of NKKMmodel, which must have the minimumMRE value. Based
on 664 samples provided by NOMAD dataset, the NKKM as shown in Fig 6 was proposed as
the optimal NKKMmodel in quantifying Kpar from the global oceanic and coastal waters. It

Table 4. Performance of SAKM, JNNM, and NNKMmodels in derivingKd(λ) from testing dataset collected from Yellow Sea and China East Sea dur-
ing 2003–2012, 174 samples.

Model Band (nm) R2 slope bias MRE (%)

SAKM 443 0.85 1.11 0.009 29.12

488 0.86 1.12 0.010 29.52

555 0.82 1.03 0.033 26.92

667 0.20 0.56 0.244 44.98

JNNM 443 0.52 0.86 0.107 31.32

488 0.81 0.96 0.033 31.30

555 0.78 0.77 0.060 27.95

667 0.62 0.60 0.444 65.26

NNKM 443 0.88 1.01 0.012 28.71

488 0.92 1.05 0.000 29.17

555 0.87 0.96 0.015 26.18

667 0.72 1.05 -0.036 20.19

doi:10.1371/journal.pone.0127514.t004

Fig 5. ARE values of Kd(λ) predictions plotted versusmeasured Kd(λ) in the Yellow Sea and China
East Sea (174 samples).

doi:10.1371/journal.pone.0127514.g005
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was found that the NKKMmodel was an effective predictor in retrieving Kpar with MODIS
spectral bands, whose determination coefficient was 0.94. This was to say that use of NKKM
model could account for 94% variations of Kpar for the NOMAD dataset. Therefore, it may
conclude that the NKKMmodel may be able to provide accurately estimation of Kpar for the
global oceanic and coastal waters.

NKKMmodel evaluation. Here, we present the evaluation of the performance of NKKM
model with MODIS spectral bands. The evaluation was based on comparison of the Kpar pre-
dicted by NKKMmodel with Kpar measured analytically for three independent datasets
(Table 3). The comparison of the measured and predicted estimates of Kpar by NKKMmodel
was presented in Fig 7. It was found that the NKKMmodel-derived Kpar was agreed well with
the corresponding field measurements. For Kpar ranging from 0.058 to 2.176 m-1, the ARE val-
ues of Kpar prediction did not exceed 32.06%. The slopes of linear relationships between
model-derived and field-measured Kpar varied among the datasets from 0.97 to 1.09, while the
corresponding determination coefficients varied from 0.81 to 0.97. This was to say that use of
NKKMmodel could account for>81% variations of Kpar in China East Sea, Chesapeake Bay,
and Ariake Bay. The NKKMmodel predicted Kpar with a relative random uncertainty across
the datasets from 11.65% to 15.10%. When it was applied to all four independent dataset in
Table 3 together, the model predicted Kpar with a relative random uncertainty of 20.17%. These
findings implied that the NKKMmodel did not require further optimization of mode structure
to accurately derive Kpar in bodies with widely varying bio-optical characteristics taken in
different regions.

To further evaluate the stability and accuracy of NKKMmodel for general oceanographic
studies, the profile of PAR values under water taken from China East Seas (75 samples) were
calculated using field-measured PAR(0) and NKKMmodel-derived Kpar following Eq (3). Fig 8

Fig 6. Scattering plots of NKKMmodel-derived versus field-measured Kpar for NOMAD dataset.

doi:10.1371/journal.pone.0127514.g006
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showed the comparison between average values of average values of field-measured and
model-derived PAR under sea waters. As expected, the average values of model-derived agreed
well with the field-measured PAR values under water, even though the prediction ARE values
increased with the increases of depth which was mainly caused by the wavelength selected ab-
sorbing and scattering behaviors of optically activity constituents. Therefore, the NKKM
model was an acceptable model in providing model-derived Kpar for oceanographer under-
standing the vertical variations of PAR under waters.

Model comparison. The algorithms of Morel and Saulquin have been described in detail
in various references [19, 45]. The measured remote sensing reflectance collected from
NOMAD, China East Sea, Chesapeake Bay, and Ariake Bay was fed into NNKMmodel to gen-
erate K490 data; The derived properties were then fed into the algorithms of Morel et al. [45]
and Saulquin et al. [19], and the results were finally compared with the field-measured proper-
ties. Following Fig 9, it was found that both Morel and Saulquin models were accurate for glob-
al oceanic and coastal waters. When these two models were applied to all four independent
dataset together, the models predicted Kpar with a relative random uncertainty of 25.0% and
26.5%, respectively. The Kpar below 0.08 m-1 contributed greatly to retrieval uncertainty. The
slopes of linear relationship between field-measured and models-derived Kpar were 1.03–1.14,
while the corresponding determination coefficients were 0.94. By comparison, the accuracy of
NKKMmodel were comparable with the models of Morel et al. [45] and Saulquin et al. [19].
Use of NKKMmodel could decrease by 4.83% and 6.34% MRE values fromMorel and Saul-
quin models, respectively. These findings implied that each of NKKM, Morel, and Saulquin
models produced acceptable accuracy (MRE<27%) in deriving Kpar from both oceanic and
coastal waters, but NKKMmodel worked better than both Morel and Saulquin models.

Fig 7. Accuracy evaluation of NKKMmodel in China East Sea, Chesapeake Bay, and Ariake Bay, respectively.

doi:10.1371/journal.pone.0127514.g007
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Fig 8. Comparison between the average value of model-derived and field-measured PAR under water based on 75 samples taken from China East
Sea.

doi:10.1371/journal.pone.0127514.g008

Fig 9. Accuracy estimation of models of Morel et al. [45] and Saulquin et al. [19] using dataset taken in NOMAD, China East Sea, Chesapeake Bay,
and Ariake Bay (n = 807).

doi:10.1371/journal.pone.0127514.g009
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Accuracy of satellite-derived Kd(λ) and Kpar products
The NNKM, SAKM, and JNNMmodels-derived Kd(λ) data was obtained from the MODIS
data after atmospheric correction method proposed by Chen et al. [42]. The accuracy of satel-
lite-predicted Kd(λ) was assessed by comparison the satellite-predicted with field-measured re-
sults. Nine MODIS imageries synchronizing with in situ measurements in Bohai Sea, Yellow
Sea, and China East Sea were collected for use in the experiments of accuracy evaluation. The
procedure proposed by Bailey and Werdell [46] was used to generate the satellite-predicted
Kd(λ) data for match-analysis.

Fig 10 and Table 5 showed the satellite-derived plotted against the field-measured Kd(λ)
within a ±3 hour period as the satellite passed over Bohai Sea, Yellow Sea, and China East Sea.
It was found that all of the NNKMmodel produced an acceptable performance in computing
Kd(λ) from MODIS data. Based on 36 samples extracted from nine different MODIS data, the
ARE value of Kd(λ) predicted by NNKMmodel was below 98.83%, with an average of
<29.44% of observed Kd(λ). The slope of the linear relationships between the NNKMmodel-
derived and field-measured Kd(λ) among wavelengths varied from 0.96 to 1.04, while the corre-
sponding determination coefficients were>0.83. This was to say that use of NNKMmodel
could account for>83% variations of Kd(λ) in Bohai Sea, Yellow Sea, and China East Sea.

By comparison (Fig 10 and Table 5), NNKMmodel (20.94%<MRE<29.44) worked better
than both SAKM (38.12%<MRE< 39.49%) and JNNM (31.56%<MRE< 40.94) models in de-
riving Kd(λ) fromMODIS data (Table 5). When the NNKM, SAKM, and JNNMmodels were
applied to data at all bands together the model predicted Kd(λ) with a relative random uncer-
tainty of 25.57%, 38.80%, and 36.78%, respectively. This was to say that use of NNKMmodel
could decrease by 13.23% and 11.21% MRE values, respectively, from SAKM and JNNMmod-
els. These findings implied that all of NNKM, SAKM, and JNNMmodels could be used to de-
rive Kd(λ) fromMODIS data in the global oceanic and coastal waters, but NNKMmodel had a
superior performance to both SAKM and JNNMmodels.

Using the NNKM satellite-derived Kd(λ) as the inputs of NKKMmodel, Fig 11 showed the
comparison between the field-measured and model-derived Kpar for independent dataset col-
lected from Bohai Sea during 2005. Based on 26 samples, it was found that NKKMmodel
worked well in deriving Kpar fromMODIS data taken from Bohai Sea, whose MRE value was
30.97%. The slope of linear relationship between field-measured and satellite-predicted Kpar

was 1.10, while the corresponding determination coefficient was 0.87. This was to say that use
of MODIS data with the NKKMmodel could account for 87% variations of Kpar in the Bohai
Sea. These findings implied that, provided that an atmospheric correction scheme for the visi-
ble bands was available, the extensive database of MODIS imagery could be used for quantita-
tive monitoring of Kpar in the oceans.

Spatial and temporal variations of Kd(λ) and Kpar in the global oceanic
and coastal waters
The MBPNNmodel was used to derive a climatological seasonal mean Kd(λ) for the global oce-
anic and coastal waters from the monthly mean MODIS remote sensing reflectance for the
time range from July 2002 to September 2013, as shown in Fig 12. It was found that the Kd(λ)
shows a large variation in the global oceanic waters from 0.0004 to 3.0 m-1, with an average
value of ~0.055–0.101 m-1. The high values, exceeding 1.0 m-1, were found in the coastal zones
such as the China coastal seas, while the low values of<0.03 m-1 were found in open oceans
such as the centers of the Atlantic and Pacific Oceans. These high values are caused primarily
by land-discharged sediment from inputting rivers, re-suspension of sediment by strong tidal
currents, and other factors. Milliman and Meade [47] indicated that rivers with large sediment
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load contributions of ~7×109 tons of suspended sediment to the ocean yearly, and most of this
total is derived from southern Asia. As a result, the coastal zones around southern Asia general-
ly exhibit higher Kd(λ) values than other regions, the values around southern Asia ranging
from 0.4 to 3.0 m-1.

Fig 12 also provides the spectral shape of the diffuse attenuation coefficient as a function of
the wavelength in the blue, green, and red regions in the global oceanic and coastal waters. In
the coastal regions, the Kd(λ) is very high and decreases as a function of the wavelength from
blue to the red band with the maximum at 443 nm. The high diffuse attenuation coefficients in
the visible regions are most likely due to the high concentrations of colored dissolved organic
matters and suspend sediments. In the clear open oceans, unlike the spectral shapes for the

Fig 10. Comparison of the satellite-derived Kd(λ) with in situ measurements from Bohai Sea, Yellow
Sea, and China East Sea (36 samples).

doi:10.1371/journal.pone.0127514.g010
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coastal zones, the diffuse attenuation coefficient in the blue regions was shown to be very low
(<0.03 m-1), but becomes higher in the green and red regions, and reached its highest point at
667 nm. By comparison, the diffuse attenuation coefficient in the coastal zones is much higher
than the opening oceans.

The cool deepening and warm shallowing of the mixed layer is the principle control of the
nutrient supply in the global oceanic and coastal waters [48], which in turn controls the growth
rates of primary production in the global oceanic waters [49]. As a result, the higher chloro-
phyll-a concentration is usually found in the summer [50], due to the fact that the deeper
mixed layer reaches down into the higher nutrient waters, bringing a significantly greater

Table 5. Comparison of satellite-derived with field-measured Kd(λ) in Bohai Sea, Yellow Sea, and China East Sea.

Model Band (nm) R2 slope bias MRE (%)

SAKM 443 0.81 1.80 -0.131 40.14

488 0.85 1.86 -0.144 38.21

555 0.86 1.72 -0.068 38.69

667 0.65 1.54 0.025 38.12

JNNM 443 0.74 1.03 0.283 39.49

488 0.69 1.17 0.162 40.94

555 0.78 1.03 0.094 34.32

667 0.66 0.92 0.322 31.56

NNKM 443 0.91 1.04 0.004 24.59

488 0.90 1.00 0.029 27.19

555 0.91 0.99 0.012 29.44

667 0.83 0.96 0.095 20.94

doi:10.1371/journal.pone.0127514.t005

Fig 11. Satellite-derived plotted against NKKMmodel-derived Kpar in Bohai Sea.

doi:10.1371/journal.pone.0127514.g011
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amount of nutrients into the mixed layer, which is a result of the higher sea surface tempera-
ture in summer [5]. It well known that the optical properties in the global oceanic waters are
mainly dominated by the variations of chlorophyll-a concentration [51]. Moreover, most of the
global waters belong to the category of oceanic waters. Therefore, the spatial and temporal vari-
ations of Kd(λ) in the global oceanic and coastal waters depend heavily on the changes of chlo-
rophyll-a concentrations in the open oceans [12]. As a consequence, in the global oceanic and
coastal waters summer is the season with the highest Kd(λ) values (~0.074–0.101 m

-1), while
winter has the lowest (~0.055–0.088 m-1) (Fig 12).

The NKKMmodel was used to derive climatological monthly mean Kpar for the global oce-
anic and coastal waters from the monthly mean MODIS remote sensing reflectance for the
time ranging from July, 2002 to July, 2015, as shown in Fig 13. As expected, the spatial and
temporal variations patterns of Kpar were similar with those Kd(λ). For example, the Kpar

showed a large variation in the global oceanic and coastal waters, ranging from 0.002 to 14.9
m-1; the coastal zone generally exhibited Kpar in the range of 0.3 to 14.9 m-1. The width of this
zone decreased from south to north with a mean width of about 30 km. The Kpar values from
0.09 to 0.3 m-1 were found at the low latitude regions in the Northern Hemisphere, while the
centers of Pacific Ocean, Atlantic Ocean, and Indian Ocean were characterized by low Kpar val-
ues (<0.06 m-1). Moreover, Fig 13 also showed the changing trends of longitude-averaged Kpar

values along the latitude in the global oceans, indicating that the Kpar values in the high-latitude
areas were much higher than the mid- and low-latitude regions. Moderate Kpar values were
found in the equatorial regions of the Atlantic and Pacific Oceans (5°S-5°N), due to the moder-
ate chlorophyll-a concentrations caused by the upwelling of deep, nutrient-rich, cool waters
from the divergence of the ocean water masses along the equator [52]. Moderate Kpar values
were found in the subtropical convergence zone (around 45°S), where cool, nutrient-rich Sub-
Antarctic water masses mix with warm, nutrient-poor subtropical waters [53].

Fig 12. Climatological seasonal meanKd(λ) in the global and coastal oceans (MBPNN-approach, 2002–2013).

doi:10.1371/journal.pone.0127514.g012
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Fig 13. Spatial and temporal variations ofKpar in the global oceanic and coastal waters.

doi:10.1371/journal.pone.0127514.g013
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Discussion
The retrieval accuracy of SAKMmodel was greatly dependent on the performance of the QAA
model. No simplifying assumption can be made that is valid for all special cases existing in the
natural world, although the QAAmodel proved to be robust for deriving inherent optical prop-
erties from most global oceanic and coastal waters and some turbid coastal waters [13]. More-
over, another limitation of SAKMmodel was that the a(λ) is determined using an empirical
model. This empirical approach was able to suppress the effect of bb(λ) instead of eradicating it
completely. As a result, the strong backscattering of suspended particles in turbid coastal waters
inevitably exerted a residual effect on the estimation accuracy, which may lead to the violation
of QAA model in these waters. As a result, SAKMmodel may be violated in some special cases,
where the bio-optical properties are different from these used for QAA model development. As
expect, although the SAKMmodel-derived was agreed well with the field-measured Kd(λ),
some limitations still could be found from our studies. For example, the Kd(λ) was significantly
overestimated by SAKMmodel in some low values, while was clearly underestimated in some
high values. The new Kd(λ) model was developed based on the in situ data obtained from the
NOMAD, Bohai Sea, Yellow Sea, and East China Sea. As a matter of fact, for this dataset the ab-
sorption coefficients for phytoplankton, suspended sediment, and colored dissolved organic
matter at the wavelength 490 nm ranges of around from 0.0008 to 1.2488 m-1, 0001 to 0.4718
m-1, and 0.0001 to 1.4818 m-1, respectively. It was found that the variations of optical proper-
ties of the dataset collected in this study are quite broad, therefore the NNKMmodel should be
applicable in quite a wide variety of global oceanic and coastal waters.

Kd(λ) was an apparent optical water property and thus was dependent on the angular distri-
bution of the underwater radiance distribution [8, 12]. The underwater radiance distribution
was altered not only by the absorbing and scattering properties of the water column, but also
by effects of variations of the sun zenith angles [54]. As a result, the effects of sun zenith angle
on Kd(λ) should be taken into account when use the physical models (e.g., models proposed by
Aas [29] and Lee et al. [8]) to derive Kd(λ) from a(λ) and bb(λ). However, our studies indicated
that the Kd(λ) could still be accurately (MRE<30%) derived from remote sensing reflectance
using neural network technology, even though the effects of solar zenith angle was not taken
into account during model construction. As a matter of fact, the remote sensing reflectance
was an apparent optical property whose value not only depended on inherent optical properties
of water column, but also depended on the environmental factors such as solar zenith angle.
Using the remote sensing reflectance as the inputs of neural network model, the effects of solar
zenith on the accuracy of NNKM and JNNMmodels-derived Kd(λ) could be minimized. Fig 14
showed the relationship between solar zenith angle and ARE value of NNKM and JNNMmod-
els-derived Kd(λ), indicating that there was no significant relationship between them (R2<0.01,
p<0.05). These findings implied that the effects of solar zenith angle on NNKM and JNNM
models’ Kd(λ) retrieval accuracy could be neglected, even though the solar zenith and Kd(λ)
values varied widely in this work.

Fig 15 showed the spectral diffuse attenuation coefficients collected from China East Sea
and Bohai Sea. It was found that in some samples, the Kλ decreased as a function of the wave-
length from blue to green, with the maximum at the blue band and then gradually increased as
increase of the wavelength from green to red bands; In other samples, the Kλ values were very
low in the blue and green bands, whereas the diffuse attenuation coefficient increased to the
red bands due to water absorption. Traditionally, the Kpar was expressed as a function of K490

[3, 19, 20, 45]. The underlying assumption of traditional K490-Kpar model was that the diffuse
attenuation coefficient at visible bands should be mathematically depended on that at 490 nm,
if the left item in Eq (5) could be approximated to the right items. However, no simplified
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assumption could be made that was valid for all special cases existing in the natural world. As a
result, the traditional model would be violated in some optically complex waters where the op-
tical properties were different from these used for model development.

Importantly, as the Kλ were the key inputting variables for NKKMmodel, the performance
of Kpar retrieval models strongly depended on the accuracy of retrieval Kλ model. Currently,
there were several existing models for computing Kλ or K490 such as Kλ retrieval model (inher-
ent optical properties (IOP)-Kλ model) proposed by Lee et al. [8] and K490 retrieval model (ap-
parent optical properties (AOP)-K490 model) proposed by Mueller [30]. Fig 16 showed the
performance of IOP-Kλ and AOP-K490 models in deriving Kpar from the datasets collected in
this study. It was found that combined with IOP-Kλ and AOP-K490 models, the NKKM, Morel,
and Saulquin models produced good performance in deriving Kpar from our datasets, whose
MRE values did not exceed 33%. The Kpar below 0.08 m-1 and above 0.5 m-1 contributed greatly
to retrieval uncertainty. By comparison, the neural network model-based KNNM, Morel, and
Saulquin models (20.17%<MRE<26.51%) produced a superior performance to IOP-Kλ and
AOP-K490 models-based KNNM, Morel, and Saulquin models (30.06%<MRE<32.42%). The
reasons to these results may be that the performance of neural network model produced a

Fig 14. Scattering plots of solar zenith versus ARE values of NNKM and JNNMKd(λ) retrievals.

doi:10.1371/journal.pone.0127514.g014

Fig 15. Spectral of diffuse attenuation coefficient from (a) China East Sea and (b) Bohai Sea.

doi:10.1371/journal.pone.0127514.g015
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superior performance to IOP-Kλ and AOP-K490 models in deriving Kλ from the global oceanic
and coastal waters. Therefore, in order to accurately retrieve Kpar from the global oceanic and
coastal waters, the Kλ fed to the procedures of the NKKMmodel should be accurately enough.

Finally, the calibration and validation datasets used in this study were taken from the
NOMAD, China East Sea, Ariake Bay, and Chesapeake Bay. Although the variations of optical-
ly active constituents are quite wide and therefore the NKKMmodel should be applicable in
quite a wide variety of global waters, it may be still insufficient to completely validate the accu-
racy of the NKKMmodel in other waters with different bio-optical properties found through-
out the world. Thus, it is concluded that the NKKMmodel should be used for estimating Kd(λ)
and Kpar in the global oceanic and coastal waters, but some further works about the model cali-
bration and validation with different dataset was still desired in the future.

Summaries
In this study we have proposed an approach to monitor the instantaneous diffuse attenuation
coefficients and application to monitor the spatial and seasonal variations of Kpar in the global
oceanic and coastal waters from space. The major difference between this study and previous
reports lies in that the spectral Kd(λ) in the visible regions is estimated directly from the high
temporal and spatial coverage of water-leaving apparent optical properties offered by the
MODIS satellite. Moreover, the performance of our model was compared with that of SAKM
and JNNMmodels in deriving Kd(λ) from global oceanic and coastal waters. The SAKM and
JNNMmodels produce an acceptable accuracy for retrieving Kd(λ) at blue and green wave-
lengths, but had a poor performance in deriving Kd(λ) from in the global oceanic and coastal
waters. In comparison to SAKM and JNNMmodels, our model produces a superior perfor-
mance in estimating Kd(λ) from global oceanic and coastal waters. These studies have proven
that the Kd(λ) model based on artificial neural network technology is a practical method for
processing satellite remote sensing data, although models using analytical semi-analytical ap-
proaches may map Kd(λ) distribution more efficiently.

Solar radiation available for photosynthesis regulated primary productivity, or the rate of
carbon fixed by marine ecosystems. The solar radiation penetration and availability in aquatic
systems could be expressed by Kpar, which is defined in terms of the exponential decrease of the

Fig 16. Scatter plots of field-measured versus IOP and AOPmodels-based models-derivedKpar.

doi:10.1371/journal.pone.0127514.g016
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ambient irradiance with depth. This work made a contribution to the ocean optical community
by providing improved capacity to retrieve Kpar from global oceanic and coastal waters. The au-
thors have evaluated the performances of two existing Kpar retrieval model models for the data-
sets collected from NOMAD, China East Sea, Ariake Bay, and Chesapeake Bay, and further
improved these for global oceanic and coastal waters using a NKKMmodel. The study results
indicate that all three models could provide an acceptable accuracy in quantifying Kpar from
global oceanic and coastal waters, but NKKMmodel produced a superior performance from
two existing models.

The Kd(λ) and Kpar were quantified from MODIS images after atmospheric correction using
a NIR-based and SWIR-based combined model. After comparison between the satellite-de-
rived and field-measured Kd(λ) and Kpar, it was seen that our model produces<31%MRE val-
ues in deriving Kd(λ) and Kpar from global oceanic and coastal waters. Moreover, the ARE
values of NNKMmodel-derived Kd(λ) were independent on the solar zenith angle, because
using the apparent optical properties such as remote sensing reflectance as the inputs of neural
network model, the effects of solar zenith on the retrieval results had been minimized. These
studies provide important insight for improving ocean color models and bio-optical models, as
well as for more accurate retrieval of Kd(λ) and Kpar in the global oceanic and coastal waters. Fi-
nally, our model is also proposed to retrieve the global climatological seasonal mean Kd(λ) for
the time range from July 2002 to September 2013. Due to the effects of river-discharged sus-
pended sediments, the Kd(λ) and Kpar around the coastal zones is always higher than that in
the oceanic waters. Due to the seasonal variations of chlorophyll-a concentration, the global
mean Kd(λ) and Kpar in the summer is usually higher than that in the winter. These results
were advantage for improving our knowledge about the light field under waters at the global
and basin scale.

Supporting Information
S1 File. The compute code of Kd spectral retrieval model developed in this study.
(RAR)
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