Skip to main content
. 2015 Jun 17;10(6):e0129072. doi: 10.1371/journal.pone.0129072

Table 1. Summary of currently available Cre/CreERT2-driver lines in zebrafish.

Nr. Cre-driver line Conditional Cre-driver line Reference
1 Tg(hsp70l:EGFP-cre)ku1   Thummel R, Burket CT, Brewer JL, Sarras MP, Jr., Li L, et al. (2005) Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 233: 1366–1377.
2 Tg(hsp70l:Cre)zdf13   [Feng H, Langenau DM, Madge JA, Quinkertz A, Gutierrez A, et al. (2007) Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br J Haematol 138: 169–175
3 Tg(zp3:cre; krt8:rfp)gz14   [Liu X, Li Z, Emelyanov A, Parinov S, Gong Z (2008) Generation of oocyte-specifically expressed cre transgenic zebrafish for female germline excision of loxP-flanked transgene. Dev Dyn 237: 2955–2962.
4   Tg(pax2a:CreERT2)tud101 Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS One 4: e4640
5   Tg(pax2a:CreERT2)tud102 Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS One 4: e4640
6 Tg(-1.5ins:Cre,-.58cryaa:Venus)s924   [Hesselson D, Anderson RM, Beinat M, Stainier DY (2009) Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci U S A 106: 14896–14901.
7 Tg(-1.5hsp70l:Cre)vu297   [6 Boniface EJ, Lu J, Victoroff T, Zhu M, Chen W (2009) FlEx-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47: 484–491.
8 Tg(-1.8myl7:Cre)vu300   [Boniface EJ, Lu J, Victoroff T, Zhu M, Chen W (2009) FlEx-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47: 484–491.
9   Tg(-3her4.1:ERT2-CreERT2)vu298a [Boniface EJ, Lu J, Victoroff T, Zhu M, Chen W (2009) FlEx-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47: 484–491.
10   Tg(-3her4.1:ERT2-CreERT2)vu298b [Boniface EJ, Lu J, Victoroff T, Zhu M, Chen W (2009) FlEx-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47: 484–491.
11   Tg(-3her4.1:ERT2-CreERT2)vu298c Boniface EJ, Lu J, Victoroff T, Zhu M, Chen W (2009) FlEx-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47: 484–491.
12   Tg(-3her4.1:CreERT2)vu299 Boniface EJ, Lu J, Victoroff T, Zhu M, Chen W (2009) FlEx-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47: 484–491.
13   Tg(-1myl7:ERT2-CreERT2-IRES-mCherry)be1 Jopling C, Sleep E, Raya M, Marti M, Raya A, et al. (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606–609.
14   Tg(Cau.Tuba1a:CreERT2,Cau.Tuba1a:CFP)mi19/+ Ramachandran R, Reifler A, Parent JM, Goldman D (2010) Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J Comp Neurol 518: 4196–4212
15 Tg(kdrl:Cre)s898   Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, et al. (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464: 108–111.
16   Tg(cryaa:DsRed,-5.1myl7:CreERT2)pd12 Liu J, Bressan M, Hassel D, Huisken J, Staudt D, et al. (2010) A dual role for ErbB2 signaling in cardiac trabeculation. Development 137: 3867–3875.
17   Tg(-14.8gata4:ERT2-CreERT2)pd39 Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, et al. (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601–605.
18 Tg(actb2:Cerulean-Cre)ct5000   Trinh le A, Hochgreb T, Graham M, Wu D, Ruf-Zamojski F, et al. (2011) A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev 25: 2306–2320.
19 Tg(lmo2:Cre)rj5   Zhou T, Wang L, Zhu KY, Dong M, Xu PF, et al. (2011) Dominant-negative C/ebpalpha and polycomb group protein Bmi1 extend short-lived hematopoietic stem/progenitor cell life span and induce lethal dyserythropoiesis. Blood 118: 3842–3852.
20 TgBAC(-25ltbp3:TagRFP-Cre)fb1   Zhou T, Wang L, Zhu KY, Dong M, Xu PF, et al. (2011) Dominant-negative C/ebpalpha and polycomb group protein Bmi1 extend short-lived hematopoietic stem/progenitor cell life span and induce lethal dyserythropoiesis. Blood 118: 3842–3852.
21 Tg(ela3l:Cre,cryaa:Venus)s932   Hesselson D, Anderson RM, Stainier DY (2011) Suppression of Ptf1a activity induces acinar-to-endocrine conversion. Curr Biol 21: 712–717.
22   Tg(-3.5ubb:CreERT2, myl7:EGFP)cz1702 Mosimann C, Kaufman CK, Li P, Pugach EK, Tamplin OJ, et al. (2011) Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138: 169–177.
23   Tg(EPV.Tp1-Ocu.Hbb2:CreERT2)jh12 Wang Y, Rovira M, Yusuff S, Parsons MJ (2011) Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing beta-cells. Development 138: 609–617.
24   Tg(actb2:GFP-CreERT2)jh29 Wang Y, Rovira M, Yusuff S, Parsons MJ (2011) Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing beta-cells. Development 138: 609–617.
25   TgBAC(cryaa:EGFP,tcf21:CreERT2)pd42 Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, et al. (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138: 2895–2902.]
26   Tg(cryaa:DsRed,-5.1myl7:CreERT2)pd10 Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, et al. (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138: 2895–2902.
27   Tg(Ola.Sp7:CreERT2-2A-mCherry)tud8 Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, et al. (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20: 713–724.
28   Tg(hsp70l:mCherry,CreERT2)tud104 Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, et al. (2011) Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 240: 108–115.
29   Tg(hsp70l:mCherry,CreERT2)tud105 Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, et al. (2011) Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 240: 108–115.
30   Tg(her4.1:mCherry,CreERT2)tud106 Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138: 4831–4841.
31 TgBAC(dbx1b:Cre-mCherry)nns13a   [Satou C, Kimura Y, Higashijima S (2012) Generation of multiple classes of V0 neurons in zebrafish spinal cord: progenitor heterogeneity and temporal control of neuronal diversity. J Neurosci 32: 1771–1783.
32 Tg(-2.8fabp10a:Cre,cryaa:Venus)s955   Ni TT, Lu J, Zhu M, Maddison LA, Boyd KL, et al. (2012) Conditional control of gene function by an invertible gene trap in zebrafish. Proc Natl Acad Sci U S A.
33 Tg(Mmu.Sox10-Mmu.Fos:Cre)zf384   [Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, et al. (2012) Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One 7: e47394.
34 Tg(-4.7sox10:Cre)ba73   Rodrigues FS, Doughton G, Yang B, Kelsh RN (2012) A novel transgenic line using the Cre-lox system to allow permanent lineage-labeling of the zebrafish neural crest. Genesis 50: 750–757.
35 Tg(-4.7sox10:Cre)ba74   Hammond CL, Moro E (2012) Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Front Endocrinol (Lausanne) 3: 91.
36 Tg(-4.7sox10:Cre)ba101   Rodrigues FS, Doughton G, Yang B, Kelsh RN (2012) A novel transgenic line using the Cre-lox system to allow permanent lineage-labeling of the zebrafish neural crest. Genesis 50: 750–757.
37   Tg(hsp70l.1:mcherry,CreERT2)jk67 Yoshinari N, Ando K, Kudo A, Kinoshita M, Kawakami A (2012) Colored medaka and zebrafish: transgenics with ubiquitous and strong transgene expression driven by the medaka beta-actin promoter. Dev Growth Differ 54: 818–828.
38   Tg(Ola.Sp7:TagBFP,CreERT2)pd45/+ Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22: 879–886.
39   Tg(dusp6:CreERT2,myl7:ECFP)b1230 Stewart S, Stankunas K (2012) Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev Biol 365: 339–349.
40 TgBAC(-25ltbp3:TagRFP-Cre)fb1   Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, et al. (2013) Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 140: 1353–1363.
41 Tg(kop:Cre-UTRnanos3,CMV:EGFP)ihb7   Xiong F, Wei ZQ, Zhu ZY, Sun YH (2013) Targeted expression in zebrafish primordial germ cells by Cre/loxP and Gal4/UAS systems. Mar Biotechnol (NY) 15: 526–539.
42   TgBAC(nkx2.5:ERT2-CreERT2)fb8 Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, et al. (2013) Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 140: 1353–1363.
43 Tg(sox10:Cre,myl7:EGFP)sq5   Ho Lee RT, Thiery JP, Carney TJ (2013) Dermal fin rays and scales derive from mesoderm, not neural crest. Curr Biol 23: R336-337.
44 Tg(tbx6l:Cre,myl7:EGFP)sq6   Ho Lee RT, Thiery JP, Carney TJ (2013) Dermal fin rays and scales derive from mesoderm, not neural crest. Curr Biol 23: R336-337.
45   Tg(tbx6l:CreERT2,myl7:EGFP)sq7 Ho Lee RT, Thiery JP, Carney TJ (2013) Dermal fin rays and scales derive from mesoderm, not neural crest. Curr Biol 23: R336-337.
46   Tg(sox10:CreERT2,myl7:GFP)t007 Mongera A, Singh AP, Levesque MP, Chen YY, Konstantinidis P, et al. (2013) Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development 140: 916–925.
47 Tg2(hsp70l:Cre)a134   Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, et al. (2013) Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140: 2835–2846.
48   Tg(amhc:CreERT2)sd20 Zhang R, Han P, Yang H, Ouyang K, Lee D, et al. (2013) In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498: 497–501.
49   Tg(pax2a:CreERT2)tud110 Hans S, Irmscher A, Brand M (2013) Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development 140: 1936–1945.
50 Tg(LOXP-CMV:Cre,CMV:EGFP)   Lin HJ, Lee SH, Wu JL, Duann YF, Chen JY (2013) Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction. Fish Physiol Biochem 39: 1525–1539.
51 TgBAC(gsx1:Cre)   Satou C, Kimura Y, Hirata H, Suster ML, Kawakami K, et al. (2013) Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons. Development 140: 3927–3931.
52 Tg(myl7:YFP-Cre)   Ding Y, Liu W, Deng Y, Jomok B, Yang J, et al. (2013) Trapping cardiac recessive mutants via expression-based insertional mutagenesis screening. Circ Res 112: 606–617.
53   Tg(fabp10a:CreERT2) Choi TY, Ninov N, Stainier DY, Shin D (2013) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146: 776–788.
54   Tg(TP1:CreRT2) Ninov N, Hesselson D, Gut P, Zhou A, Fidelin K, et al. (2013) Metabolic regulation of cellular plasticity in the pancreas. Curr Biol 23: 1242–1250.
55   Tg(krt4:CreERT2,myl7:EGFP) Lee RT, Asharani PV, Carney TJ (2014) Basal keratinocytes contribute to all strata of the adult zebrafish epidermis. PLoS One 9: e84858.
56   Tg(krtt1c19e:CreERT2,myl7:EGFP) Lee RT, Asharani PV, Carney TJ (2014) Basal keratinocytes contribute to all strata of the adult zebrafish epidermis. PLoS One 9: e84858.
57   Tg(krtt1c19e:CreERT2) Fischer B, Metzger M, Richardson R, Knyphausen P, Ramezani T, et al. (2014) p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish. PLoS Genet 10: e1004048.
58   Tg(krt4:CreERT2) Fischer B, Metzger M, Richardson R, Knyphausen P, Ramezani T, et al. (2014) p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish. PLoS Genet 10: e1004048.
59   Tg(kdrl:Cre-ERT2) Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, et al. (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci U S A 111: 1403–1408.

Cre- and CreERT2-driver lines available in zebrafish are listed in chronological order including citation.