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ABSTRACT

Motivation: To discover and study periodic processes in biological

systems, we sought to identify periodic patterns in their gene expres-

sion data. We surveyed a large number of available methods for

identifying periodicity in time series data and chose representatives

of different mathematical perspectives that performed well on both

synthetic data and biological data. Synthetic data were used to evalu-

ate how each algorithm responds to different curve shapes, periods,

phase shifts, noise levels and sampling rates. The biological datasets

we tested represent a variety of periodic processes from different

organisms, including the cell cycle and metabolic cycle in

Saccharomyces cerevisiae, circadian rhythms in Mus musculus and

the root clock in Arabidopsis thaliana.

Results: From these results, we discovered that each algorithm had

different strengths. Based on our findings, we make recommendations

for selecting and applying these methods depending on the nature of

the data and the periodic patterns of interest. Additionally, these

results can also be used to inform the design of large-scale biological

rhythm experiments so that the resulting data can be used with these

algorithms to detect periodic signals more effectively.
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1 INTRODUCTION

Many methods for detecting periodicity or patterns in biological

time series data exist, and these methods often come from scien-

tific fields outside of biology. Although these methods may

perform well for their original area of intended use, it is

often unclear how well they will perform on a given biological

dataset. In this study, we investigate the utility of four algo-

rithms. Ours is not the first effort to tackle this question of al-

gorithm selection:

In de Lichtenberg et al. (2005a), they compared the perform-

ance of their new method with five existing methods (visual

inspection, Fourier and correlation scores, partial least squares

regression, single-pulse model, cubic spline model and Bayesian

model) on three cell cycle datasets from Saccharomyces cerevisiae

by Spellman et al. (1998). They demonstrated that their new

method outperformed these other methods at identifying genes

from benchmark gene sets, which was attributed to including a

measure of amplitude in their scoring. As in many such studies,

they found that no single method performed the best across all

their benchmark sets.

Dequéant et al. (2008) analyzed the performance of five

algorithms [phase consistency, address reduction, cyclohedron

test, stable persistence and Lomb–Scargle (LS)] on the outputs

of the segmentation clock in Mus musculus. They compared

the top results of the algorithms with benchmark sets of

known cyclic genes. They then looked at the algorithm’s top

genes that were not in the benchmark sets to see if they had a

biological connection to known cyclic behaviors. Some methods

performed better in the first task, others performed better in the

second.

Zhao et al. (2008) analyzed the performance of three closely

related spectral analysis schemes (LS, Capon and missing-data

amplitude and phase estimation (MAPES)) on a cell cycle

dataset in S.cerevisiae. For their benchmarks, they used the list

of genes involved in the cell cycle from Spellman et al. (1998) and

the list of genes not involved in the cell cycle from de Lichtenberg

et al. (2005b). Their results showed that LS outperformed the

other methods.
Each of these studies measured the performance of algorithms

by how well they can identify known sets of genes for a given

periodic process (cell cycle, somitogenesis, etc.). To avoid the

potential biases and challenges in this approach, we augmented

our study of biological data (Section 2.2) with a study on syn-

thetic datasets (Section 2.1) so that we could quantify an algo-

rithm’s performance against known ground truth. We used

synthetic data to characterize algorithm performance for differ-

ent signal shapes, noise levels and sampling rates that are present

in different organisms and technologies. Synthetic data were also*To whom correspondence should be addressed.
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used to investigate the algorithm’s ability to recover period,
phase and amplitude.
Previous studies generally focused on one type of periodic

signal or one type of organism. Our goal is to study how
algorithms perform across a variety of organisms and periodic
processes. We used algorithms to analyze experimental data from

several systems: the cell cycle (Orlando et al., 2008) and meta-
bolic cycle (Tu et al., 2005) in S.cerevisiae, circadian rhythm
(Hughes et al., 2009) in M.musculus and the root clock

(Moreno-Risueno et al., 2010) in Arabidopsis thaliana. We
focused on microarray datasets and designed the synthetic data
to capture the characteristics of these data types.

After evaluating a large collection of algorithms, de
Lichtenberg (DL) (de Lichtenberg et al., 2005a), LS (Lomb,
1976; Scargle, 1982), JTK_CYCLE (JTK) (Hughes et al., 2010)

and persistent homology (PH) (Cohen-Steiner et al., 2010) were
selected for comparison. Several other algorithms were evaluated
but not included in further analysis because of similarity to tested

algorithms, being too general, using pre-processing algorithms,
lesser performance or no available implementation. These in-
cluded, but were not limited to, COSOPT (Straume, 2004),

ARSER (Yang and Su, 2010), LSPR (Yang and Zhang, 2011)
and address reduction (Ahnert et al., 2006).
The four algorithms were chosen because they derive from

four different mathematical methods for identifying periodicity.
They were also selected for their ability to work on datasets with
limited numbers of periods, as the microarray datasets we exam-

ine contain 2–3 periods. Each defines periodicity differently,
weights aspects of rhythmicity differently (e.g. amplitude, profile
shape) and responds differently to noise, irregular intervals and

missing data. Periodic signals are often described using the prop-
erties of cosine curves: period, amplitude and phase shift. Period
is the length of one cycle or, alternatively, the distance before a

pattern repeats. Amplitude is one half the peak-to-trough height.
Phase shift is the distance that the signal has been shifted in time.
Each of these algorithms returns a list of P-values or scores for

each of the time series evaluated based on some combination of
periodicity and/or amplitude.
The LS method was developed in the field of astrophysics

(Lomb, 1976; Scargle, 1982) as a Fourier style method, but
was designed to deal with data that exhibit irregular sampling,
which is typical of observational data in astronomy. It measures

the correspondence to sinusoidal curves and determines their
statistical significance (Glynn et al., 2006).
JTK has its origins in statistics but was adapted for biological

data in Hughes et al. (2010). It correlates pairs of points and then
computes the significance of the correlation to that of a reference
curve.

The algorithm described by de Lichtenberg (DL) (de
Lichtenberg et al., 2005b) was constructed specifically for the
yeast cell cycle and thus comes directly from biology. It measures

the periodicity of a signal, but also takes into account a measure
of the amplitude. It uses permutations to generate a background
distribution for measuring significance.
PH comes from the field of computational topology, an area

that lies at the intersection of mathematics and computer science
(Cohen-Steiner et al., 2010). PH examines persistence pairings
of minima and maxima along the curve. A single minima and

maxima is considered to be the ideal perfect oscillation;

additional smaller oscillations create more minima and maxima
that are interpreted as a less perfect curve.

2 RESULTS

2.1 Synthetic data

To quantify algorithm performance and to make valid compari-
sons between each algorithm’s results, we developed several sets

of synthetic data to test the algorithms (Supplementary Tables S1
and S2). Four types of analysis were performed using synthetic

data.
The synthetic dataset included non-periodic cases: flat and

linear; and periodic cases: cosine, two cosines with different per-

iods and amplitudes, cosine damped, cosine peaked, cosine with
a linear trend and cosine with an exponential trend (Fig. 1). The

start time was 0 and the end time was 200, with period lengths of
100 (two cycles in a profile), the amplitude at 50 (for peak to
trough of 100), and the phase shifts were chosen on a uniform

distribution of 0 to the selected period length. Gaussian noise
was applied to the profiles with standard deviation¼ {0, 25, 50}.
These data were sampled evenly with three different numbers of

samples¼ {50, 25, 17}. This dataset was evaluated by each of the
algorithms, which were run to search for a large range of periods,

with period lengths between approximately 40 and 160 (except
DL, which was set to the target period because it only searches
for one period). Note that DL uses permutations on the entire

dataset to compute periodicity scores, so its results can vary
based on the profiles included in the dataset and the number

of permutations.
In the first analysis, we tested each algorithm’s performance

on separating periodic from non-periodic signals with different

signal shapes, noise levels and sampling rates. For each case,
1000 profiles were generated. We examined the ability of the

algorithms to classify periodic versus non-periodic profiles
using receiver operator characteristic (ROC) plots (Fig. 2 and
Supplementary Figs S1–S3). ROC plots of algorithms visualize

the sensitivity and specificity on discriminating between positive
(periodic) cases and negative (non-periodic) cases as the P-value

or score cutoff is varied. These plots can inform the selection of
score or P-value cutoffs by looking at the trade-offs between
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Fig. 1. Test profiles for the synthetic datasets. The synthetic datasets

include (A) periodic profiles and (B) non-periodic profiles
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maximizing the true-positive rate (sensitivity) and minimizing the

false-positive rate (1�specificity). We examined degradation in

classification performance due to noise by looking at increasing

noise levels for a fixed number of samples (Fig. 2A). As expected,

performance degraded as noise increased; however, the perform-

ance on cosine two, damped and peaked profiles degraded much

more rapidly than for the other curves. We then examined the

degradation in classification performance due to sampling rate

by looking at decreasing numbers of samples for a fixed noise

level (Fig. 2B). Again, performance degraded as sampling rate

decreased. The performance on non-standard cosine curves (all

but cosine) degraded much more rapidly than the performance

on cosine curves. Both LS and JTK return P-values, which

change based on number of samples (see Supplementary Table

S3).
The second analysis examined whether the algorithms exhibit

a bias (for or against) any specific signal shapes. Each algorithm

has its own definition of what it considers to be a periodic signal,

which can be detected in how each algorithm scores different

shapes (Fig. 3). To understand these preferences, the distribu-

tions of scores for each shape were plotted with no noise. This

analysis demonstrated that with no noise, JTK, LS and PH all

give cosine curves the highest scores. JTK’s next preference is for

peaked profiles, whereas LS’s next preference is for damped pro-

files and cosine two. DL gave the best scores to some of the

trended exponential (which had scores ranging from best to

worst), followed closely by trended linear, and then similar

scores for cosine, peaked, damped and cosine two. As noise in-

creases, and to some extent as the number of samples decreases,

the biases by shape become less distinct or shift as the scores of

different shapes begin to overlap (Supplementary Fig. S4).

However, LS does maintain more bias for cosine, especially com-

pared with peaked shapes.

In the fourth analysis, we explored each algorithm’s ability to

recover the period length of the periodic signals. The ability to

accurately recover period will help in selecting profiles that

belong to a given periodic process. We constructed more syn-

thetic datasets using the previous specifications, but with varying

periods. We again applied increasing Gaussian noise with stand-

ard deviation¼ {0, 25, 50}. For each case, 100 profiles were

generated. We examined the differences between the algorithms’

estimates and the actual parameters used (Fig. 4). The algorithms

LS, JTK and PH all do well with no noise (SD¼ 0) for cosine

and cosine damped. Estimates for peaked are slightly less accur-

ate, and the trended curves are least accurate. As the noise in-

creases, the accuracy of the period estimation for the damped

and peaked curves degrades more rapidly than for the cosine

curves. PH shows the most rapid degradation in period
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odic signals for different shapes, noise levels and sampling rates.

(A) Performance for increasing Gaussian noise with SD¼ {0, 25, 50}

and number of samples¼ 50. (B) Performance for decreasing sampling

rates with number of samples¼ {50, 25, 17} and noise SD¼ 25. Used -ln

(P-value or score)
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estimation under increasing noise levels. Period estimates for all

curves are plotted, regardless of their periodicity score. In JTK,

profiles with the worst P-value (¼ 1) are assigned one period,

creating a band across the plot. In LS and PH, many curves with

poor periodicity scores have estimated periods that are lower

than the actual periods. DL was not tested here as it only tests

one target period. For analysis of phase shift, see Supplementary

Figure S5.

2.2 Biological data

For the biological data, we analyzed each algorithm’s ability to

detect transcripts of a given periodic process. Experimental data

from several systems were studied: the cell cycle (Orlando et al.,

2008) and metabolic cycle (Tu et al., 2005) in S.cerevisiae, circa-

dian rhythm (Hughes et al., 2009) in M.musculus and the root

clock (Moreno-Risueno et al., 2010) in A.thaliana. Each dataset

was run through the LS, JTK, DL and PH algorithms

(Supplementary Table S4).
We use these results to illustrate what preferences the algo-

rithms display for the four datasets. In Figure 5, the top five

scoring profiles from each algorithm on each dataset are

shown (Supplementary Figs S6–S9 for the top 20). All of the

probes were rank ordered on P-value (LS, JTK) or score (DL,

PH). In cases where several probes received the same score, we

selected curves of interest (number of probes with the same top

score: cell cycle PH: 253, metabolic cycle DL: 42, root DL: 530,

circadian DL: 52). The results show how different the datasets

are from one another (see Section 2 for more information). The

yeast cell cycle data are less densely sampled than the other

datasets (samples/cycles in the data: yeast cell cycle 13/2, yeast
metabolic 36/3, root clock 39/2, mammal circadian 48/2). The
plant root clock and mammal circadian data appear to be noisier

than the yeast datasets.
Shapes similar to cosine curves appear in the top scores from

LS; but we can see curves that look equally periodic, although

less similar to cosine shapes, in the other algorithms’ top scores.
The DL algorithm prefers higher amplitude profiles, as measured
by standard deviation, which works well for the yeast cell cycle

data: two of the top five scores shown are cell cycle genes
(NRM1 and CLB1). In the plant root clock, however, DL’s
top scoring expression profiles appear to be noisier than JTK

or LS’s top profiles. There are also many profiles that are more
peaked, which both JTK and DL score well from the yeast meta-
bolic cycle data. PH detects extremely peaked profiles, which

works well in the yeast metabolic data, but returns results that
do not appear to be periodic in the mammal circadian and the
plant root clock. For example, the genes Adam1b in the mouse

circadian and AT1G28400 in the root clock datasets appear to be
singular peaks not associated with periodic expression. However,
in the case of the yeast metabolic data, many of the top results

show steep peaks (e.g. AAH1); these appear to be truly periodic
profiles as they are regularly spaced and match the expected
period.

In some cases, the rankings between algorithms are similar,
whereas in other cases they can be dramatically different. One
of LS’s top five for the yeast cell cycle, ACF4, was ranked in

the best 5% by all algorithms. However, YDR239C was ranked
in the best 5% by JTK and PH but was ranked in the worst 10%
by DL.

To compare the algorithms that return significance measures,
JTK and LS, we counted the number of genes at several cutoffs
for P-values and q-values (Table 1). The q-values were calculated

using Benjamini–Hochberg false discovery rate (FDR)
(Benjamini and Hochberg, 1995). We used previously published
information about the number of periodic genes associated with

each of these processes for comparison. The number of genes
considered to be periodically expressed can vary by the type of
algorithm(s) applied, score/P-value cutoffs used, and any add-

itional filtering on other characteristics of the expression profiles.
For the yeast cell cycle data, 1271 genes were identified as having
periodic transcription using the de Lichtenberg method (Orlando

et al., 2008); 800 were identified using a Fourier algorithm with a
correlation measurement on a different yeast cell cycle dataset
(Spellman et al., 1998). For the yeast metabolic cycle, 3552 genes

were called periodic using a combination of the LS periodogram
and autocorrelation function (P50.05) (Tu et al., 2005). For the
root clock data, the authors identified 3493 periodic genes using

the intersection of LS (P50.015) and address reduction with
filtering by fold change and expression value (Moreno-Risueno
et al., 2010). For comparison, from our run of LS without filter-

ing or other methods, there are 10 509 profiles that have P50.01.
For the mouse liver circadian data, 3667 periodic genes were
identified by the intersection of the Fisher’s G and COSOPT

methods (q50.05) (Hughes et al., 2009); 5425 using JTK (BH
Q50.05) (Hughes et al., 2010).
When attempting to compare the results of several algorithms,

selecting sets of periodic genes by P-value or score poses an inter-
esting problem. Selecting one significance level can return genes
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sets with large differences in the number of genes considered peri-

odic. For example, in the yeast cell cycle data, using P50.05 gives

800 genes from JTK but only four genes from LS. Additionally,

the algorithms PH andDL do not returnP-values. Therefore, it is

difficult to directly compare P-values or scores returned by these

algorithms. See Supplementary Figures S10–S13 for the distribu-

tions of P-values or scores.

2.3 Recommendations

From these results and literature on the algorithms, we have

created a decision tree to recommend algorithms based on

their ability to distinguish periodic from non-periodic profiles

in synthetic data (Fig. 6). Sampling at least one full period is

recommended, and sampling across two periods is strongly pre-

ferred, as periodicity means that values are repeated at regular

intervals, which can only be verified with two full periods. LS can

handle data with one or less periods, but JTK and PH require at

minimum of one full period.
Considering the interactions of noise, sampling rate and shape

is complicated (See Supplementary Figs S1–S3 for ROC plots

with area under curve (AUC)). In an ideal situation with no

noise and high sampling rate, JTK, LS and PH performed well at

distinguishing periodic from non-periodic signals. At low noise

levels, PH worked well and its ignorance of shape can be used to

find peaked profiles. However, PH’s performance degrades more

rapidly than LS and JTK under increasing noise and decreasing

sampling rate. As noise increases or sampling rate decreases, the

ability to detect damped and peaked profiles degraded most rap-

idly for all the algorithms. Where the data are noisy (e.g.

Gaussian noise SD¼ 50 with a peak-to-trough amplitude of

100) and low sampling rate (e.g. 17 samples across two periods),

the algorithms perform most poorly in distinguishing damped,

peaked and cosine two signals from non-periodic signals, but

performed better on cosine and trended signals. In this case, it

would be advisable to repeat the experiment with a higher sam-

pling rate and/or lower noise levels. It would also be possible to

apply algorithms to correct for other signals in the data, such as

trending, damping or noise; however, we did not test these types

of preprocessing on the performance of periodicity detection al-

gorithms. Where high noise or low sampling rate (but not both)
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Table 1. The number of genes considered periodic at various cutoffs on

P-values and q-values

Dataset Algorithm P50.05 P50.01 q50.05 q50.01

Yeast cell cycle LS 4 0 0 0

JTK 800 208 0 0

Yeast metabolic cycle LS 3744 2660 2918 1819

JTK 4626 3828 4237 3396

Root clock LS 12 518 10 509 11 677 9322

JTK 13364 11 990 12 894 11 491

Mammal circadian LS 6570 3849 2845 1577

JTK 9991 6204 5607 3935
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exists, JTK and LS are able to differentiate between periodic and

non-periodic profiles for cosine. These algorithms also per-

formed reasonably well for trended data, but their performance

on damped or peaked data was much lower.
These algorithms also provide different features. Both LS and

JTK return measures of significance, whereas DL and PH return

scores. JTK is ignorant of amplitude, so it can be used to pick

out profiles of low or high amplitude without bias (as much as

those signals can stand out from noise). DL preferred high amp-

litude profiles, as measured by the standard deviation of the

profiles. However, this can also lead to a preference for profiles

with higher noise. Some algorithms can handle time series with

missing time points, such as JTK, and/or unevenly spaced time

points, such as LS. See Supplement for more information on

their features (Section 1) and information on the execution

times of their implementations (Section 2).

3 DISCUSSION

Our findings suggest that curve shape has the largest impact on

the scoring of biological signals by these periodicity detection

algorithms, especially under conditions of higher noise or lower

sampling rate. Algorithms such as LS, DL and JTK rely on

comparing data with reference curves (LS and DL assume a si-

nusoidal curve, JTK can use a user-specified curve); therefore,

they will perform most accurately when the data match the

assumptions specified by the reference curves. Additionally, as

noise increases or sampling rate decreases, the ability of these

algorithms to classify non-standard curve shapes degrades much

more rapidly than for true cosine shapes. This is helpful when a

specific type of shape is being sought and any other types should

be filtered out, but is limited in a more exploratory setting when

it is unknown what curve shapes a periodic process might

produce.
This also brings up the question of preprocessing the data to

remove factors external to the expression levels (noise, systematic

error, population averaging effects, etc). To perform preprocess-

ing, the type of external factor must be identified and quantita-

tively characterized in way that an algorithm can correct for it.

Additionally, computationally fitting and resampling data at a

higher rate can make a dataset more amenable to computational

approaches, but in the case of LS and JTK, would alter the

resulting P-values. Although these could increase performance

of periodicity detection algorithms, caution should be exercised

to avoid altering the underlying signal.

The applicability of the recommendations will vary depending

on how well the characteristics in the data are known and how

well the assumptions of these tests match these characteristics.

In cases where the characteristics of noise, the number of cycles

or shape are not known in the dataset, these recommendations

should be relaxed and we suggest using several algorithms.

Additionally, if the characteristics of the data are not similar to

the synthetic signals (e.g. profiles are more similar to a square

wave), then the recommendations may not perform as desired.

Given their different underlying ideas of periodicity, these

algorithms could be used together to recover a more comprehen-

sive set of periodic signals within a dataset. This is especially

useful when the signal attributes are not known beforehand.

Additionally, these algorithms also contain components for mea-

suring phase shift and amplitude that could be used separately,

and supplemented with other methods. Amplitude could be a

useful measure of regulation, and phase shift is an important

measure of timing. Being able to accurately estimate phase

shifts between transcripts can allow us to reconstruct timing

and suggest regulatory relationships.

Another issue is how to interpret and compare the P-values or

scores that are returned by these methods. The work of Kallio

et al. (2011) and Futschik and Herzel (2008) suggests that the

significance of the results is generally overestimated in statistical

methods where the null model may have more randomness than

exists in the data. This causes the significance values to be exces-

sively optimistic and overestimates the number of periodic genes.

Additionally, LS and JTK return P-values, and these P-values

change if the sampling density changes. Therefore, the periodicity

of two identical profiles, one with twice as many time points as

the other, is not directly comparable using the final P-values

from these algorithms.
As we have seen in this study, there are several algorithms that

could be run against biological datasets that will return results of

interest. To improve these results, there must be an understand-

ing of what information is available in the data, what answers are

being sought in the data and which algorithms will be best able

to bridge the gap between these two points.

4 MATERIALS AND METHODS

Lomb–Scargle (Lomb, 1976; Scargle, 1982): Sinusoidal curves of different

periods are compared with the time series to generate a measure of

correspondence. The significance of each of these is calculated, and the

period of the most significant fit is returned. The implementation was in

R and was from Glynn et al. (2006).

Fig. 6. Recommendations for selecting an algorithm based on the dataset’s noise, sampling rate and expected curve shapes. Start on the left to select the

type of noise, then sampling rate and then shape
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JTK_CYCLE (Hughes et al., 2010): A set of reference curves (sinus-

oidal, but can be defined) is generated to varying periods and phase shifts.

A pair-wise comparison of all points in a curve calculates whether they

are increasing or decreasing in relation to one another. The increasing/

decreasing pattern of the time series is then compared with the increasing/

decreasing pattern of each reference curve to determine the statistical

significance of the correlation. The period and phase shift for the refer-

ence curve with the most significant correlation is returned. The authors

of JTK (Hughes et al., 2010) provided an implementation in R.

de Lichtenberg (de Lichtenberg et al., 2005b): To measure the signifi-

cance of periodicity, a background distribution is generated by creating a

set of random profiles by permuting the profile’s expression values. The

P-value is the proportion of permuted profiles with Fourier score at least

as large as the original profiles observed Fourier score. For the signifi-

cance of regulation, the gene expression profile is compared with a set of

random profiles generated by selecting a value from a randomly selected

gene profile at each time point. The P-value for regulation (amplitude)

is measured as the proportion of permuted profiles with standard devi-

ation at least as large as a time series’ observed standard deviation. The

implementation in R from Orlando et al. (2008) was used (see

Acknowledgements).

Persistent Homology (Cohen-Steiner et al., 2010): PH normalizes the

data from 0 to 1, and then pairs (in a subtle way) minima and maxima of

a time series. A measure is obtained by summing the differences (persist-

ence) between the maximum and the minimum of each pair. If there is

only one minimum and maximum pair, the measure is one, indicating a

perfect oscillation. Additional oscillations in the time series will create

more pairs, which will increase the score, indicating a less perfect curve.

Sliding windows with widths equal to the range of periods are used; the

period with the lowest score is returned. The last author of Cohen-Steiner

et al. (2010) provided a Cþþ implementation of the PH algorithm (see

Acknowledgements). See Supplement for additional details.

In the yeast cell cycle data (GSE8799) (Orlando et al., 2008), there is a

stress response during the recovery period; we, therefore, ignored the first

two time points and looked only at the last 13 time points. There were

two replicates, for our analysis we used only the first replicate. The data

were provided by the authors. For the yeast metabolic data (GSE3431)

(Tu et al., 2005), we evened the sample times in the data by making the

sampling at every 24minutes. Any blanks in the data were filled with

zeros. The data were downloaded fromGene Expression Omnibus. In the

plant root clock data (GSE21611) (Moreno-Risueno et al., 2010), we

applied evenly spaced time points to approximate the inferred timing.

The data were provided by the authors. For the mammalian circadian

rhythm data (GSE11923) (Hughes et al., 2009), the data were provided by

the authors. See Supplement for additional details.
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