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Abstract
Background: Themechanisms bywhich volatile anaesthetics such as isoflurane alter neuronal function are poorly understood,
in particular their presynaptic mechanisms. Presynaptic voltage-gated sodium channels (Nav) have been implicated as a
target for anaesthetic inhibition of neurotransmitter release. We hypothesize that state-dependent interactions of isoflurane
with Nav lead to increased inhibition of Na+ current (INa) during periods of high-frequency neuronal activity.
Methods: The electrophysiological effects of isoflurane, at concentrations equivalent to those used clinically, were measured
on recombinant brain-type Nav1.2 expressed in ND7/23 neuroblastoma cells and on endogenous Nav in isolated rat
neurohypophysial nerve terminals. Rate constants determined from experiments on the recombinant channel were used
in a simple model of Nav gating.
Results: At resting membrane potentials, isoflurane depressed peak INa and shifted steady-state inactivation in a
hyperpolarizing direction. After membrane depolarization, isoflurane accelerated entry (τcontrol=0.36 [0.03] ms compared
with τisoflurane=0.33 [0.05]ms, P<0.05) and slowed recovery (τcontrol=6.9 [1.1]ms comparedwith τisoflurane=9.0 [1.9]ms, P<0.005) from
apparent fast inactivation, resulting in enhanced depression of INa, during high-frequency stimulation of both recombinant and
endogenous nerve terminal Nav. A simplemodel of Nav gating involving stabilisation of fast inactivation, accounts for this novel
form of activity-dependent block.
Conclusions: Isoflurane stabilises the fast-inactivated state of neuronal Nav leading to greater depression of INa during
high-frequency stimulation, consistent with enhanced inhibition of fast firing neurones.
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General anaesthesia is a composite pharmacological state of am-
nesia, unconsciousness, and immobility. Themolecular pharma-
cologyof this state involvesmultiple target proteins, prominently
including ligand-gated and voltage-gated ion channels.1–3 Opti-
mization of anaesthetic drug design and clinical use requires de-
tailed understanding of the roles of specific targets involved in

the therapeutic (amnesia, unconsciousness, immobility) and un-
desirable (cardiovascular and respiratory depression, neurotoxic)
effects of various anaesthetics.

A role for voltage-gated Na+ channels (Nav) in the modulation
of neurotransmission by general anaesthetics, is supported
by evidence that presynaptic blockade of Na+ current (INa)
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contributes to suppression of the release of multiple neurotrans-
mitters, by volatile anaesthetics (VAs).4–6 The widely used anaes-
thetic isoflurane blocksmultiple subtypes of Nav,

7–11 and reduces
action potential amplitude in rat hippocampal neurones12 and
isolated rat neurohypophysial terminals.13 Moreover, intrathecal
delivery of the highly specific Nav inhibitor tetrodotoxin (TTX) in
adult rats enhances isoflurane potency in producing immobiliza-
tion, a primarily spinal cord-mediated effect, whereas theNav ac-
tivator veratridine reduces isoflurane potency and antagonizes
the effect of TTX.14

Inhibition of Nav by diverse compounds, including local
anaesthetics, anti-arrhythmic drugs, antiepileptic drugs, and
neurotoxins, is state-dependent15–17: their ability to interact
with or bind to an ion channel is determined by the conform-
ational state of the channel (resting - open - inactivated). The
state of the channel is in part governed by membrane potential.
State-dependent inhibition of Nav by isoflurane is supported by
the observations that isoflurane inhibition is voltage-dependent,
and is characterised byenhanced inactivation and delayed recov-
ery from inactivation, which is consistent with stabilisation of
fast inactivation.8 10 18 If isoflurane stabilises the fast-inactivated
state, block of Nav should increase with repeated stimulation at
frequencies high enough for fast-inactivated channels to accu-
mulate, contributing to overall block of Nav. Block of Nav at clin-
ical concentrations of general anaesthetics was previously
considered too modest to be physiologically relevant.3 However,
this conclusion was based on studies of tonic block which would
be insensitive to possible ‘activity-dependent block’ and would
therefore underestimate the magnitude of isoflurane effects on
Nav at more physiologically relevant fast firing frequencies.

We examined activity-dependent block of isoflurane on
Nav1.2, the principal neuronal Nav subtype, and endogenous rat
neuronal Nav, using high-frequency stimulation protocols to
elucidate the underlying kinetic mechanism. We show that
isoflurane stabilises the fast-inactivated state of Nav, resulting
in a novel form of activity-dependent anaesthetic block. This ef-
fect contributes significantly to overall block of INa and supports a
role for Nav inhibition in presynaptic anaesthetic action, through
reduction of presynaptic action potential amplitude and conse-
quent neurotransmitter release.19

Methods
Anaesthetic solutions

External bath solutions were saturated with isoflurane (12–12.5
mM; Abbott Laboratories, North Chicago, IL USA) and diluted to
final concentrations of 0.45–0.5 mM in gas-tight glass syringes.
Isoflurane solutions were perfused using a pressure driven mi-
croperfusion system (ALA BPS-8; ALA Scientific, Westbury, NY
USA), positioned 100–150 µm away from the cell. Concentrations

of isoflurane sampled at the perfusion pipette tip weremeasured
using a Shimadzu GC-2010 Plus gas chromatograph (Shimadzu,
Tokyo, Japan), after extraction into octane (1:1 v/v), and reflected
∼10% loss from the syringe to the bath.11

Cell culture and Nav transfection of ND7/23 cells

Neuroblastoma ND7/23 cells (Sigma-Aldrich, St. Louis, MO USA)
were plated on 12-mm glass coverslips and incubated in a hu-
midified atmosphere at 37°C in 5% CO2, in Dulbecco’s modified
Eagle’s medium supplemented with 10% (v/v) fetal bovine
serum, 2 mM L-glutamine, 100 U ml−1 penicillin and 100 μg ml−1

streptomycin (all reagents from Sigma-Aldrich unless specified).
Wild-type rat Nav1.2a (accession number NM_012647) was

kindly provided by William Catterall (University of Washington,
Seattle, USA). TTX-resistance was engineered into Nav1.2a by
site-directed mutagenesis (F385S)20 (referred to as Nav1.2R) to
allow isolation from endogenous channels and expression in a
neuronal background, which is crucial to measuring the effect
of isoflurane on Nav in heterologous expression systems.11 Cells
were transiently transfected with Nav1.2R and pEGFP-N1 (Clon-
tech, Mountain View, CA USA) cDNA using Lipofectamine LTX
(Invitrogen, Carlsbad, CA USA) to allow identification of trans-
fected cells by eGFP fluoresence imaging. Experiments were per-
formed in the presence of 250 nM TTX (Sankyo Kasei, Tokyo,
Japan) to block endogenous INa.

Electrophysiological recording of ND7/23 cells

Whole-cell patch-clamp experiments were performed at room
temperature (23–24°C) using an Axopatch 200B amplifier (Axon
Instruments, Burlingame, CA USA), digitized via a Digidata
1321A interface, and analysed using pClamp 10.2 software
(Axon Instruments). Whole-cell currents were sampled at 50
kHz and low-pass filtered at 5 kHz. Whole-cell seal resistance
was 2–8 GΩ before patch rupture. Pipette resistance was 1.5–2.5
MΩ when filled with internal solution containing (in mM): 120
CsF, 10 NaCl, 10 HEPES, 10 EGTA, 10 TEA-Cl, 1 CaCl2, and 1
MgCl2 and adjusted to pH 7.3 (with CsOH) and 310 mOsm kg−1

H2O. External solution contained (in mM): 130 NaCl, 10 HEPES,
3.25 KCl, 2 MgCl2, 2 CaCl2, 20 TEA-Cl, 5 -glucose, 0.00025 TTX
and was adjusted to pH 7.4 with NaOH and 310 mOsm kg−1 H2O
with sucrose. The liquid–junction potential (∼7.8 mV) was not
corrected.

Only cells expressing 2–8 nA of peak current were analysed in
order to minimize space clamp and series resistance errors. Cap-
acitive transients were electronically cancelled and voltage error
was minimized using 70–80% series resistance compensation.
Series resistance was typically 2–4 MΩ and data were discarded
if >10 MΩ. Experiments began 5 min after attaining whole-cell
patch to allow equilibration of the pipette solution with the cyto-
sol. Voltage protocols were applied from a holding potential (Vh)
of −70 or −90 mV with 5-s intervals between sweeps. Protocols
were applied in control solution and again after 5 min perfusion
with isoflurane. Perfused cells showed stable responses (rundown
<10%) for up to 5 min in control experiments (data not shown).
Linear leak currents were subtracted using the P/4 method.21

Electrophysiological recording of isolated nerve terminals

Animal protocols were approved by the Institutional Animal Care
and Use Committee ofWeill Cornell Medical College and relevant
aspects of the ARRIVE guidelines and in the AVMA Guidelines
for Euthanasia of Animals (https://www.avma.org/KB/Policies/

Editor’s key points

• The mechanisms of the effects of isoflurane on neuronal
function are unclear.

• Isoflurane may inhibit neurotransmitter release through
effects on presynaptic voltage gated sodium channels (Nav).

• The effects of isoflurane were measured in Nav in neuro-
blastoma cells and in isolated rat nerve terminals.

• Isoflurane stabilized the fast inactivated state of neuronal
Nav.

• This was consistent with increased inhibition of fast firing
neurones.
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Documents/euthanasia.pdf). Neurohypophysial nerve terminals
were prepared as described9 with minor modifications. Adult
male Sprague-Dawley rats (Charles River Laboratories, Wilming-
ton, MA USA) were anaesthetized by slowly replacing the air in
their cage with regulated inflow from a tank of 80 CO2/20% O2 to
avoid hypoxaemia and exposure to potent anaesthetics. Upon
loss of righting reflex, animalswere swiftly killed by decapitation.
Animals showed no signs of distress with this technique. The
neurohypophysis was removed and gently homogenized in
270 mM sucrose, 10 mM HEPES, and 0.01 mM K-EGTA, pH 7.25,
using a 0.5-ml Teflon/glass homogenizer. The homogenate was
pipetted into a plastic 35-mm Petri dish and allowed to settle
for 5–8 min.

Dissociated nerve terminals were superfused with modified
Locke’s solution consisting of (in mM) 145 NaCl, 5 KCl, 2.2
CaCl2, 1 MgCl2, 10 HEPES, and 2 -glucose, pH 7.3 with NaOH.
Large terminals (11–16 µmdiameter), identified by their bright re-
fraction, were selected for study. An amphotericin B-perforated
patch-clamp technique was used to reduce rundown of INa, that
occurs with whole-terminal patch-clamp. Pipette tips were fire-
polished and coated with SYLGARD (Dow Corning Corporation,
Midland, MI USA) to reduce background noise and pipette capaci-
tance. Pipette resistancewas 3–7 MΩ, and seal resistancewas 1–5
GΩ. Pipettes were filled with a solution containing (in mM) 10

NaCl, 135 Cs-glutamate, 2 CaCl2, 1 MgCl2, 10 HEPES, 5 -glucose,
10 TEACl and 300–350 µgml−1 amphotericin B, pH 7.25withCsOH.

Gating model simulation and parameter estimation

A three-state Markov gatingmodel was designed in MATLAB v7.5
(TheMathWorks, Natick, MAUSA) by solving thematrix equation
X (t)=eQ(t) · X(0), where X(t) is a 3×1—state variable vector indicat-
ing the probability of resting (R), open (O), and the fast-inactivated
(IF) states at time t,X(0) is the initial state vector at time 0, andQ(t)
=the 3×3—state transition matrix of rate constants governing
the transition rates between all connected states, given the
R-O-IF gating scheme. Simulation paradigms involved two peri-
ods, or a repetitive sequence of these periods when addressing
pulse trains, where membrane voltage was initially Vh followed
by a depolarized pulse triggering channel activation. Parameter
estimation used a least-squares method (MATLAB Optimization
Toolbox 4.1; The MathWorks).

Statistical analysis

Data were analysed using Prism v6.05 (Graph-Pad Software Inc.,
San Diego, CA USA) and SigmaPlot 6.0 (SPSS Science Software
Inc., Chicago, IL USA). Conductance (G) values were derived
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Fig 1 Effects of isoflurane on activation and inactivation properties of brain-type sodium channel Nav1.2R in a neuronal cell line. () Representative whole-cell

Nav1.2R current traces in the absence (left) or presence (right) of 1.5 MAC isoflurane using the protocol in inset. () Normalized peak current (INa) plotted against

test potential in the absence (CTL) or presence (ISO) of isoflurane [mean (), n=7, *P<0.05, **P<0.01, ****P<0.0001 compared with respective control value by two-

way ANOVA]. () Representative current traces in the absence (left) or presence (right) of isoflurane using the protocol in inset to measure steady-state fast

inactivation (prepulse to −60 mV indicated with a dashed line). () Steady-state fast inactivation (n=6), where INa at 0 mV was normalized to the maximum INa

for each condition (INa/INamax) and normalized conductance (G/Gmax) values [mean (), n=7] were plotted against the voltage command and fit with a

Boltzmann function.
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from the I−V relationship using the equation G=I/(V−Vrev), where
I is the peak INa at a given voltage (V) andVrev is themeasured Na+

reversal potential. Voltages at half-maximal activation (V½act)
were obtained from fitting the data for each cell to a Boltzmann
equation of the form G/Gmax=1/[1+exp(V½act−V/k)], where G/
Gmax is the normalized fractional conductance and k is the
slope factor. The voltage at which fast inactivation is half-max-
imal (V½) was measured by fitting normalized steady-state INa

values to a Boltzman function, of the form INa/INamax=1/[1+exp
(V½−V/k)]. Time course data were fitted to the mono-
exponential function Y=exp(−τ*n)+AP, where τ is the time con-
stant, AP is the plateau and n is stimulus number. To determine
the kinetics of macroscopic inactivation the decay phase of the
current trace was fit with a bi-exponential equation, of the form
A1 · exp(–t/τ1) +A2 · exp(−t/τ2)+B, where An is the nth component
amplitude, B is the plateau, t is time and τn are time constants.

Data are expressed as mean and standard deviation (), and
were analysed using two-tailed paired Student’s t-test or ANOVA
with post hoc testing as indicated,with statistical significance set
as P=0.05.

Results
We first measured inhibition of peak Na+ current (INa) by a clinic-
ally relevant concentration of isoflurane. Fig. 1 showswhole-cell
Nav1.2R currents recorded from ND7/23 cells in the absence or
presence of isoflurane at a concentration that produces anaes-
thesia in rats [0.42 mM; equivalent to ∼1.5 times MAC (minimum

alveolar concentration of anaesthetic required to abolish move-
ment upon a painful stimulus in 50% of subjects)].22 Current
was activated by a series of voltage steps from −50 to +50mV pre-
ceded by a 50-ms prepulse to −100 mV to relieve channel inacti-
vation. Isoflurane inhibited peak INa at test potentials of −10–+40
mV [n=7, *P<0.05, two-way (voltage x drug) ANOVA with Sidak’s
multiple comparisons test], without altering the current-voltage
(I−V) relationship; maximum INa for both control and isoflurane
conditions occurred at 0 mV (Fig. 1).

The effect of isoflurane on steady-state inactivation was
determined by eliciting currents at 0 mV after a 50-ms prepulse
to voltages from −100 to −20 mV (Fig. 1). Normalized INa/INamax
values reflected the fraction of channels inactivated during the
prepulse. As isoflurane alters the voltage-dependence of Nav1.2
gating,8–10 we plotted conductance (G) and steady-state inactiva-
tion against voltage (Fig. 1). Isoflurane shifted the voltage-
dependence of steady-state inactivation in a hyperpolarizing
direction [V½ control= − 55.5 (2.1) mV; V½ isoflurane= − 59.3
(2.0) mV, n=6, P<0.001, by paired Student’s t-test]. The voltage-
dependence of activation was not affected [V½act control= − 15.3
(2.7) mV; V½act isoflurane= − 15.4 (2.0) mV, n=6, n.s.]. These
data suggest that isoflurane inhibits peak INa by increasing the
fraction of inactivated channels at normal resting membrane
potentials.

As neuronal firing frequency depends in part on how fast Nav
can cycle through their various conformational states, we mea-
sured the time-course of recovery from inactivation (Fig. 2).
Peak INa was recorded in response to two 5-ms pulses to 0 mV,
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where the duration between the two pulses was varied. Recovery
time-courses were fit with a mono-exponential function in both
control and isoflurane conditions, indicating that channels
predominantly entered a single ‘fast’-inactivated state and not
any ‘slow’-inactivated states. Isoflurane increased the time re-
quired for full channel recovery at a hyperpolarized Vh of −90
mV [τcontrol=3.1 (0.6) ms; τisoflurane=3.9 (0.8) ms, n=6, P<0.05 by
paired Student’s t-test]; this effect was enhanced at more

physiological Vh [recovery at −70 mV, τcontrol=6.9 (1.1) ms;
τisoflurane=9.0 (1.9) ms, n=7, P<0.005 by paired Student’s t-test]
(Fig. 2 and ).

We posited that this delay in recovery from inactivation after
membrane depolarizationwould lead to progressive inhibition of
INa during trains of action potentials. We tested this by adminis-
tering depolarizing stimuli at 50 Hz (Fig. 3), normalizing INa of
each pulse to that of the first pulse (Pulsen/Pulse1) to remove
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Fig 3 Effects of isoflurane on brain-type sodium channel Nav1.2R expressed in a neuronal cell line stimulated at high-frequency. () Representative current traces in

response to a 50 Hz train of 5-ms depolarizing pulses to 0 mV from a Vh of −70mV in the absence (left) or presence (right) of 1.5 MAC isoflurane (protocol in inset). ()
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116 | Purtell et al.



the effect of resting block by isoflurane (Fig. 3 and ). The
reduced INa at the 10th pulse was thus ‘activity-dependent’ as a
result of repeated membrane depolarization. For 5-ms pulses
delivered at 50 Hz, from a Vh of −90 mV, isoflurane reduced the
fraction of current at Pulse10 (Pulse10/Pulse1) from 0.90 [0.03] to
0.85 [0.03] (n=6, P<0.001). From a Vh of −70mV, isoflurane reduced
Pulse10/Pulse1 from 0.68 [0.08] to 0.53 [0.11] (n=5, P<0.0005)
(Fig. 3). For 15-ms pulses delivered at 50 Hz from a Vh of −90
mV, isoflurane reduced Pulse10/Pulse1 from 0.56 [0.06] to 0.45

[0.06] (n=6, P<0.0005) and from a Vh of −70mV, isoflurane reduced
Pulse10/Pulse1 from 0.28 [0.07] to 0.18 [0.08] (n=6, P<0.0001)
(Fig. 3). Activity-dependent block was not seen in time control
experiments, which used a mock perfusion to ensure the reduc-
tion in INa was as a result of isoflurane block and not experimen-
tal time (data not shown).

Block was increased by more depolarized Vh and shorter re-
covery intervals, conditions that promote inactivation, implicat-
ing stabilisation of fast-inactivation as the mechanism of
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activity-dependent block. This mechanism predicts that higher
frequency stimulation will enhance channel block. To test this
prediction we examined the pulse train responses with 100 Hz
frequency (Vh=− 90 mV, 5-ms pulses, data not shown), in control
and isoflurane which we compared with those at the 50 Hz fre-
quency (Fig. 3). To focus on the fractional block of channels
available for opening in control at near steady-state we applied
the following calculation: [fractional block=(1− (ISO P10)/(CTL
P10))]. Increasing the stimulation frequency from 50 to 100 Hz
more than doubled the fractional block by isoflurane [50 Hz,
0.058 (0.018); 100 Hz, 0.137 (0.034), n=6, P<0.001, data not
shown]. The results provide additional support for the activity-
dependent block mechanism.

We measured the effect of isoflurane on the kinetics of
inactivation by comparing the rates of macroscopic INa decay.
We normalized current traces to peak INa of paired control and
isoflurane experiments and fit the decay phases with a double
exponential function (Fig. 4, inset). The majority of the decay
phase (∼95%) could be described by the fast time constant (τ).
Isoflurane reduced the fast τ from 0.36 [0.03] ms in control to
0.33 [0.05] ms with isoflurane (n=5, P<0.05, paired Student’s
t-test). Isoflurane had little effect on the slow time constant
(2.11 [0.99] for control; 2.93 [1.67] for isoflurane, n=5, n.s.)
(Fig. 4). These results are summarized in Supplementary
Table S1 and are consistent with isoflurane enhancing fast

inactivation or promoting a unique inhibited state with entry
rates similar to that of fast inactivation.

We investigated the onset of isoflurane inhibition using a
double-pulse protocol (Fig. 4). Conditioning pulse durations
(Pulse 1) greater than 3 ms were used, which typically produce
complete channel inactivation. Consequently, the protocol briefly
(2 ms) returns to Vh to allow partial recovery of fast-inactivated
and inhibited channels, which inversely reflect the degree of in-
activation and inhibition induced by Pulse 1. In control condi-
tions, longer Pulse 1 durations reduced fractional INa (Pulse 2
normalized to Pulse 1), reflecting a growing population of inacti-
vated channels that fail to fully recover between pulses. Isoflur-
ane depressed fractional INa for all Pulse 1 durations relative to
control (Fig. 4). To investigate the time course of inhibition
onset, we normalized the isoflurane response to that of control
(Fig. 4). The response reached an apparent plateau at around
10 ms and was well fit by a mono-exponential function with ki-
netics [τ=2.43 (1.62) ms, AP=0.76 (0.04), n=8], comparable with
fast inactivation. These findings further support the involvement
of fast inactivation in isoflurane action.

We examinedwhether activity-dependent block by isoflurane
occurs in isolated rat neurohypophysial nerve terminals, an in-
tact preparation that contains endogenous nerve terminal Nav
channel complexes. Isoflurane produced activity-dependent
block of normalized peak INa at a stimulation frequency (50 Hz)
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and pulse duration (5 ms) that produced minimal decrements in
control (Fig. 5). Isoflurane produced rapidly developing activity-
dependent block, evident in enhanced reduction in plateau amp-
litude of normalized peak INa (Fig. 5). At a Vh of −90mV, the frac-
tional peak of the last pulse of the train was reduced from 0.94
[0.02] in control to 0.91 [0.03] with isoflurane (n=8, P<0.05), and
at a Vh of −70 mV, from 0.82 [0.08] for control to 0.63 [0.12] for iso-
flurane (n=8, P<0.001). Combined with resting block, activity-de-
pendent block significantly enhanced overall inhibition of INa

by isoflurane with repetitive stimulation.
We constructed a simple gating model to examine whether

stabilisation of fast inactivation is sufficient to quantitatively
account for our experimental observations. Figure 6 shows a 3-
state (R-O-IF)Markovmodel, inwhich isoflurane accelerates transi-
tions fromopen to fast-inactivated states and slows recovery from
fast-inactivated states upon repolarization. Rate constants kRO (3.6
ms−1) and kOI (control, 2.77 ms−1; isoflurane, 3.03 ms−1) were de-
rived from mono-exponential fits to activation (not shown) and
fast-inactivation (Fig. 4) time courses. Model parameters derived
from empirical responses, demonstrate that the model accounts
for changes in macroscopic current time course during single de-
polarizations (Fig. 6). The derived empirical time course of isoflur-
ane inhibition during pulse trains (Fig. 6 and ) was well

accounted for by the R-O-IF model, using estimated values of kIR
(control, 89.4 s−1; isoflurane, 59.7 s−1) comparable with those ob-
served experimentally (control, 137 s−1; isoflurane, 100 s−1, see
Fig. 2). We conclude that stabilisation of the fast-inactivated
state is sufficient to quantitatively account for our experimental
observations of activity-dependent block of INa by isoflurane.

Discussion
We show here that isoflurane enhances activity-dependent
depression of INa in both brain-type Nav1.2 and endogenous
nerve terminal sodium channels. This novel anaesthetic effect
on Nav contributes significantly to overall block during high-
frequency stimulation. This should lead to greater sensitivity to
isoflurane of fast firing neuronal networks, including depression
of presynaptic excitability and reduced neurotransmitter release.
Use of both a neuronal expression system and neuronal tissue,
allowed us to demonstrate activity-dependent block of the
major neuronal Nav subtype and of endogenous nerve terminal
Nav subtypes in situ, in a physiological context as heterologous
expression could influence anaesthetic effects.10–11 23 We further
demonstrate that this novel form of Nav block involves stabilisa-
tion of the fast-inactivated state.
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Neuronal signals are transmitted via trains of action poten-
tials, so activity-dependent block of INa is a potentially important
mechanism of volatile anaesthetic action on neuronal networks.
Previous assessments of the role of Nav inhibition by general
anaesthetics in vitro have not considered the impact of activity-
dependent block, which significantly enhances the efficacy of
isoflurane inhibition of neuronal Nav, under physiological condi-
tions. For example, the magnitude of tonic INa inhibition by clin-
ical concentrations of isoflurane is relatively modest: we
observed ∼10% reduction of peak INa, comparable with previous
reports.8 10 In comparison, we observed an additional ∼20% block
at 50 Hz stimulation, from a physiological Vh of −70 mV. Even
modest block of Nav can strongly affect neuronal transmission,
as small reductions in peak INa alter both frequency of action po-
tential firing24 and neurotransmitter release.5 Small reductions
in INa produce significant effects on oscillatory activity in neuron-
al networks,25 which is relevant to systems level mechanisms of
general anaesthesia. By analogy with use-dependent block by
local anaesthetics, volatile anaesthetics would preferentially in-
hibit more active neurones to selectively suppress fast firing net-
works.26 27 Neurohypophysial nerve terminals express Nav in
high density,9 comparable with hippocampal mossy fibre bou-
tons, in which Nav amplify presynaptic action potential ampli-
tude and enhance Ca2+ influx coupled to transmitter release.28

This high concentration of Nav at the bouton could explain how
small changes in INa lead to substantial inhibition of synaptic
vesicle exocytosis.

To our knowledge this is the first report of activity-dependent
decay of INa in intact nerve terminals. This preparation has the
advantage over recombinant Nav of reflecting the gating proper-
ties of native nerve terminal Nav in situ. Electrophysiology is lim-
ited in its ability to measure ionic currents at the synapse, where
volatile anaesthetics exert their most potent effects.1–3 We show
that isoflurane inhibits endogenous neurohypophysial nerve ter-
minal Nav,

29 which are coupled to neurotransmitter release by
depolarizing the membrane and thus lead to activation of volt-
age-gated Ca2+ channels, Ca2+ influx and exocytosis. Magnocellu-
lar neurones of the supraoptic nucleus that innervate the
neurohypophysis, express both Nav1.2 and Nav1.6,

30 which are
likely to mediate INa in these central nervous system nerve term-
inals. Heterologously expressed Nav1.2 and Nav1.6 are inhibited
by isoflurane and other volatile anaesthetics at clinically relevant
concentrations.8 18 Interestingly, heterologously expressed
Nav1.6 currents exhibit use-dependent potentiation compared
with Nav1.2 currents, which show use-dependent inhibition.31

As neurohypophysial nerve terminals exhibited rapid activity-
dependent reductions in peak INa, amplitude with repetitive
stimulation comparable with recombinant Nav1.2R, the domin-
ant Nav isoform in neurohypophysial terminals is most likely
Nav1.2.

Our mechanistic analysis of Nav1.2R revealing stabilisation of
fast inactivation, is relevant to the intrinsic neurophysiological
behaviour of presynaptic Nav, and has important implications
for the anaesthetic sensitivity of nerve terminals at high firing
frequencies. Although the molecular details underlying our pro-
posal that isoflurane stabilises the fast-inactivated state are be-
yond the scope of the current investigation, the mechanism
could involve isoflurane binding to a freely accessible receptor,
that then allosterically modulates free energy profiles to stabilise
the fast-inactivated state. Isoflurane can participate in hydrogen
bonding by forming dipoles, and has been shown to bind hydro-
phobic macromolecules.32 Consistent with this possibility,
anaesthetic binding has been demonstrated in prokaryotic
voltage-gated ion channels,33 34 and molecular dynamics

simulations of a homology model of NaChBac35 revealed a pos-
sible pathway for isoflurane to enter the pore via hydrophobic
side fenestrations.36 Further structural and molecular dynamics
studies are necessary to determine where isoflurane binds and
what residues are involved in stabilizing the bound state of the
channel.

In summary, we show that isoflurane stabilises the fast-
inactivated state of neuronal Nav such that recovery from fast
inactivation is delayed and entry into fast inactivation is acceler-
ated, resulting in activity-dependent inhibition. This enhanced
inactivation leads to progressive inhibition of INa, with high-
frequency stimulation and contributes significantly to overall
inhibition of INa by isoflurane, through activity-dependent inhib-
ition comparedwith tonic inhibition. Athigh stimulus frequencies,
Nav inhibition by isoflurane and probably other anaesthetics that
exhibit state-dependent inhibition, will be greater than that
suggested by previous studies of resting block alone.
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