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Abstract

Many animal and human studies indicated that dietary ω-3 fatty acids could have beneficial roles 

on brain development, memory, and learning. However, the exact mechanisms involved are far 

from being clearly understood, especially for α-linolenic acid (ALA), which is the precursor for 

the ω-3 elongation and desaturation pathways. This study investigated the alterations induced by 

different intakes of flaxseed oil (containing 50% ALA), during gestation and lactation, upon the 

expression of genes involved in neurogenesis, memory-related molecular processes, and DNA 

methylation, in the brains of mouse offspring at the end of lactation (postnatal day 19, P19). In 

addition, DNA methylation status for the same genes was investigated. Maternal flaxseed oil 

supplementation during lactation increased the expression of Mecp2, Ppp1cc, and Reelin, while 

decreasing the expression of Ppp1cb and Dnmt3a. Dnmt1 expression was decreased by postnatal 

flaxseed oil supplementation but this effect was offset by ALA deficiency during gestation. Mecp2 

DNA methylation was decreased by maternal ALA deficiency during gestation, with a more 

robust effect in the lactation-deficient group. In addition, linear regression analysis revealed 

positive correlations between Mecp2, Reelin, and Ppp1cc, between Gadd45b, Bdnf, and Creb1, 

and between Egr1 and Dnmt1, respectively. However, there were no correlations, in any gene, 

between DNA methylation and gene expression. In summary, the interplay between ALA 

availability during gestation and lactation differentially altered the expression of genes involved in 

neurogenesis and memory, in the whole brain of the offspring at the end of lactation. The Mecp2 

epigenetic status was correlated with ALA availability during gestation. However, the epigenetic 

status of the genes investigated was not associated with transcript levels, suggesting that either the 

regulation of these genes is not necessarily under epigenetic control, or that the whole brain model 

is not adequate for the exploration of epigenetic regulation in the context of this study.
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1. Introduction

Memory is the process by which new information is being encoded, stored, and then 

retrieved (Abel and Lattal, 2001). Specificity in gene expression, protein synthesis and 

structural properties of neurons and synapses, is required for all three stages (Alberini, 

2009). It has been acknowledged that dietary ω-3 polyunsaturated fatty acids (ω-3 PUFAs) 

could improve learning and memory, and also alter gene expression and proteome profiles in 

the whole brain or certain brain regions, such as cerebrum and hippocampus, therefore 

altering neurogenesis and synaptic plasticity (Kitajka et al., 2004; Lee et al., 2012).

α-Linolenic acid (ALA; 18:3 n-3) is the precursor for the ω-3 PUFAs elongation and 

desaturation pathways. This 18-carbon fatty acid possesses three double bonds and is 

commonly found in plant-derived dietary oils such as flaxseed, canola, and soybean oils. All 

the other common dietary ω-3 PUFAs have longer chains, and are found mainly in fish and 

fish oils, including the 20-carbon eicosapentaenoic acid (EPA; 20:5 n-3) and the 22-carbon 

docosahexaenoic acid DHA (Surette, 2013). Although numerous studies have defined the 

roles of DHA in brain development, less is known about the roles of ALA.

ALA availability has been shown to be important for brain development and its function 

during gestation and early postnatal life. During the perinatal period, the neonate's brain is 

experiencing a substantial acceleration in growth, cellular proliferation, and neuronal and 

glial differentiation (Hoffman et al., 2009). Also, perinatal ALA deficiency induced gene 

expression changes in the brain of adult rats (Kitajka et al., 2004). We have previously 

indicated that, in mice, ALA availability during gestation and lactation altered cell 

proliferation, early neuronal differentiation, and apoptosis, in the hippocampus of the 

offspring (Niculescu et al., 2011). These outcomes were associated with postnatal ALA 

supplementation, but were offset by gestational ALA deficiency. We also reported that the 

perinatal ALA availability was associated with epigenetic alterations in Fads2 DNA 

methylation in maternal and offspring livers (Niculescu et al., 2013).

Recent studies indicated the importance of epigenetic mechanisms in the alteration of 

neuronal gene expression patterns, which are required for synaptic plasticity or memory 

formation (reviewed in Sultan and Day, 2011). Epigenetic mechanisms include interrelated 

processes such as DNA methylation, histone modifications and RNA interference (Wood et 

al., 2005; Feng et al., 2010; Lubin et al., 2011).

In the current study, we explored the impact of maternal perinatal ALA availability on the 

expression of memory-associated genes in offspring brains, and the associated modifications 

in DNA methylation. Because memory and learning are complex processes that are not 

confined to only a brain area (Vousden et al., 2014; van Groen et al., 2014), we sought to 

first determine, in a whole brain model, whether such alterations could be detected, and 

whether this approach could warrant additional and more specific explorations.
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2. Materials and methods

All reagents were purchased from Sigma–Aldrich (St. Louis, MO, USA) if not otherwise 

specified.

2.1. Animals, diets, and tissue collection

This study was approved by the University of North Carolina Institutional Animal Care and 

Use Committee. This work is a continuation of our previously published studies (Niculescu 

et al., 2011, 2013). Briefly, mouse C57BL/6J females (10 wk old; Jackson Laboratory, Bar 

Harbor, ME, USA) were randomly assigned into two initial feeding groups (intervention 1) 

for 30 days prior, and during gestation. One group was fed a defined control diet (AIN-93G, 

DYETS, Bethlehem, PA) containing soybean oil as fat source (ALA control, C, n = 12), 

while the other group was given an AIG-93G modified diet (DYETS) with corn oil as the 

only source of fatty acids (ALA deficient, D, n= 12). After 30 days, the females were bred 

overnight with males that were maintained at all times on the C diet. One day prior to 

delivery date, the two groups of females were randomly split into two subgroups 

(intervention 2). Half from each group remained on the same diet (n = 6), and the other half 

were switched to a modified AIN-93G diet containing flaxseed oil (ALA supplemented, S, n 

= 6), until postnatal day 20 (P19, considering the date of delivery as P0). On P19, all 

mothers and their pups were sacrificed. The pups were decapitated, the brains were 

extracted, snap frozen in liquid nitrogen, and stored at −80°C. In this study, the brain 

samples from the male pups were used for further analysis. However, due to the lack of male 

pups, only n = 5 male brains were included here in the CC, CS and DS respectively, while 

the DD group had n = 6 samples. For further reference, each group is designated by two 

letters: first letter reflects the diet received prior and during gestation, and the second letter 

reflects the maternal diet received during lactation.

The fatty acid composition of each diet has been previously published (Niculescu et al., 

2011). Particularly, the diets contained 18:2 n-6 (linoleic acid, LA) and 18:3 n-3 (ALA) with 

the following concentrations: D diet, 87.2 and 1.5 nmol/mg; C diet, 86.9 and 10.8 nmol/mg; 

S diet, 23.1 and 75.3 nmol/mg.

2.2. Real-time RT-PCR

RNA was extracted from the male offspring brains (all at P19) with a QIAcube instrument 

(Qiagen, Valencia, CA, USA) using AllPrep® DNA/RNA mini kit (Qiagen), according to 

manufacturer's protocol. After the concentration and quality were determined with a 

NanoPhotometer (Implen GmbH, Munich, Germany), real time reverse transcriptase PCR 

(RT-PCR) method was used for the assessment of gene expression. First, cDNA synthesis 

was performed using a QuantiTect reverse transcription kit (Qiagen), on an Eppendorf 

Mastercycler ProS (Eppendorf, Hamburg, Germany). The amplification was performed on 

an Eppendorf Mastercycler Realplex2 ep Gradient S real-time PCR cycler, using the 

QuantiTect SYBR Green PCR kit (Qiagen). QuantiTect primer assays (Qiagen) were 

purchased for the following genes: Dnmt1, Dnmt3a, Mecp2, Gadd45b, Ppp1cb, Ppp1cc, 

Ppp3ca, Arc, Bdnf, Creb1, Reelin, Egr1 and 18s (used as internal reference for each 

sample). The real-time PCR reactions were run in triplicate, and data were retrieved as CT 
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values normalized to 18S, then log2 transformed for subsequent statistical analysis. For each 

gene final data were expressed as ratios between each sample and the average of the CC 

group.

2.3. Bisulfite pyrosequencing

DNA from male offspring brains (all at P19) was extracted with a QIAcube instrument 

(Qiagen, Valencia, CA, USA) using AllPrep® DNA/RNA mini kit (Qiagen), following 

manufacturer's protocol. Up to 1 μg DNA from each sample was treated with sodium 

bisulfite using the same instrument and the corresponding protocol (EpiTect kit, Qiagen).

A pyrosequencing DNA methylation assay was designed for Mecp2 promoter using 

PyroMark Assay Design 2.0 software (Qiagen). The other 8 PyroMark CpG assays were 

directly purchased from Qiagen. Primers and sequences to be analyzed are indicated in 

Table 1. The amplification of templates was performed on an Eppendorf Mastercycler ProS 

using a PyroMark PCR kit and following the recommended protocol (Qiagen). The PCR 

conditions were: 95 °C for 15 min; 45 cycles of 94 °C for 30s, 56°C for 30 s, 72°C for 30s; 

final extension at 72°C for 10 min, and 4°C hold. The biotinylated strand of the amplified 

DNA was subjected to pyrosequencing on a PyroMark MD machine (Qiagen), as described 

previously (Mehedint et al., 2010). Each sample and sequence were run in triplicate, and 

only pyrosequencing reactions that passed the quality test were included in the analysis. For 

each sample and sequence, percentage methylated cytosine for each CpG site was expressed 

as the average of triplicates, and the values across all sites were averaged to express the 

average methylation across each sequence.

2.4. Statistical analysis

Statistical analysis was carried out using both JMP 10 software (SAS, Cary, NC, USA) and 

MeV 4.9. (Dana-Farber Cancer Institute, Boston, MA, USA). MeV was used for the 

assessment of false discovery rates (FDR, Benjamini-Hochberg method) in the case of both 

gene expression and DNA methylation assessment. For each variable the p value (p < 0.05) 

was adapted accordingly to reflect a FDR of 5%. MeV was also used for Cluster Affinity 

Search Technique (CAST) on gene expression. For DNA methylation, because of its beta 

distribution, multiple comparisons were performed using JMP with the nonparametric 

Wilcoxon Each Pair test against adjusted p values calculated by the Kruskal–Wallis test 

(MeV). Gene expression was analyzed in JMP using two-way ANOVA (for the gestation 

and lactation factors), followed by Tukey HSD test for multiple comparisons, against 

adjusted p values. In addition, bivariate linear fit analysis was performed (JMP) for the 

correlation between two variables, with a threshold for significance of p < 0.05.

3. Results

3.1. Perinatal ALA availability alters the expression of genes associated with memory and 
DNA methylation

The expression of eight genes involved in memory and brain development, and of four genes 

involved in the regulation of DNA methylation, was determined in the whole brains of pups 

at the end of lactation (P19). The expression of three genes associated with memory was 

He et al. Page 4

Int J Dev Neurosci. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



altered by ALA supplementation during lactation (Reelin, Ppp1cb, and Ppp1cc), regardless 

the ALA status during pregnancy (Fig. 1A). The expression of Reelin was increased in both 

CS and DS groups as compared to CC (ratio 5.44 ± 1.65 SE, and ratio 7.96 ± 1.60, 

respectively). While DS alterations were statistically significant, the CS alterations did not 

reach statistical significance (p = 0.017 vs. the FDR-corrected threshold p = 0.008). 

However, the expression values in both ALA supplemented groups were significantly higher 

than in the DD group. The expression of Ppp1cb was significantly lower in the CS group as 

compared to CC (ratio 0.23±0.05 SE). Ppp1cc expression was higher in the CS and DS 

groups as compared to both CC and DD groups (ratio 5.70 ± 1.25 SE vs. CC, and ratio 6.72 

± 1.76 SE vs. CC, respectively).

Among the genes involved in the epigenetic regulation of gene expression, three genes 

(Dnmt1, Dnmt3a, and Mecp2) were altered by perinatal ALA availability (Fig. 1B). Dnmt1 

expression was decreased only in the CS group when compared to all other three treatment 

groups (ratio 0.29 ± 0.08 SE vs. CC). The expression of Dnmt3a was markedly lower in 

both ALA supplemented groups (CS and DS) as compared to either the CC or the DD 

groups (ratio 0.012 ± 0.003 SE vs. CC, and ratio 0.053 ± 0.03 SE vs. CC). The expression of 

Mecp2 was higher in ALA-supplemented groups. However, only the DS group reached 

statistical significance against both CC and DD groups (ratio 6.27 ± 1.40 SE vs. CC), while 

the increased expression in the CS group (ratio 4.33±1.44 SE vs. CC) was not statistically 

significant (p = 0.055 vs. the FDR-corrected threshold p = 0.008) when compared to the CC 

group, but only against the DD group.

3.2. Correlations between the expression of memory-associated genes and epigenetic 
regulators

We sought to determine whether the expression of genes involved in memory and neuronal 

development were correlated with the expression of epigenetic regulators. Using CAST 

analysis, we first identified clusters of genes that were candidates for such correlations. The 

identified clusters were then subject of linear regression for the assessment of statistical 

significance and coefficient of determination (R2), against a significance threshold p = 0.05. 

Several clusters were identified.

Mecp2, Reelin, and Ppp1cc formed one cluster (Fig. 2), as both the expression of Reelin 

(Fig. 2A, R2 = 0.98 and p < 0.0001) and Ppp1cc (Fig. 2B, R2 = 0.92 and p <0.0001) were 

highly correlated with Mecp2.

A second cluster consisted of Creb1, Gadd45b, and Bdnf (Fig. 3). Linear regression analysis 

indicated that both Bdnf (Fig. 3A, R2 = 0.65 and p < 0.0001) and Creb1 (Fig. 3B, R2 = 0.87 

and p < 0.0001) were associated with Gadd45b.

In addition, Dnmt1 expression was significantly correlated with Egr1 across all samples 

(Fig. 4, R2 = 0.86 and p < 0.0001).

3.3. Effects of the maternal ALA treatment on DNA methylation in the offspring brains

The assessment of DNA methylation status was performed by bisulfite pyrosequencing for 

the genes and sequences indicated in Table 1. Mecp2 promoter DNA methylation (Fig. 5) 
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was altered by perinatal ALA availability in the CS and DD groups. Mecp2 promoter 

methylation in the DD group was significantly lower (% methylation 2.82 ± 0.35 SE) than in 

both CS and CC groups (% methylation 4.43 ± 0.19 SE, and 5.56 ± 0.44 SE, respectively), 

when tested against a FDR-adjusted value of p = 0.022. However, no differences between 

groups were noted for the Mecp2 intron 1 methylation. For all other DNA methylation 

assays, no significant changes were noted when testing against FDR-adjusted p values (data 

not shown).

3.4. Lack of correlation between gene expression and DNA methylation

Using a linear regression model, we sought to determine whether gene expression correlates 

with the DNA methylation status for the genes presented in Table 1. Using a threshold for 

statistical significance of p < 0.05, no correlations were found for any of the genes, 

including Mecp2 (data not shown).

4. Discussion

The findings of this study support the hypothesis that maternal ALA availability during 

pregnancy and lactation alters the expression of memory-associated genes and of those 

involved in the DNA methylation machinery, in the offspring brain at P19 (Fig. 1). In 

addition, ALA deficiency decreased the DNA methylation within the Mecp2 promoter, but 

not within intron 1 (Fig. 5). Interestingly, among the six genes that had substantial 

alterations in their transcript levels, five (Reelin, Ppp1cb, Ppp1cc, Dnmt3a, and Mecp2) 

were dependent exclusively on postnatal maternal ALA availability (regardless gestational 

ALA intakes), while Dnmt1 was decreased only in the CS group, indicating that postnatal 

ALA supplementation triggered its decreased expression, which was nevertheless offset by 

maternal ALA deficiency during gestation. The increased expression of Ppp1cc, Reelin and 

Mecp2 in the CS and DS groups support, in part, our previous findings about the enhanced 

neuronal differentiation due to postnatal ALA supplementation (Niculescu et al., 2011).

Reelin has been associated with the maintenance of polarity in cortical neurons and in the 

structural development of juvenile prefrontal circuits and memory formation (Forster, 2014; 

Iafrati et al., 2014). Moreover, the cognitive decline registered in aged rats was also 

associated with a reduction of Reelin expression (Stranahan et al., 2011).

Ppp1cc encodes one of the catalytic subunit (PP1γ) of nuclear protein-phosphatase 1 (Pp1), 

which was reported to decrease phosphorylation and ubiquitination of cAMP response 

element-binding protein (CREB), and thereby promote neurogenesis (Mu et al, 2013, 2011). 

While the role of the Ppp1cc subunit has not been sufficiently studied in brain, controversial 

roles have been assigned to the PP1 complex in regard to memory. In CD1 mice, PP1 levels 

were positively associated with olfactory memory (Winding et al., 2011). In contrast, 

increased PP1 activity was implicated in deficits in learning and memory induced by lead 

exposure in postnatal rats (Rahman et al., 2012), and in the epigenetic suppression of fear 

memory and synaptic plasticity in the amygdala (Koshibu et al., 2011). Moreover, the 

regulation of PP1 transcription could be epigenetically controlled by its DNA methylation 

(Miller and Sweatt, 2007). However, in our study, we did not find any DNA methylation 
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differences between groups, which indicated that Ppp1cc expression control might be 

independent of its DNA methylation status in the context of maternal ALA availability.

In contrast with the increased Ppp1cc expression by postnatal ALA supplementation, 

Ppp1cb was decreased in same groups (CS and DS). This gene encodes the PP1 catalytic 

subunit PP1β (Saadat et al., 1994), and its nuclear inhibition was associated with increased 

memory performance (Graff et al., 2010). Again, our study did not identify any epigenetic 

modifications between groups.

The alterations induced by ALA availability to DNA methyltransferases (Dnmt1 and 

Dnmt3a), and to Mecp2 expression were more specific (Fig. 1B). Dnmt1 expression was 

decreased only in the CS group but not in the DS group, indicating that the influence of 

postnatal ALA supplementation upon Dnmt1 is offset by gestational ALA deficiency. 

Dnmt1 is a maintenance DNA methyltransferase required for the propagation of DNA 

methylation patterns to replicated DNA (Jin and Robertson, 2013). Because Dnmt1 is over 

expressed in post-mitotic neurons, then down-regulated in adult neurons (Inano et al., 2000), 

one could speculate that the Dnmt1 reduced expression in the CS group could reflect the 

more advanced differentiated state of neurons, which we previously reported to be the case 

for hippocampus (Niculescu et al., 2011). However, in the same study, we also reported that 

the CS group had increased cellular proliferation. Therefore, in this study, it is difficult to 

interpret the biological meaning of Dnmt1 decreased expression with ALA supplementation.

Dnmt3a expression was decreased in both postnatal ALA supplemented groups (CS and 

DS), irrespective of the ALA intakes during gestation. This suggests that, at P19, Dnmt3a 

expression in postnatal brains is not dependent upon gestational ALA levels. Because 

Dnmt3a is transiently expressed during neuronal differentiation (Watanabe et al., 2006), 

ALA-induced under-expression could suggest an increased differentiation state of the 

offspring brains exposed to postnatal ALA supplementation.

Mecp2 is an important epigenetic factor in the maintenance and development of the 

neurotransmission in cortical and hippocampal regions of the brain, through the regulation 

of synaptic gene expression (Na et al., 2013). Strongly involved in the development of 

central nervous system, Mecp2 deficiency was associated in mouse models with reduced 

neuronal dendritic formation (Schule et al., 2008). In the present study Mecp2 was over-

expressed by postnatal ALA supplementation, and the increase was more robust statistically 

in the DS group (Fig. 1B). Because the increase in the CS group was not statistically 

significant due to one outlier, it is difficult to ascertain whether gestational ALA exposure 

was an independent factor. While Mecp2 promoter DNA methylation was decreased in the 

DD group as compared with either CC or CS groups, but not when compared with the DS 

group, one might speculate that its methylation status would be dependent primarily on the 

gestational ALA availability, rather than its postnatal intake levels. Linear regression 

indicated no association between Mecp2 expression levels and its DNA methylation status 

(data not shown).

Although the dietary treatments altered the expression of only six genes out of twelve, we 

sought to also investigate the relationship between the expression of genes, independent of 
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dietary interventions. Few studies have addressed the issue of correlated expression between 

genes involved in brain development and memory. Therefore, such correlations could be 

informative regarding potential gene–gene interactions required during postnatal brain 

development. Several positive correlations were noted between the expressions of different 

genes. Mecp2 correlated with both Reelin and Ppp1cc (Fig. 2), suggesting that Mecp2 could 

be involved in the promoter activation of these two genes. Indeed, in humans MeCP2 binds 

to the Reelin promoter, and binding is enhanced by the hydroxy-methylation of Reelin 

promoter (Zhubi et al., 2014). It is not yet known whether Mecp2 has a similar role for the 

activation of Ppp1cc. Independent of ALA availability, the expression of Gadd45b was 

correlated with Bdnf and Creb1. Gadd45b, involved in the active DNA-demethylation 

required for adult neurogenesis (Ma et al., 2009), binds in humans to BDNF promoter and 

induces its over-expression (Gavin et al., 2012). Creb1 was reported to enhance Gadd45B 

expression in the mouse brain, but this role was highly contextual (Lemberger et al., 2008). 

Also independent of ALA availability, Dnmt1 correlated with Egr1 (Fig. 4). Egr1 is a zinc-

finger protein and transcription factor involved in differentiation and proliferation. In brain, 

it regulates neuroplasticity and memory formation (Veyrac et al., 2014), potentially via a 

succession of events involving DNA methyltransferases Dnmt1, Dnmt3b, histone 

deacetylase Hdac1, and histone methyltransferase G9a (Cartron et al., 2013).

The present study has important limitations. While the investigation of whole brain can 

bring insightful information about global trends in brain development, its highly-organized 

and heterogeneous structure creates the premises for false negative results, if the alterations 

are localized to specific areas, or if opposite alterations are present in different brain regions. 

Therefore, the results of this study warrant further explorations that would interrogate 

potential alterations in specific brain areas associated with memory, such as amygdala, 

frontal cortex, septum, and hippocampus. Secondly, in the absence of a timed study, it is 

very difficult to decipher the sequence of events in regard to the correlations observed. 

Therefore, any inference of potential mechanisms or speculation regarding the role of such 

correlations should be made with caution.

The mechanisms by which ALA could induce alterations in gene expression are poorly 

understood. While ALA is a precursor for the synthesis of other ω-3 PUFAs, it can also have 

a distinct role in cell signaling (Darios and Davletov, 2006; Ren and Chung, 2007). ALA's 

role in the regulation of gene expression is mediated either through peroxisome proliferator 

activated receptor (PPAR-dependent) mechanisms, PPAR-independent mechanisms 

(reviewed in Innis, 2003), or by altering the phosphorylation of mitogen-activated protein 

kinases (MAPKs) involved in cell proliferation, differentiation and apoptosis (Blondeau et 

al., 2001; Ren and Chung, 2007). The activation of the ERK-dependent MAPK pathway 

component plays a central role in cell proliferation and differentiation via the nuclear c-fos 

activation mechanisms on gene expression (Nishioka et al., 2007). The expression of DNA 

methyltransferases is, in part, regulated by the activation of one or more MAPK pathways. 

ERK-MAPK inhibitors down-regulate Dnmt1 (Lu et al., 2007) and Dnmt3a (Deng et al., 

2003). However, another MAPK pathway (JNK-dependent phosphorylation) may also be 

required for Dnmt1 promoter activation via c-jun phosphorylation (within the AP-1 

transcription complex) (Slack et al., 2001). However, since we previously reported that ALA 
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availability alters the content of EPA and DPA in the brains of the offspring (Niculescu et 

al., 2011), it is not clear whether ALA's role in altering the expression of genes is direct (via 

signaling), or due to alterations in other ω-3 species.

Our study suggested that ALA availability during gestation and lactation differentially 

altered the expression of genes involved in memory formation and neurogenesis, and in the 

epigenetic regulation of gene expression. Some of these alterations could be the result of the 

interplay between ALA availability in the two developmental periods, while others 

depended exclusively on postnatal ALA supplementation. With the notable exception of 

Mecp2 promoter methylation, ALA availability did not alter the methylation of the 

aforementioned genes, as measured in P19 whole brain extracts. Also, Mecp2 methylation 

was not correlated with its expression. Whether potential correlations between gene 

expression and DNA methylation could be altered by ALA availability in specific brain 

areas, it remains to be investigated further.
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ALA α-linolenic acid

P19 postnatal day 19
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EPA eicosapentaenoic acid
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LA linoleic acid
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Fig. 1. 
Gene expression assessment. At the end of lactation (P19), gene expression for DNA 

methylation regulatory genes and memory-associate genes was measured in male offspring 

brains, as described in Section 2. (A) The expression of eight genes involved in memory and 

brain development is indicated for each treatment group (whole P19 male brains). Columns 

marked with different letters denote statistical significance as assessed by Tukey HSD test. 

The following p values, adjusted against 5% FDR were used: Reelin p < 0.008, Ppp1cb p < 

0.03, and Ppp1cc p < 0.008. Error bars indicate standard error (SE). (B) The expression of 

four genes involved in epigenetic regulation was measured for each treatment group. 

Columns marked with different letters denote statistical significance as assessed by Tukey 

HSD test. The following p values, adjusted against 5% FDR were used: Dnmt1 p < 0.03, 

Dnmt3a p < 0.008, and Mecp2 p < 0.008. Error bars indicate standard error (SE).
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Fig. 2. 
Correlations between Mecp2, Reelin, and Ppp1cc gene expression. CAST analysis followed 

by linear regression analysis (all samples) indicated that Mecp2 expression was highly 

correlated with the expression of Reelin (panel A) and Ppp1cc (panel B). The inset at the top 

shows the cluster identified by CAST analysis. R2 indicates the coefficient of determination 

for linear regression.
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Fig. 3. 
Correlations between Gadd45b, Bdnf, and Creb1 gene expression. CAST analysis followed 

by linear regression analysis (all samples) indicated that Gadd45b expression was highly 

correlated with the expression of Bdnf (panel A) and Creb1 (panel B). The inset at the top 

shows the cluster identified by CAST analysis. R2 indicates the coefficient of determination 

for linear regression.
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Fig. 4. 
Dnmt1 expression is correlated with Egr1 expression. CAST analysis followed by linear 

regression analysis (all samples) indicated that Dnmt1 expression was highly correlated with 

the expression of Egr1. The inset at the top shows the cluster identified by CAST analysis. 

R2 indicates the coefficient of determination for linear regression.
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Fig. 5. 
ALA availability alters Mecp2 promoter DNA methylation but not its intron I methylation. 

DNA was extracted from P19 whole brains, and subject of bisulfite pyrosequencing. Mecp2 

DNA methylation was lower in the DD group, when compared to either the CC or the CS 

groups, indicating the overall ALA deficiency during gestation and lactation could trigger 

epigenetic alterations. Horizontal bars with asterisk above indicate statistical significance 

(p<0.05) between the respective two groups, as assessed by the Wilcoxon Each Pair test 

against adjusted p values calculated by the Kruskal–Wallis test.
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Table 1

Assay information for bisulfite pyrosequencing.

Gene & position Assay Sequence to analyze Number of CpGs

Mecp2 promoter In-house designed F:AGTTTGGGTTTTATAATTAATGAAGGG 7

R[5-Biotin]: ACCTTAACCATCCCACTCACAATCTC

S: AGGTGTAGTAGTATATAGG

Sequence to analyze:

TTGGTCGGGAGGGCGGGGCGCGACGTTTGTCGTGCGGGG

Mecp2intron1 Mm_Mecp2_01_PM CGCGCGCAGCCCCAACTGGCGAAGCCCAGACGA 5

Reelin promoter Mm_Reln_01 _PM GGACCCGACAGGCGAGCTTCGCCGGACTCTGTATTTACGCGT 6

Egr1 promoter Mm_Egr1_08_PM CTCCACCCTGCGACCCGCTCCGGCATCGCGAGCGC 6

Arc exon1 Mm_Arc_02_PM AACTTGGACGGCTACGTGCCCACCGGCGACTCACAGCGC 5

Ppp1cb promoter Mm_Ppp1cb_01_PM CGAAACGCCGCGTGACTCGTAGGTGAGAACGCCG 7

Ppp1cc intron1 Mm_Ppp1cc_03_PM CGGCGCGCGGGTGGGTGGCGGGGCAGGCCCGGCCGGT 7

Dnmt3a promoter Mm _Dnmt3a_04_PM CGCGTCGCCACCCACAGCCAGGTGCCGCGGT 5

Dnmt1 promoter Mm_Dnmt1_01_PM GCGCATGCGCGCAACGGA 4

F: forward primer; R, reverse primer; S, sequencing primer. CpG denotes a cytosine followed by a Guanine (CpG site).
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