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Abstract

Most studies of innate immunity have focused on leukocytes such as neutrophils, macrophages 

and natural killer cells. However, epithelial cells play key roles in innate defenses that include 

providing a mechanical barrier to microbial entry, signaling to leukocytes, and directly killing 

pathogens. Importantly, all of these defenses are highly inducible in response to the sensing of 

microbial and host products. In healthy lungs, the level of innate immune epithelial function is low 

at baseline, as indicated by low levels of spontaneous microbial killing and cytokine release, 

reflecting low constitutive stimulation in the nearly sterile lower respiratory tract when 

mucociliary clearance mechanisms are functioning effectively. This contrasts with the colon, 

where bacteria are continuously present and epithelial cells are constitutively activated. While the 

surface area of the lungs presents a large target for microbial invasion, activated lung epithelial 

cells that are closely apposed to deposited pathogens are ideally positioned for microbial killing.

Key Terms

Innate immunity: host antimicrobial defenses involving detection of conserved molecular motifs 
by germline-encoded pattern recognition receptors, and characterized by rapid but transient 
responses of both leukocytes and parenchymal cells; Adaptive immunity: host antimicrobial 
defenses involving pathogen detection of specific antigens by somatically recombined receptors, 
and characterized by clonal expansion of pathogen-specific lymphocytes and immunologic 
memory; Hemolymph: fluid in the body cavity of insects, homologous to vertebrate blood, with 
most proteins produced by the fat body, homologous to the vertebrate liver, with functions in both 
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metabolism and immunity; Resistance: the strategy of host survival of infection that is associated 
with a reduction in pathogen burden; this is contrasted to tolerance, the strategy of generating a 
host phenotype indifferent to the pathogen burden; Non-typeable Haemophilus influenzae 
(NTHi): an unencapsulated (hence non-typeable) strain of a Gram-negative bacterial pathogen 
that is frequently cultured from the lungs of patients with chronic respiratory disease; Pathogen-
associated molecular pattern (PAMP): stereotypic molecular motifs conserved across microbial 
species that are recognized by pattern recognition receptors, triggering innate immune responses; 
Damage-associated molecular pattern (DAMP): molecular motifs expressed on or released by 
infected or injured host cells, also known as danger signals or alarmins; Pattern recognition 
receptors (PRR): membrane-associated, cytosolic or secreted host products that recognize 
conserved molecular patterns on pathogens, initiating innate immune responses. These include 
Toll-like receptors (TLR), NOD-like receptors (NLR), RIG-I-like receptors (RLR), class A 
scavenger receptors (SR-A), and macrophage receptor with collagenous structure (MARCO); 
Leucine rich repeats (LRR): common molecular sequences of many pattern recognition 
receptors that generally occur within pathogen recognition domains; Toll/Interleukin-1 receptor 
adaptors (TIR adaptors): host peptides that are selectively recruited to Toll-like receptors and 
IL-1 receptor upon ligand binding and are required for signal propagation; Lipopolysaccharide 
(LPS): cell wall component of Gram-negative bacteria, the lipid A portion of which is recognized 
by TLR4 in association with MD2 and CD14; Interleukin (IL): a widely expressed and highly 
variable group of cytokine signaling molecules involved in both innate and adaptive immune 
responses; Complement: a system of more than thirty proteins activated by three pathways that 
permeabilize pathogens with the membrane attack complex, opsonize microbes and release 
fragments with signaling properties such as the anaphylotoxins C3a and C5a; Receptor for 
advanced glycation end-products (RAGE): a multifunctional member of the immunoglobulin 
superfamily that recognizes several host immunomodulatory proteins, including HMGB1 and 
S100, as well as host proteins without immunomodulatory activity that become glycated during 
aging or inflammation; Interferon (IFN): a subset of cytokines that inhibit viral replication within 
host cells and activate leukocytes. There are three classes – Type I (α, β, ω, ε, and κ), Type II (γ), 
and Type III (λ1-3, also known as IL-28A/B and IL-29), each with distinct receptors; Anoikis: 
apoptosis of epithelial cells induced by detachment from the extracellular matrix; Transcytosis: 
mechanism of transport across polarized epithelial cells involving endocytois of extracellular 
macromolecules or particles on one surface, transcellular vesicle trafficking, and exocytosis on the 
other surface; Secretory leukocyte proteinase inhibitor (SLPI): epithelium-derived protease 
inhibitor with intrinsic antibacterial activity; Transmigration: paracellular migration of 
leukocytes or pathogens through epithelial or endothelial barriers and associated basement 
membranes

Introduction

Microbes entering the bodies of multicellular eukaryotes must first cross an epithelial cell 

layer. Besides functioning as physical barriers to prevent infection, mammalian epithelial 

cells are able to sense the presence of microbes and to respond by augmenting their barrier 

function, signaling to leukocytes, and directly killing pathogens. While signaling to 

leukocytes has received considerable attention, augmented barrier function and pathogen 

killing have received less. Conditional pathogen killing by epithelial cells, in particular, is an 

important aspect of innate resistance to infection that merits further attention in 

understanding the homeostasis of epithelial surfaces throughout the body and in 

manipulating innate immunity therapeutically.
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It should not come as a surprise that mammalian epithelial cells are capable of highly 

inducible antimicrobial defenses since innate immune function was first elucidated in insects 

in which the systemic response to infection is mediated by the release of antimicrobial 

peptides from epithelial cells of the fat body into the hemolymph (1, 2). However, 

leukocytes that are specialized for immune functions have traditionally dominated the 

attention of mammalian immunologists. Furthermore, the initial identification of Toll-like 

receptor signaling in mammalian biology was in the induction of costimulatory molecules 

required for adaptive immune responses (3), reinforcing the focus on leukocytes. While the 

abilities of professional immune cells to detect and kill pathogens are impressive, non-

specialist epithelial cells have retained such capabilities through evolution. This suggests 

that rather than replacing the innate immune function of epithelial cells in higher eukaryotes, 

leukocytes complement these functions to collaborate in host defense.

Inducible Innate Resistance of Lung Epithelium

Several lines of evidence have pointed to the inducibility of innate immune defenses in lung 

epithelial cells. First, the epithelial cells of lower eukaryotes show robust inducible defenses, 

as above, and the barrier epithelia of Drosophila, including those of the trachea, Malpigian 

tubules, gut and reproductive tract, show specific patterns of antimicrobial peptide 

expression (1, 2). Second, cultured lung epithelial cells show the inducible expression of 

antimicrobial polypeptides in vitro, and transgenic overexpression of some of these has been 

shown to result in increased resistance to infection in vivo (4-8). Third, lung epithelial cells 

show remarkable structural and molecular plasticity during inflammation, suggesting that 

lung epithelial defensive functions are similarly plastic (9). Fourth, modest increases in 

resistance to bacterial infection by the airway route has been found after exposure of the 

lungs to single innate immune ligands such as endotoxin (10-18), though the role of the 

epithelium was not isolated experimentally.

To strongly induce lung defenses in vivo, we exposed mice to an aerosolized lysate of the 

bacterium NTHi, reasoning that this would stimulate the epithelium with a complex mixture 

of pathogen-associated molecular patterns (PAMPs) in proportions that reflect a natural 

exposure. This stimulation rapidly resulted in a high level of resistance to a broad array of 

microbial pathogens (9, 19, 20). In the initial studies (19), resistance to S. pneumoniae 

reached a maximum 4 hours after stimulation, remained at the maximal level for 24 hours, 

then gradually declined over several days (Fig. 1A). Host protection was mirrored by 

augmented microbial killing within the lungs that subsequently declined over several days 

(Fig. 1B). In subsequent studies, the NTHi lysate was shown to induce resistance to all 

pathogens tested, including Gram-positive and Gram-negative bacteria, the spore-forming 

NIAID Class A bioterror agent B. anthracis, the fungus A. fumigatus, and influenza virus (9, 

20). In each case, increased host survival was associated with a reduction of lung pathogen 

burden, indicating that host protection occurs through a resistance mechanism.

The dominant role of the epithelium in stimulated innate resistance of the lungs is supported 

by the following evidence. First, resistance is local, such that there is no protection against 

an intraperitoneal or intravenous microbial challenge after aerosol stimulation of the lungs 

(19). Second, resistance can be induced in mice deficient in neutrophils, macrophages, or 
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mast cells (19), as well as in mice deficient in dendritic cells, natural killer cells, or 

lymphocytes (S. E. Evans, unpublished data). Thus, neither resident nor recruited leukocytes 

are required for stimulated innate resistance of the lungs, though it is likely that resident 

leukocytes amplify the sensing of PAMPs by signaling to epithelial cells locally (see below), 

and neutrophil recruitment is clearly important for clearing large microbial inocula in mice 

and in the susceptibility to infection of neutropenic patients (19, 21, 22). Third, important 

roles for innate immune signaling in lung parenchymal cells have been demonstrated in the 

control of bacterial and viral infections (23-26). Fourth, efficient direct microbial killing by 

epithelial cells stimulated with PAMPs or cytokines in vitro has been demonstrated (9, 21, 

27), in contrast to dendritic cells and macrophages stimulated in vitro that do not kill 

bacteria efficiently (9). Fifth, consistent with the functional capability of isolated epithelial 

cells to kill pathogens, multiple epithelial-derived antimicrobial proteins are found 

upregulated in lung lining fluid by proteomic analysis after stimulation with microbial 

products (19). Similarly, multiple antimicrobial proteins are upregulated by gene expression 

microarray in leukodepleted lungs and isolated epithelial cells after stimulation with 

microbial products or cytokines (9, 21), though identification of the critical epithelial 

effector mechanisms has not yet been determined (see below, Epithelial Effector 

Mechanisms in Stimulated Resistance).

Together, these results indicate that respiratory epithelial cells are capable both of sensing 

innate stimuli and carrying out effector responses that underlie inducible innate resistance. 

In Hydra, a simple metazoan that lacks mobile phagocytes or hemolymph, epithelial cells 

sense microbial infection by a LRR receptor and respond by synthesizing and secreting 

antimicrobial polypeptides (28). In plants that are even more distantly related to mammals, 

LRR receptors similarly recognize PAMPs and initiate complex and vigorous resistance 

responses (29). This conservation indicates that epithelial activation is an ancient system of 

defense in multicellular eukaryotes. In mammals, in which a complex array of leukocytes 

collaborate in host defense, epithelial cells engage in bidirectional signaling with leukocytes 

while retaining the ability to mount a vigorous defense of their own.

Architecture of Epithelial Surfaces

To understand the innate immune activation of epithelial cells, it is important to appreciate 

their microenvironments. Epithelial surfaces throughout the mammalian body are in constant 

or episodic contact with microbial pathogens. A variety of physical strategies are utilized to 

prevent microbial penetration of epithelial layers that would result in deep tissue or 

bloodstream infection. For example, the skin utilizes an impermeant outer layer of dead 

keratinized cells. The stomach utilizes acid that makes its lumen inhospitable to microbes 

and renders the proximal small bowel and interconnected pancreatic and biliary trees nearly 

sterile. The distal small bowel and the large bowel, however, are in constant proximity to a 

rich microbial flora (Fig. 2A), albeit separated by a thick mucus gel layer (30, 31). The lungs 

utilize a strategy of directed airflow to induce impaction and sedimentation, together with 

mucociliary and cough clearance, to rapidly remove aspirated microbes from the lower 

respiratory tract (32-34). The importance of mucociliary clearance in the lungs is indicated 

by the chronic inflammation that occurs in human subjects with ciliary dyskinesia (33, 35) 

and the progressive lethal lung inflammation that occurs in mice lacking the gel-forming 
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mucin Muc5b (Chistopher M. Evans, personal communication). Other mucosal surfaces 

such as the mouth, eyes, and urinary tract employ both overlapping and additional strategies.

These distinct epithelial microenvironments with markedly different baseline exposure to 

microbial products reveal differences in the baseline induction of innate immune defenses, 

with the most informative contrast being between the lungs that are nearly sterile and the 

distal bowel that is heavily colonized with microbes (Fig. 2B). In the lungs, innate immune 

activation (“tone”) is low, as indicated by the low level of microbial killing within the lungs 

of mice at baseline (9, 19, 20), or by unstimulated lung epithelial cells in vitro (9, 21). From 

this low baseline, innate resistance is highly inducible (Fig. 3). In the distal bowel, in 

contrast, innate immune tone is substantial at baseline, as indicated by rapid bacterial killing 

within an isolated ileal loop (36). Bacterial killing can be reduced by prior exposure of mice 

to antibiotics that reduce commensal microbes, and can be restored by exposure to TLR 

agonists. Thus, diverse epithelial cells appear to be capable of a range of innate immune tone 

determined by local microbial signals, and modulated by innate and adaptive immune cells 

(37). Consistent with the ability of epithelial cells to maintain tone, we have found no 

tachyphylaxis of resistance despite repetitive stimulation of the lungs (9, 20), similar to the 

tachyphylaxis of inflammation but not of resistance described by others (38).

Epithelial Sensing of Innate Stimuli

For the induction of microbial resistance, lung epithelial cells must sense stimuli directly 

from microbes or indirectly from non-epithelial host cells and extracellular molecules. 

Evidence exists that lung epithelial cells are highly responsive to both categories, with the 

relative importance of individual stimuli in inducing resistance in vivo against specific 

pathogens a subject of ongoing study.

Direct Sensing of Microbial Products

Jawed vertebrates have two distinct means of detecting the presence of pathogens, innate 

and adaptive immunity, distinguished fundamentally by the nature of their receptors. 

Adaptive immune recognition relies upon antigen receptors expressed by T and B 

lymphocytes that are encoded by somatically recombined gene segments, resulting in an 

immense library of receptors for precise epitopes. The clonal distribution of highly specific 

antigen receptors allows for expansion of pathogen-appropriate lymphocyte populations and 

for immunologic memory, but limits the number of pathogens that can be detected by 

individual cells and requires prior exposure to the pathogen (39). In contrast to the highly 

refined epitope-sensing of adaptive immune receptors, innate immune receptors rely on 

recognition of conserved molecular features common to multiple microorganisms (PAMPs). 

Germline-encoded pattern recognition receptors (PRRs) bind PAMPs, allowing recognition 

of a large number of different microorganisms, though the broad conservation of these 

structural motifs does not generally allow discernment of pathogenic from non-pathogenic 

microorganisms (40-44). PAMPs may be either surface associated or internal elements of 

microbes, and are best suited to inducing efficient innate responses when they are invariant 

across many species, critical to microbial metabolic or virulence processes, and not present 

in host products (39). Additionally, some PPRs identify host molecules that are expressed in 

response to infection or host molecules that have been modified in the course of infection, 
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known as “danger signals” or damage-associated molecular patterns (DAMPs). PRRs can be 

soluble, bound to cell surface or endosomal membranes, or cytosolic in distribution. 

Recognition of PAMPs and DAMPs by PRRs activates intracellular signaling cascades, 

leading to the expression of effector molecules involved in microbial defense, inflammation 

and modulation of adaptive immunity (45). The past two decades have witnessed the 

identification of several distinct classes of PRRs.

Toll-Like Receptors (TLRs)—TLRs were the first class of innate immune receptors 

identified, and remain the best characterized. TLRs are highly conserved class I 

transmembrane proteins, consisting of an ectodomain with multiple leucine-rich repeats 

(LRR) for pattern recognition, a single membrane-spanning α-helix, and a Toll/interleukin-1 

receptor (TIR) domain for intracellular signaling. The structure and function of TLRs are 

described in detail in a number of recent reviews (3, 43, 46, 47). Upon ligand binding, signal 

transduction occurs via receptor-specific recruitment of cytosolic TIR adaptor protein 

combinations. In concert with one or more of the four others, MyD88 is involved in more 

TLR signaling than any other TIR adaptors (42-44, 48, 49). The MyD88-independent 

signaling events observed from TLR3 and TLR4 utilize the TIR adaptor Trif, with or 

without TRAM (43, 48, 49). Numerous recent reviews describe the current understanding of 

TLR downstream signaling (3, 43, 46, 47).

The primary ligand for TLR4 and its co-receptor CD14 is a complex of the soluble host 

protein MD2 with the lipid A moiety of bacterial lipopolysaccharide (LPS), allowing 

detection of Gram negative pathogens. Many Gram positive bacteria, parasites, and some 

Gram negative bacteria can be recognized by TLR2-dependent binding of lipopeptides, such 

as peptidoglycan, lipotechoic acid, and atypical LPS. TLR2 generally functions as a 

heterodimer with TLR1 or TLR6, with TLR2/1 recognizing triacylated lipopeptides (e.g., 

Pam3CSK4) and TLR2/6 recognizing diacylated lipopeptides (e.g., Pam2CSK4, MALP2). 

Fungal zymosan has been described to be a ligand for TLR2/6, as well. A highly conserved 

motif of flagellin that spans many bacterial species is recognized with high affinity by a well 

defined TLR5 binding site. Four TLRs recognize microbial nucleic acids. TLR3 recognizes 

double stranded RNA, and can be stimulated by synthetic mimetic copolymers, such as poly 

inosine:poly cytosine (poly I:C). TLRs 7 and 8 recognize U-rich (i.e., non-mammalian) 

single stranded RNA, as well as imidazoquinolones such as imiquimod. TLR9 detects DNA 

with unmethylated CpG motifs, which differ from mammalian DNA that is typically 

methylated. A number of host danger signals, such as heat shock proteins, are also protein 

ligands for TLRs (3, 43, 46, 47).

Insight into the roles of TLR in defense against pneumonia is provided by experiments in 

TLR-deficient mice. Mice spontaneously deficient in TLR4 show increased susceptibility to 

H. influenzae and E. coli pneumonia associated with impaired pathogen clearance (50, 51). 

Dual deficiency in TLR4 and CD14 was also found to increase susceptibility to RSV (52), 

consistent with the observation that TLR4 is a co-receptor for RSV fusion protein. TLR5 

deficient mice have increased susceptibility to lung pathogens including Legionella 

pneumophila (53). Interestingly, mice deficient in both TLR2 and TLR4 do not demonstrate 

hypersusceptibility to P. aeruginosa (54), even though mutations of pseudomonal flagellin 

that prevent TLR5 binding result in impaired bacterial clearance and host survival (55). 
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Surprisingly, TLR3 deficiency was reported to confer a survival advantage in an influenza 

virus pneumonia model (56), presumably through prevention of an excessive host response. 

However, the finding that intranasal pretreatment with TLR3 agonists protects against 

influenza pneumonia highlights the requirement for precise regulation of TLR-dependent 

responses in microbial defense (57).

It has been apparent for nearly a decade that microbial products could stimulate innate 

responses from the respiratory epithelium, and it has been suspected that TLRs contributed 

to those responses since they were first identified in mammals (4). While there are 13 known 

TLRs in humans, most is known about TLRs 1-9 and their murine orthologs (3, 47). PCR 

investigations of primary cells and immortalized cell lines indicate that TLRs 1-9 are all 

expressed by human and mouse lung epithelial cells (3, 5, 58-60). Cultured respiratory 

epithelial cells respond to stimulation with TLR agonists by expression of proinflammatory 

and antimicrobial mediators (60-62). In vivo, LPS has been administered intranasally and by 

aerosol to protect against bacterial and fungal lung infections, either by enhancing innate 

defenses or by attenuating lung injury associated with infection (10, 17, 19). Intratracheal 

and intraperitoneal administration of CpG ODNs (TLR9 ligand) enhances survival of lung 

infection by a number of pathogens, including M. avium and K. pneumoniae (13, 16). 

Treatment of mice with the TLR2/6 agonist MALP-2 induces cytokine production, reduces 

the pathogen burden, and enhances host survival after challenge with S. pneumoniae (18). 

Mice pretreated with TLR3-stimulating poly I:C or liposomal preparations of TLR9-

stimulating CpG ODNs display enhanced survival after challenge with several strains of 

influenza (57).

Given increasing evidence of cooperative signaling by PRRs (63-65), synergistic 

combinations of TLR agonists or combinations of TLR agonists and ligands for other PRRs 

may provide even greater protection than single ligands alone. Consistent we this, we have 

found that certain combinations of synthetic TLR agonists greatly outperform individual 

ligands in terms of both induced pathogen killing and enhanced host survival (our 

unpublished results). Similarly, by exposing mice to multiple TLR ligands in an aerosolized 

bacterial lysate, we have found robust survival benefits across a broad spectrum of 

pathogens (9, 19, 20). The importance of TLRs in general and MyD88 in particular to this 

response is demonstrated by the complete loss of protection when the aerosolized bacterial 

lysate is delivered to MyD88-deficient mice, but not to Trif-deficient mice (our unpublished 

results). The importance of epithelial MyD88 is indicated by the insensitivity of MyD88-

deficient mice transplanted with wildtype bone marrow to intranasal LPS (53, 66), and their 

impaired cytokine production and decreased survival when challenged with P. aeruginosa in 

the lungs (23).

NOD-Like Receptors (NLRs)—The NLR family is defined by proteins that share a C-

terminal LRR domain that interacts with PAMPs, a central nucleotide oligomerization 

domain (NOD), and one of three N-terminal signaling domains (67). Humans express at 

least 23 of these proteins, with most apparently restricted to leukocytes, but the best studied 

NLRs, NOD1 and NOD2, are both expressed by lung epithelial cells (62, 67). Unlike 

membrane-associated TLRs, NLRs are cytosolic in distribution. NOD1 recognizes γ-D-

glutamyl-meso-diaminopimelic acid present in the peptidoglycan of Gram negative and 
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some Gram positive bacteria (67), whereas NOD2 binds the muramyl dipeptide universally 

present in bacterial peptidoglycan (68). Activation of signaling via NOD1 or NOD2 results 

in MAPK and NF-κB-dependent production of proinflammatory mediators, though the 

details of this cascade are less well characterized than for the TLRs. Mice deficient in these 

NLRs display increased susceptibility to gastrointestinal bacterial infections, including those 

caused by H. pylori and L. monocytogenes (69-71). In the lungs, NLRs are critical to the 

host response to S. pneumoniae, P. aeruginosa, M. catarrhalis, C. pneumoniae, and M. 

tuberculosis (5, 72-74).

Another important subfamily of NLRs are those that induce activation of the inflammasome, 

a molecular complex that activates caspases to convert pro-interleukin (IL)-1β and pro-IL-18 

(and, possibly pro-IL-33) into their mature forms. The NLRs known to contribute to this 

response are NALP1, NALP2, NALP3, Ipaf and NAIP (75). These proteins primarily 

recognize danger signals, including host inflammatory mediators and crystals, but also 

detect product of microbial pathogens. For example, the NALP3 inflammasome can be 

activated by MDP, viral DNA, and bacterial toxins (75), while Ipaf appears to sense 

bacterial flagellin (76). The observation that IL-1β mRNA increases in the lungs of mice by 

almost 100-fold after treatment with an aerosolized bacterial lysate to induce resistance 

suggests a role for inflammasome activation (9). Furthermore, NLRs demonstrate 

synergistic signaling with TLRs (69).

RIG-I-Like Receptors (RLRs)—The RLRs are cytosolic PRRs that have been 

demonstrated to be involved in TLR-independent sensing of viruses, and the associated 

production of type I interferons (77). The RLR family is presently composed of two 

members – retinoic acid induced gene-1 (RIG-I) and melanoma differentiation associated 

gene 5 (MDA5). RIG-I detects noncapped 5′-triphosphate RNA (78), and appears essential 

to detecting ssRNA viruses (77). RIG-I-deficient mice demonstrate impaired antiviral 

responses and increased susceptibility to paramyxoviruses, influenza, varicella, and 

Japanese encephalitis virus (79). The primary ligand for MDA5 is dsRNA (78), and recent 

work has shown that it can detect poly I:C in a TLR-independent manner (79). MDA5 

deficiency increases susceptibility to several picornaviruses (79). Consequently, the 

therapeutic activation of these RLRs may promote antiviral defense, though their role in 

induced epithelial resistance has not been addressed.

Additional Innate Receptors—Besides these innate immune receptor families, 

additional cellular products participate in microbial recognition. For example, the 

glycosphingolipid lactosylceramide is found on the apical surface of lung epithelial cells and 

detects fungal β-glucans (80, 81). Other PRRs, such as class A scavenger receptors (e.g., 

MARCO and SR-AI/II) appear to participate in lung defense, but their expression and 

function in lung epithelium are unresolved.

Indirect Sensing by Host Signaling

Besides receptors for microbial products themselves, epithelial cells possess mechanisms for 

detecting the presence of microbes indirectly by sensing the release of molecular 

constituents from injured neighboring cells (e.g., ATP, adenosine, urate, HMGB1), the 
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activation of extracellular fluid phase proteins (e.g., complement and coagulation cascades), 

the degradation of extracellular matrix macromolecules (e.g., hyaluronan, elastin), and the 

secretion of inflammatory signals from leukocytes and other parenchymal cells (e.g., 

cytokines, eicosanoids).

Host Cell Products—In normal lung function, ATP is released by mechanical stretch into 

lung lining fluid where it performs important homeostatic functions such as regulation of 

secretion, surface liquid depth, and ciliary beat frequency (82). However, ATP can also be 

released in large quantities by cell injury, and in this setting ATP and its metabolites are 

powerful mediators of inflammation. In the gut, ATP that is mostly released from microbes 

drives TH17 differentiation in the lamina propria (83), and ATP activates dendritic cells in 

asthmatic airway inflammation (84). Whether epithelial resistance is induced by ATP 

together with leukocyte recruitment and activation is not known. Adenosine, generated from 

ATP and released from cells directly, is an important mediator of inflammation in the lungs 

as indicated by the lethal pulmonary phenotype of adenosine deaminase null mice and the 

dependence of allergic and other airway inflammatory disorders upon adenosine (85). 

Adenosine signals through four G-protein coupled receptors that have both pro-

inflammatory and anti-inflammatory properties, are expressed on airway epithelial cells as 

well as immune cells, and interact with PRR signaling in activating leukocytes (85, 86). 

Adenosine signaling modulates survival in mouse models of bacterial infection, though 

whether this is through induced resistance or attenuation of excessive inflammation in sepsis 

is not clear (86). Urate and calcium pyrophosphate are products of purine metabolism that 

activate inflammation through the NALP3 inflammasone. NALP3 activation is important for 

resistance of mice to fungal infection (87), and urate contributes to inflammation during 

bleomycin-induced lung injury through NALP3 (88), but whether urate contributes to lung 

resistance to microbial infection is unknown. Besides the purines, multiple cellular 

macromolecules can signal to neighboring cells when released during injury, and have been 

termed “alarmins” (89). These include heat shock proteins, the chromatin-associated protein 

HMGB1, members of the calcium-binding S100 family, and antimicrobial peptides such as 

cathelicidin. These have been examined mostly for inflammatory rather than resistance 

properties, and data on their functions in epithelial cells are scant.

Proteolytic Cascades (Complement, Coagulation, Kinins)—Besides effector 

functions in microbial lysis and opsonization (see below), complement promotes resistance 

by signaling to leukocytes and parenchymal cells. Airway epithelial cells express receptors 

for the C3a and C5a anaphylatoxins (90), and stimulation by C3a is required for robust 

epithelial mucous metaplasia in allergic airway inflammation (91, 92). Allergic 

inflammation is thought to represent an antiparasitic defense (32), and whether C3a or C5a 

signaling to epithelial cells is similarly required for full induction of antimicrobial resistance 

is not yet know. The coagulation cascade and platelets are also activated during infection, 

and interact bidirectionally with the complement system (93, 94). Research on interactions 

of the coagulation system with lung epithelial cells has focused primarily on mesothelial 

cells of the pleural space in fibrinolysis, permeability changes of the alveolar epithelium in 

diffuse lung injury, and occlusion of distal airways in asthma (95-97), while the role of the 

coagulation system in inducible resistance is mostly unknown. The kallikrein-kinin cascade 
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is co-activated with the complement and coagulation cascades, generating potent 

inflammatory mediators whose role in inducible resistance is yet unknown, and activating 

cathelicidin (98) that likely participates in inducible resistance (see below).

Extracellular Matrix Products—The hydrolysis of extracellular matrix components 

releases fragments with inflammatory signaling properties. Prominent among these in the 

lungs are the glycosaminoglycan hyaluronan that releases fragments that activate TLR4 

(99), and fibronectin that binds latent TGF-β (100), though their roles in microbial resistance 

within the lungs are not known. In addition to signaling themselves, matrix macromolecules 

provide nucleation sites for the growth of urate and calcium pyrophosphate crystals (see 

above), and they are subject to non-enzymatic glycation that is recognized by RAGE that 

has inflammatory activity both alone and in partnership with TLRs (101).

Cytokines and Other Inflammatory Mediators—Cytokines are generated to some 

degree by all mammalian cells, but most prominently by leukocytes. A subset of leukocyte-

generated cytokines induces resistance of epithelial cells to infection (102). First described 

among these were the Type I interferons that were found in the 1950's to induce epithelial 

resistance to viral infection (103, 104). In the 1960's, Type II interferon (IFN-γ) was 

discovered, and more recently Type III interferons have also been found to be important in 

epithelial resistance. Besides viruses, interferons also induce resistance to bacterial and 

fungal pathogens. In the lungs, resistance to F. tularensis induced by prior administration of 

a TLR4 agonist was highly dependent upon IFN-γ (15). Other cytokines that induce 

resistance in epithelial cells are IL-22 and IL-17. IL-22 is produced both by lymphocytes 

and by NK cells, with the latter providing an innate source for mucosal immunity (105, 

106). IL-22 acts primarily on epithelial cells, markedly increasing the production of 

antimicrobial proteins (21, 105, 107). Importantly, IL-22 induces microbial killing by mouse 

airway epithelial cells in vitro, and this depends to a large degree upon lipocalin-2 (21). 

IL-17 plays important roles in mucosal defense against extracellular lung pathogens (108, 

109), and upregulates the production of antimicrobial proteins by lung epithelial cells (107, 

110). IL-22 and IL-17 can be co-expressed and can cooperatively enhance the expression of 

antimicrobial proteins and cytokines by keratinocytes and airway epithelial cells (21, 107). 

Many other signaling molecules such as eicosanoids, biogenic amines, and proteases also 

mediate inflammatory signaling, but their roles in induced resistance of epithelial cells are 

less well defined than those of cytokines.

Epithelial Effector Mechanisms of Inducible Resistance

Resistance of a multicellular eukaryotic host to infection can be due either to prevention of 

microbial entry or induction of microbial killing. Epithelial cells participate in both effector 

mechanisms.

Barrier Function

Epithelia throughout the body serve as mechanical barriers to microbial entry. However, 

microbes have developed numerous strategies for crossing this barrier by passing between 

cells, entering and passing through cells, and simply killing cells to eliminate the barrier. 

Conversely, since it is comprised of living cells, the epithelial barrier is capable of plasticity 
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in its ability to resist microbial penetration. Indeed, epithelial barrier functions are 

modulated both by pathogens and as part of the host response, presenting a dynamic 

situation during infection. The different strategies utilized by microbial pathogens to breach 

epithelial barriers have been discussed in several recent reviews (98, 111-114). Here we 

focus on inducible barrier function.

Paracellular Transit—Cell-cell junctions and cell-matrix adhesions are critical structures 

for maintaining the epithelial barrier. It is not surprising that these structures as well as the 

associated adaptors and regulators are among the most commonly targeted host factors by 

microbial pathogens to either disrupt the barrier or gain entry into the host cells. For 

example, transmigration of leukocytes to mucosal surfaces in response to microbial 

pathogens requires reorganization of the epithelial junctions. In the lungs, this process 

involves TLR2 signaling resulting in calcium fluxes that activate calpains, which are 

cysteine proteases that cleave epithelial junctional proteins (115). Conversely, migration of 

S. pneumoniae and H. influenzae across polarized respiratory epithelial cells was shown to 

be accompanied by disruption of the epithelial barrier mediated by TLR2, p38 MAPK and 

TGF-β signaling (116). Whether these two phenomena are connected is not known, though it 

seems that the immune signaling activated by these pathogens promotes their migration 

across the epithelial barrier at the same it facilitates leukocyte transmigration. In intestinal 

epithelial cells, TLR2 signaling protects tight junction assembly (117) and gap junction 

intercellular communication against damage associated with inflammation (118). There is 

also evidence that E. hirae cell wall fractions such as lipotechoic acid protects against 

intestinal barrier impairment by regulation of tight junctions via TLR2 signaling (119).

Transcellular Transit—Pathogens at a variety of mucosal surfaces enter epithelial cells to 

invade underlying tissues (22, 98, 112). This pathogenic mechanism is counteracted by 

epithelial exfoliation. In the distal mammalian gut that is continuously exposed to microbes 

(Fig. 2A), the epithelium is short-lived (turnover time 5 days), and anoikis likely plays a role 

in preventing penetration by bacteria that have entered epithelial cells, and is antagonized by 

pathogens (120). In the lungs that are only intermittently exposed to microbes (Fig. 2B), the 

epithelium is long-lived (turnover time 180 days), and epithelial shedding only occurs 

during infection or injury (121). In the bladder, uropathogenic E. coli invade epithelial cells 

and establish intracellular reservoirs that serve as sources for recurrent infections. Normal 

turnover of epithelial cells is slow (∼ 40 weeks), and stimulating epithelial turnover with 

protamine sulfate can eradicate infection (122). Further, TLR4 signaling activated by 

bacterial LPS suppresses the invasion of uropathogenic type 1 fimbriated E. coli and K. 

pneumoniae into bladder epithelial cells (123), reducing penetration of the epithelium by 

these pathogens. In the lungs, B. anthracis presents an interesting case. Spores of B. 

anthracis are capable of crossing the lung epithelium by transcytosis without causing 

apparent disruption to the epithelium or eliciting a strong inflammatory response (124, 125). 

This capability may be a reason for the lack of symptoms during early stages of inhalational 

anthrax.

Epithelial Killing—Lung pathogens release a wide array of toxins and exoenzymes 

capable of killing lung epithelial cells and allowing microbial penetration (22, 98, 112). 
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Further, viral injury of lung epithelium allows bacterial penetration that appears to be an 

important cause of mortality (126). Innate immune stimulation activates NF-κB and kinase 

cascades that are anti-apoptic and proliferative (3, 22), partially counteracting toxic effects 

of pathogens. When breaches in the airway epithlium do occur, the growth factor heregulin 

that is normally sequestered on the apical surface gains access to its receptors on the 

basolateral surface of the remaining cells, initiating a tissue repair response that includes 

changes in cell shape to rapidly cover the surface, proliferation to reestablish cell number, 

and promotion of antimicrobial defenses (127).

In summary, the strategies utilized by microbial pathogens to breach epithelial barrier 

functions are varied, with modulation of epithelial barrier functions having effects on both 

the capacity of the host to clear microbes and the ability of pathogens to invade the host.

Microbial Killing

Another important mechanism by which the lung epithelium promotes host survival is 

through pathogen killing. One means to achieve this is through the engagement of 

professional immune cells. In response to infection or injury, epithelial cells elaborate 

abundant proinflammatory and leukocyte chemotactic cytokines, including TNF, IL-1β, 

IL-6, IL-8 (or its murine orthologs), GM-CSF, CXCL5, and leukotrienes, to recruit 

neutrophils, monocytes, macrophages, and NK cells (128-130). They also express inducible 

adhesion factors that facilitate leukocyte influx (34, 129). Beyond sounding an alert, the 

epithelium also sculpts the nature of the adaptive immune response. For example, following 

exposure to certain viruses, helminthes, allergens, and TLR agonists, the lung epithelium 

produces thymic stromal lymphopeoitin (TSLP), IL-25 (also known as IL-17E), GM-CSF, 

IL-1β, IL-25, IL-33, promoting selective dendritic cell recruitment and TH2 deviation of the 

adaptive immune response (130, 131). Besides leukocytes, epithelial cells secrete 

microbicidal products into the airway lining fluid, and secretion of these products can be 

increased in response to infection or therapeutic stimulation. These epithelial effectors 

primarily limit pathogen survival through disruption of the cell walls, sequestration of iron 

and other nutrients, and by providing decoy targets for essential microbial metabolic and 

pathogenic processes (5, 128, 132, 133).

Small Antimicrobial Peptides—Predominant among the therapeutically inducible 

bacteriostatic and bactericidal products of the epithelium are the small cationic antimicrobial 

peptides, a diverse family of amphipathic, gene-encoded immune effectors. Hundreds of 

these peptides have been identified in eukaryotes, with tremendous species-specific 

variation, but human lung epithelium primarily expresses members of just two groups: 

defensins and cathelicidins (5, 134-140).

Defensins are defined by unique cysteine motifs resulting in three disulfide bonds, and are 

subdivided into categories based on tertiary structure (α, β and θ). α- and β-defensins are 

both expressed by neutrophils, but only β-defensins are expressed by the lung epithelium. 

Human β-defensin 1 (HBD-1) is constitutively elaborated into the airway lining fluid, and is 

be further induced by inflammatory stimuli in mechanically ventilated newborns (141, 142). 

HBD-2, -3, and -4 do not appear to be expressed at baseline, but are induced by epithelial 
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cell exposure to pathogens, TLR agonists, or inflammatory cytokines (140, 141, 143, 144). 

Mice express numerous β-defensins in the lungs, many of them inducible by bacterial and 

viral infection, and they demonstrate broad antimicrobial activity, including against 

influenza virus and fungi (145, 146). In our mouse model of stimulation with an aerosolized 

NTHi lysate, we observe induced expression of several β-defensins (9).

Cathelicidins, like many antimicrobial effectors, are expressed as propeptides that require 

cleavage of an N-terminal cathelin domain to gain antimicrobial activity. Humans express 

only one cathelicidin propeptide (CAMP or hCAP-18) which is cleaved to the active 

antimicrobial peptide, LL-37 (135). Lung epithelial LL-37 elaboration can be stimulated by 

TLR agonists, and production is at least partially vitamin D dependent (147). In the mouse, 

lung transcripts roughly double after treatment with NTHi lysate (9). There is abundant 

evidence that cathelicidins promote pathogen clearance in pneumonia (138, 148), so induced 

production, activation and secretion may contribute to induced resistance.

Small cationic antimicrobial peptides exert direct antimicrobial effects on Gram-positive, 

Gram-negative, fungal and viral pathogens (140). The mechanisms of pathogen killing 

remain incompletely elucidated, though most literature suggests that the primary mechanism 

relates to microbial permeabilization (132, 149). This may occur by creation of membrane-

spanning pores or by detergent-like disruption of pathogen membranes. In fact, 

antimicrobial peptides may use different mechanisms on different pathogen membranes. 

Further, there are antimicrobial peptides that kill bacteria without detectable lysis, 

apparently breaching the membrane to bind critical metabolic targets (139). The importance 

of pathogen killing by small cationic peptides to host defense is demonstrated by the 

impaired pathogen clearance from the lungs and decreased survival of mutant mice deficient 

in cathelicidin or defensin when challenged with a number of bacterial species (128, 147, 

150). Further substantiating their importance in lung defense, forced overexpression of LL37 

in the airway epithelium of mice enhances protection against bacterial pneumonia and sepsis 

(151, 152). Many antimicrobial peptides demonstrate pathogen killing effects against 

bacteria, fungi, protozoa and some virus when tested in vitro (139), and virtually all peptides 

with a net positive charge and a few hydrophobic residues show some antimicrobial activity 

in non-physiologic dilute media (137). However, in vivo testing reveals that mammalian 

antimicrobial peptides have evolved enhanced activity against the pathogens most often 

encountered in the niche where they are expressed.

Stimulated epithelial production of antimicrobial peptides are also important to lung 

defenses through their immunomodulatory properties, complementing the actions of 

epithelium-derived cytokines. For example, hBD2 is chemotactic for mast cells, whereas 

hBD3 and 4 recruit monocytes and macrophages (153-156). Similarly, LL37 recruits 

neutrophils, monocytes, mast cells and T cells, but not dendritic cells (157, 158). The 

antimicrobial peptides also exert indirect chemotactic effects, as they enhance secretion of 

proinflammatory and chemotactic cytokines from local leukocytes (139, 155). Conversely, 

as shown in keratinocyte and leukocyte models, LL37 attenuates TLR4-dependent cytokine 

secretion, indicating that antimicrobial peptide also play a role in immune regulation.
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Large Antimicrobial Proteins—Besides small cationic antimicrobial peptides, several 

larger proteins elaborated by the epithelium promote resistance, as recently reviewed (102). 

Among these, lysozyme is expressed in the greatest abundance. Lysozyme was among the 

first antimicrobial effectors identified in pulmonary secretions and hydrolyzes β1-4 

glycosidic bonds in peptidiglycan, disrupting Gram-positive bacteria (159). Increased 

lysozyme is measureable in lung lining fluid after treatment of mice with an aerosolized 

NTHi lysate (19). Similarly, lactoferrin is induced by many infectious and inflammatory 

stimuli, including NTHi lysate (9, 19). Lactoferrin has been presumed to exert its 

antimicrobial effects through sequestration of iron from pathogens, though it appears to be 

directly bactericidal, as well (5, 159).

Another group of inducible epithelial antimicrobial products is the surfactant collectins. 

Collectins are comprised of an N-terminal cystein-rich domain, a collagen domain, a coiled 

coil neck domain, and a carbohydrate recognition domain (CRD, or C-type lectin domain) 

(160). As innate immune molecules, they function as soluble PRRs, with surfactant proteins 

A (SpA) and D (SpD) the best characterized. The surfactant collectins recognize conserved 

sugar patterns present on respiratory pathogens. Collectin binding of microbes can result in 

pathogen opsonization and neutralization through agglutination, while modulating dendritic 

and T cell responses (161, 162). We find SpD greatly increased in lung lining fluid 

following treatment with NTHi lysate (19). However, in some cases, the binding of 

collectins to microbes may actually promote adhesion and facilitate infection, as in 

pneumocystis pneumonia (163). Thus, their therapeutic augmentation may have some 

practical limitation.

Lipocalin-2 is an epithelium-expressed protein that binds iron siderophores, is important in 

defense against K. pneumoniae pneumonia (164, 165), and appears to be particularly 

important to induced resistance. Lipocalin-2 is markedly upregulated by IL-22, and its 

deficiency greatly reduces in vitro microbial killing by mouse tracheal epithelial cells after 

stimulation with IL-22 (21). We find increased lipocalin-2 gene expression together with 

increased protein in lung lavage fluid after stimulation of mouse lungs with aerosolized 

NTHi lysate (9, 19). S100 protein family members, including calgranulins A and B, are 

expressed by airway epithelial cells, and have been found to exert antimicrobial effects on a 

host of respiratory pathogens in a manner independent of their calcium binding domains (5, 

102). These are also increased by NTHi lysate (9, 19). A family of proteins known as palate-

lung-nasal-clone (PLUNC), comprised of short (SPLUNC1 and 2) and long (LPLUNC) 

members, shares features with many of the other antimicrobial effectors. There is evidence 

they contribute to lung epithelial defenses (166, 167), though we do not find them increased 

by NTHi lysate aerosol. In addition to its leukocyte chemotactic activity, CCL20 (also 

known as LARC or MIP-3α) shares structural homology with β-defensins and has intrinsic 

antibacterial activity against Gram negative pathogens (168). CCL20 mRNA increases in the 

lungs by over 200-fold after NTHi lysate treatment (9). Secretory leukocyte proteinase 

inhibitor (SLPI) and elafin are constitutively expressed in the airways, and are further 

induced from the epithelium in response to infection. While they appear to limit host injury 

following infection through protease inhibition, both also exert direct toxic effects on 

bacterial species (5), and we observe the induction of SLPI and numerous elafin-related 
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protease inhibitors after treatment with NTHi lysate (9, 19). Complement promotes 

microbial clearance by inducing lysis through the membrane attack complex and by 

opsonization, as well as by signaling to leukocytes and parenchymal cells (see above). Local 

production of complement may be particularly important (169), and complement gene 

expression is increased during induced resistance of the lungs (9, 19). The significance of 

complement activation is suggested by the numerous mechanisms employed by pathogens to 

evade its effects (170).

Reactive Oxygen Species—The airway epithelium also generates reactive oxygen 

species at bactericidal concentrations in response to infection or therapeutic stimulation 

(171-173). The hydrogen peroxide source for reactive oxygen species is primarily generated 

in the airway via the dual NADPH oxidase/peroxidase (Duox) system, with Duox 1 

constitutively expressed and Duox 2 induced by inflammatory cytokines and infection (174). 

The bactericidal effects of hydrogen peroxide are greatly enhanced by the presence of 

peroxidases, and the airway epithelium produces abundant lactoperoxidase (175, 176). Nitric 

oxide is also produced both constitutively and inducibly in the lung epithelium, and 

contributes importantly to microbial killing, though the relative importance of epithelial 

versus macrophage production within the lungs is not known (177).

Just as the respiratory epithelium exhibits synergistic PRR signaling, antimicrobial effector 

molecules expressed by the lungs display synergistic killing. Subinhibitory concentrations of 

lysozyme and lactoferrin both enhance the killing of bacteria by LL37 and hBD2 (5, 139); 

combinations of lactoferrin, SLPI, and lysozyme show synergistic killing (178); and 

antimicrobial proteins interact with reactive oxygen species, as above.

Microbial Evasion of Epithelial Resistance

Not surprisingly, in view of the efficacy of induced epithelial resistance in suppressing 

microbial colonization and invasion, pathogens have evolved a wide variety of mechanisms 

to subvert induced resistance. Many of the signaling pathways and effector mechanisms 

described above are targeted by pathogens, and this subject has recently been reviewed (98, 

170, 179, 180).

Diagnostic and Therapeutic Implications

From a diagnostic standpoint, epithelial innate immune mechanisms are increasingly 

recognized as contributing to inflammatory diseases of the gastrointestinal tract, skin and 

airways. The contributions of these mechanisms to resistance to microbial infection are less 

well understood, though spontaneously occurring mutations in humans dovetail 

informatively with targeted mutations in mice. For example, deficiency of IFN-γ signaling 

leads to increased susceptibility to mycobacterial infections of the lungs whereas 

deficiencies of Type I or III IFN signaling lead to increased susceptibility to viral infections 

(181), and deficiency of MyD88 leads to pyogenic bacterial infections (182). The 

contribution of the epithelium to these susceptibilities is being uncovered by hematopoietic 

stem cell transplantation in humans and tissue-specific studies in mice (183).
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From a therapeutic standpoint, innate immunity is being targeted to attenuate inflammatory 

diseases, provide adjuvant activity in vaccines, deviate the immune system in allergic 

diseases, and prevent tumor promotion (184, 185). The lung epithelia of human subjects 

have not been stimulated therapeutically to prevent or treat infection, though topical TLR7/8 

agonists are currently in use for treatment of viral and parasitic infections of the skin and 

genitourinary tract, and TLR 9 agonists are being developed for treatment of hepatitis C 

(184, 185). The rapid, broad and high level of resistance that can be transiently induced in 

the lungs of mice suggests that human populations transiently at high risk of pneumonia 

might benefit from treatment. Such situations include cancer patients being treated with 

myeloablative chemotherapy, the general population during an epidemic for which a vaccine 

is not available, or a bioterror attack in which the agent is not known or the population 

cannot be fully protected with existing therapies (186).

Conclusion

The efficacy of the lung epithelium in microbial killing has been neglected relative to its 

roles in signaling to leukocytes and acting as a mechanical barrier. This neglect is due in part 

to the requirement for stimulation before the antimicrobial capabilities of the lung 

epithelium become apparent, and in part to being overshadowed by the dazzling array of 

antimicrobial activities displayed by the wide variety of mammalian leukocytes. Better 

understanding of inducible lung epithelial innate resistance is likely to lead to insight into 

the variable individual susceptibility to infection and the ability to manipulate resistance 

therapeutically.
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Common Acronyms

PAMP pathogen associated molecular pattern

PRR pattern recognition receptor

NTHi non-typeable H. influenzae

TLR Toll-like receptor

LPS lipopolysaccharide
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Summary Points

Inducible innate immune resistance to microbial infection in the lungs is mediated 

primarily by epithelial cells.

Lung epithelial cells are conditional pathogen killing machines that require stimulation 

for efficient effector function.

Lung epithelial cells are capable both of directly sensing microbes and of responding to 

signals from leukocytes and other host cells to increase resistance.

While the surface area of the lungs presents a large target for microbial invasion, lung 

epithelial cells that are closely apposed to deposited pathogens are ideally positioned for 

microbial killing when activated.

The full diagnostic and therapeutic implications of the inducibility of innate immunity in 

lung epithelium remain to be determined.
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Future Issues

The necessary and sufficient pathways for epithelial sensing of innate immune stimuli to 

confer resistance against specific pathogens remain to be fully elucidated.

The necessary and sufficient epithelial effector mechanisms in the mediation of 

resistance to specific pathogens remain to be fully elucidated.

The relative importance of direct pathogen sensing by epithelial cells and positive and 

negative signaling from host cells and extracellular macromolecules in the achievement 

of homeostasis remain to be determined.

Whether stimulation of innate resistance of lung epithelial cells can have clinical 

therapeutic value remains to be determined.
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Figure 1. Time Course of Induced Innate Resistance in the Lungs
A. Host survival. Mice were pretreated in groups of 6 with an aerosolized lysate of the 

bacterium non-typeable H. influenzae (NTHi) to stimulate innate immunity, then challenged 

as a single group with live aerosolized S. pneumoniae (Spn) (6.1 × 1010 CFU/ml for 60 

min). Survival at 7 days is shown as a function of the interval between treatment and 

challenge (* p = 0.015, † p = 0.002, treated vs. untreated). B. Bacterial Counts in the Lungs. 
Mice were pretreated in groups of 4 with an aerosolized NTHi lysate at various time points, 

then challenged as a single group with live aerosolized Spn (2.1 × 1010 CFU/ml for 60 min). 

Lungs were removed immediately after the aerosol challenge, homogenized, and plated for 

bacterial culture (mean ± SEM, * p < 0.05 for treated vs untreated). From Clement et al., Am 

J Respir Crit Care Med, 2008.
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Figure 2. Architecture and Innate Immune Tone of Mucosal Surfaces
A. Architecture of Colon and Lung. The architecture of the mouse colon on the top, 

showing the epithelium with intracellular mucin (intense green), extracellular mucin (faint 

green), and overlying bacteria (red). The mucus gel layer is thick (up to 500 μm), and is 

adherent to the epithelium. From Johansson MEV, PNAS 2008, 105:15064. The architecture 

of the airway is illustrated on the bottom, showing a thin mucus layer (5 μm in distal airways 

to 50 μm in proximal airways) overlying a periciliary liquid layer ∼7 μm in depth. Aspirated 

microbes become entrapped in the mucus gel layer and are rapidly swept out of the lungs by 

ciliary action, keeping the lungs nearly sterile. B. Baseline Innate Immune Tone of 
Mucosal Surfaces. The epithelial resistance of mucosal surfaces of the mammalian body are 

postulated to be related to exposure to microbial products. The tone of the lung and gut are 

illustrated in relative terms with regard to each other and to the minimal and maximal points 

of the scale; the tone of all other surfaces is speculative.
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