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Reconstructing propagation 
networks with temporal similarity
Hao Liao1,3,4 & An Zeng2,3

Node similarity significantly contributes to the growth of real networks. In this paper, based on 
the observed epidemic spreading results we apply the node similarity metrics to reconstruct the 
underlying networks hosting the propagation. We find that the reconstruction accuracy of the 
similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, 
there is a range of infection rate in which the reconstruction accuracy of some similarity metrics 
drops nearly to zero. To improve the similarity-based reconstruction method, we propose a temporal 
similarity metric which takes into account the time information of the spreading. The reconstruction 
results are remarkably improved with the new method.

One of the key features in complex networks is the similarity between nodes1. The intrinsic similarity 
between nodes is one of the mechanisms driving the growth of networks2. Consequently, nodes in a net-
work may appear to have some level of similarity in topology. An accurate estimation of nodes’ topology 
similarity is fundamental to many applications in network science, including link prediction3, personal-
ized recommendation4, spurious link identification5,6, backbone extraction7–9, community detection10,11 
and network coarse-graining12,13. However, how to estimate the topology similarity between nodes still 
remains a challenge in which the optimal solution depends significantly on the problems we are facing. 
For example, in recommender systems it has already been pointed out that a more effective similarity 
metric should be biased to small degree nodes to enhance diversity of the recommendation4. For the 
problem of spurious link identification5, the similarity metric should be combined with the betweenness 
index to avoid removing the important links connecting communities14. The concept of similarity is 
applied to compare sampled networks in order to detect damage in the original networks15.

The spreading, as an important dynamics in networks, has been applied to simulate many real pro-
cesses including epidemic contagion16–18, cascading failure19, rumor propagation20–22, and others23–25. 
Recently, one fundamental problem about the spreading process attracts increasing attention: recon-
structing propagation networks from observed spreading results26. In some real systems, partial data of 
the spreading process are visually available, but the underlying structure of the propagation network is 
not accessible. For example, the propagation of risk in financial systems27 and the diffusion of chemicals 
in neural systems28 are important dynamics processes for these systems. However, the inter-bank lending 
relations are commercial secrets29 and the synaptic connections between neurons are very difficult to 
detect30. Therefore, how to reconstruct the propagation network from the collected spreading data is very 
meaningful for understanding these real systems. Moreover, knowing the propagation networks can help 
us to hinder the propagation in the context of epidemic spreading. For instance, one effective way is to 
immunize the nodes that connecting different clusters in the propagation networks31.

Very recently, the compressed sensing theory has been introduced to infer the propagation net-
works32. This technique, though effective, has relatively high computational complexity which prevents 
its application in large scale networks. Real networks, especially in online social systems, can contain mil-
lions of nodes. An efficient algorithm should be based only on local information. To solve this problem, 
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some local similarity metrics have been applied to inferring the propagation networks33. The basic idea 
is that the nodes’ similarity in the “infection pattern” is connected with their similarity in topology. In 
other words, nodes receiving similar information/virus in spreading are more likely to be connected in 
the propagation networks. However, the similarity-based methods only use the final spreading results 
as input information. In reality, one may be able to access more detailed spreading information even 
including the time stamp that records when the information/virus reached the node. If such information 
is used properly, it may significantly improve the inference accuracy.

Even though there are many problems, such as link prediction3 and personalized recommendation4, 
related to the network reconstruction, they are essentially different. In link prediction and personalized 
recommendation, the main task is to estimate the likelihood of a nonexisting link to be an existing link 
in the future3. A method that putting many future existing links on the top of the likelihood ranking has 
high accuracy. In network reconstruction, the accuracy is not the only focus. A well-performing method 
should also avoid high ranking of the false links that may result in significant difference between the 
reconstructed network and the real network. Therefore, one may reach completely different conclusions 
even if the same similarity method is applied to these two different types of problems14. In this context, 
the performance of the existing similarity metrics has to be reexamined when applied to network recon-
struction.

In this paper, we first systematically study the performance of different similarity metrics in recon-
structing the propagation networks. Some methods with high accuracy in predicting missing links per-
form very badly in reconstructing the propagation networks under some infection rates. We find that 
this is because these similarity metrics overwhelmingly suppress high degree nodes, so that the links are 
mostly connected to the nodes that are supposed to have low degree. Moreover, we find a phenomenon 
called “more is less”: when the infection rate is higher than the critical value, each information/virus 
covers a large part of the network, making the similarity metric fails to capture the local structure of the 
network. In order to solve this problem, we propose a temporal similarity metric to incorporate the time 
information of the spreading results. The simulation results in both artificial and real networks show that 
the reconstruction accuracy is remarkably improved with the new method.

Results
Problem Statement.  We make use of the well-known Susceptible-Infected-Remove (SIR) model to 
simulate the spreading process on networks34. Although it is an epidemic spreading model, it has also 
been applied to model the information propagation process35. While we use here the terminology of 
news propagation, our results remain applicable to the epidemic spreading case.

A social network with N nodes and E links can be represented by an adjacency matrix A, with Aij =  1 
if there is a link between node i and j, and Aij =  0 otherwise. In our model, each node has a probability 
f submitting a piece of news to the network. As there are N nodes in the network, finally there will be 
f ×  N pieces of news propagating in the network. The propagation of the news follows the rule of the SIR 
model: After news α is submitted (or received) by a node, it will infect each of this node’s susceptible 
neighbors with probability μ. After infecting its neighbors, the node is marked as recovered. During the 
spreading, we record all the news that each node receives and the time step when it happens. At the 
end, the information of news received by nodes is stored in a matrix R, with Riα =  1 if i have received 
news α, and Riα =  0 otherwise. When Riα =  1, the time step at which i received α is recorded in Tiα. In 
the simulation, we use parallel update of nodes’ status in the spreading. It means that the time step is 
updated after all infected nodes finish the attempt to infect neighbors. In next time step, all the newly 

Variable Description

N Number of nodes in the network 

E Number of links in the network 

A Adjacency matrix of the network 

〈 k〉  Average degree of the network

f Probability of a node to submit a news in each 
step

μ Infection rate of the spreading

Riα
Riα =  1 means node i received news α, otherwise, 
Riα =  0

Tiα The time step at which node i received news α 

sij The similarity between node pair ij 

dij
The total number of news received by each node 
pair ij 

Table 1.   Variable notations in this paper.
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infected nodes from last time step will attempt to infect their neighboring nodes. The main task is to 
use the information stored in R and T to rebuild the network A. The notations of important variables 
are presented in Table 1.

Similarity metrics.  The methods we used to reconstruct the network will be based on node similarity. 
The basic idea is that the nodes receiving many common news are similar and tend to link together in 
the network. Therefore, the similarity sij between node pair ij can be used to estimate the likelihood Lij 
for two nodes to have a link in the network. With R, many similarity methods can be used to calculate 
the similarity between nodes. The performance of these methods have been extensively investigated 
in36. Here, we mainly consider four representative methods: Common Neighbors (CN)1, Jaccard (Jac)37, 
Resource Allocation (RA)38 and Leicht-Holme-Newman (LHN)39 Indices.

We select these four indices because we want to explore different type of similarity definitions. The 
CN and RA similarities are in favor of the high degree nodes. The Jaccard similarity reduces the advan-
tage of high degree nodes by normalizing the number of common news with the size of the union of 
the received news. The LHN similarity punishes the high degree nodes even more than the Jaccard. By 
comparing the results of CN, Jac and LHN, we can investigate the influence of different penalty schemes 
(i.e. CN: no penalty; Jac: median penalty; LHN: strong penalty) on node degree on the network recon-
struction results.

As we are able to get access to the information of the time step Tiα at which the news α is received 
by the node i, we can further improve the similarity with Tiα. If two nodes receive the news at a closer 
time step, they are more likely to be connected in the network. Therefore, for each similarity method, 
we will design an improved method based on the temporal information of the news propagation. The 
improved methods are respectively Temporal Common Neighbors (TCN), Temporal Jaccard (TJac), 
Temporal Resource Allocation (TRA) and Temporal Leicht-Holme-Newman (TLHN) Indices. The 
detailed description of the methods can be seen in the Methods section.

Metrics.  We adopt three metrics to evaluate the performance of different methods. The first one is 
the standard metric of the area under the receiver operating characteristic curve (AUC)40. Each method 
above gives a score to all node pairs in the network, and the AUC represents the probability that a true 
link has a higher score than a nonexisting link. To obtain the value of the AUC, we pick a true link and a 
nonexisting link in the network and compare their scores. We randomly pick up n pairs of such links in 
total. The number of times that the real link has a higher similarity score sij than the nonexisting link is 
denoted as n1. Moreover, we use n2 to denote the number of times that the real link and the nonexisting 
link have the same score sij. And the AUC value is then calculated as follows:

= ( + . × )/ ( )AUC n n n0 5 11 2

If links were ranked at random, the AUC value would be equal to 0.5. We tested different n value and 
find that AUC in different realization is already very stable after n >  104. Therefore, we set n =  105 in this 
paper.

The second and third metrics require the reconstruction of the network. The node pairs are ranked in 
descending order according to sij, and E (we assume that we know roughly the number of real links in 
the network) top-ranked links are used to reconstruct the network. The precision of the reconstruction, 
as the second metric, can be assessed by the overlap of the links in the reconstructed network and the 
real network. If m out of E top-scoring links occur also in the real network of size E, precision is m/E. 
The precision metric can be regarded as a complementary measurement to AUC. The third metric is the 
Pearson correlation between node degree in the reconstructed network and the real network. In fact, 
AUC and precision measure the reconstruct performance computing on individual level, i.e. whether 
the top-ranked link exist or not in the network. The degree correlation, on the other hand, evaluates 
the methods in rather collective level, i.e. whether the methods can correctly infer the degree of nodes.

Artificial networks.  We first analyze the methods in two classic artificial networks: (i) Small-World 
networks (SW), generated by the Watts-Strogatz model41 and (ii) Scale-free networks, generated by the 
Barabasi-Albert model (BA)42. The spreading process has two parameters: infection rate μ and news 
submission probability f. With the Common Neighbor (CN) method as an example (see the results of 
other methods in Fig. S1, Fig. S2 and Fig. S3 in the Supplementary Information), we study the influence 
of these two parameters on the network reconstruction results in Fig. 1. The AUC, precision and degree 
correlation in the parameter space (μ, f  ) for both BA and SW networks are shown. One can see that μ 
significantly affects the results in each panel. In BA networks, the optimal μ results in the highest AUC, 
and precision and degree correlation are nearly the same (around 0.1). However, in SW networks the 
optimal μ for AUC and precision is different from the optimal μ for degree correlation. More specifically, 
to achieve the highest AUC and precision, μ in SW needs to be around 0.15. However, the best μ for 
degree correlation is around 0.25. In33, it has already been pointed out that the optimal μ for AUC is 
roughly equal to 1/〈 k〉 . Different from μ, the effect of f on the results is monotonous. All the three met-
rics increase remarkably as f increases. After f is higher than a threshold, these three metrics are affected 
only slightly by f (see Fig. S4 in the SI for the dependence of the three metrics on f  ).
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We further compare the performance of different similarity methods. To this end, we present the 
dependence of AUC, precision and degree correlation on μ of CN, Jac, RA and LHN methods in Fig. 2. 
As in real systems, the observed propagation results are usually limited, we thus use a relatively small f 

0 0.5 10.25 0.75
0

0.1

0.2

 

(a) BA−AUC

f

 

µ

0 0.5 10.25 0.75
0

0.1

0.2

 

(b) BA−Precision

f

 

µ

0 0.25 0.5 0.75 1
0

0.1

0.2

 

(d) SW−AUC

f

 

µ

0 0.25 0.5 0.75 1
0

0.1

0.2

 

(e) SW−Precision

f

 

µ

0 0.25 0.5 0.75 1
0

0.1

0.2

 

f

(f) SW−Correlation

 

µ

0 0.25 0.5 0.75 1
0

0.1

0.2

 

f

(c) BA−Correlation

 

µ

0.5

0.6

0.7

0.8

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

Figure 1.  The AUC, Precision and Degree correlation in the parameter space ( μ, f ) for (a,b,c) BA 
networks (N =  500, 〈 k〉  =  10) and (d,e,f) SW networks (N =  500, p =  0.1, 〈 k〉  =  10) by using CN method. The 
results are averaged over 50 independent realizations.
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Figure 2.  The dependence of the AUC, Precision and Degree correlation on μ with four different 
similarity methods in BA networks (N =  500, 〈 k〉  =  10) and (d,e,f) SW networks (N =  500, p =  0.1, 
〈 k〉  =  10). We use f =  0.5 here. The results are averaged over 50 independent realizations.
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in this figure, i.e. f =  0.5. As we discussed in Fig. 1, when CN is applied, one can observe a pronounced 
peak when tuning μ. The reason for this peak has already been explained in ref. 33. Here, the interesting 
phenomenon happens when different similarity methods are compared. For Jac and LHN, the peaks 
in AUC still exist. However, when precision and degree correlation are considered, the curves of these 
two metrics drop suddenly within a certain range of μ which we refer to as the “special range” of μ. 
The “special range” is actually due to two reasons: the similarity degeneracy and degree penalty of the 
similarity metrics. The similarity degeneracy mainly explains the “special range” in CN method. It means 
that there are some node pairs with the same similarity when μ is in the “special range” that one cannot 
set a simple threshold to cut top-E links to reconstruct the propagation network. In this case, many links 
need to be randomly selected from a large number of candidates, resulting in a low reconstruction pre-
cision. The degree penalty mainly explains the “special range” in Jac and LHN methods. These similarity 
metrics overwhelmingly suppress high degree nodes, so that the links are mostly connected to the nodes 
that are supposed to have low degree. A quantitative analysis and explanation of the “special range” are 
reported in SI.

During the news propagation process, the time stamp when the news reaches each node is recorded. 
We thus used the temporal information of the news propagation to improve the existing similarity meth-
ods (see the Methods section). Here, we present the advantage of these temporal similarity methods in 
Fig. 3 and 4. In Fig. 3, we show the dependence of the AUC on f and μ. In Fig. 3(a), μ =  1/〈 k〉  and one 
can see that TCN and TJac can significantly outperform CN and Jac, respectively (see the results of other 
temporal similarity methods in Fig. S5 in the SI). In Fig.  3(c), μ =  1/〈 k〉  again, but the curves of the 
original similarity methods and the temporal similarity methods overlap, indicating the received news 
under this μ dominates the similarity. In Fig. 3(b, d), one interesting feature of the temporal similarity 
methods can be observed when tuning μ. When μ is large, the AUC of the classic similarity methods 
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Figure 3.  The dependence of the AUC on f with temporal similarity methods in BA and SW networks. 
We use μ =  1/〈 k〉  in (a) and (c), and f =  0.5 in (b) and (d). The results are averaged over 50 independent 
realizations.
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is very low. This is because the news proposed by every node can reach a large part of the networks, so 
that the news coverage can no longer reflect the topology information of the network. However, when 
TCN and TJac methods are applied, AUC can remain close to 1 even when μ is as large as 0.1. These 
results indicate that the temporal information is crucial to the network reconstruction from the propa-
gation processes. However, we have to remark that, when μ is small, as we see in the Fig. 3, the temporal 
information cannot improve AUC.

In Fig. 4, we study the dependence of degree correlation on f and μ respectively when the temporal 
similarity methods are used. Clearly, the temporal similarity methods cannot improve the correlation 
and the special range of μ still exists. This is easy to understand as the degree correlation is mainly 
determined by the normalization factor of the similarity methods. Therefore, when selecting the tempo-
ral similarity method, one still needs to be very careful, as an inappropriate method may still result in a 
negative degree correlation and very low reconstruction accuracy.

As shown above, the different similarity metrics yield very different results when varying the spread-
ing parameters. In practice, one needs to estimate the spreading parameter before selecting the most 
appropriate similarity metrics to reconstruct the network. For instance, in a social network context, μ can 
be estimated by the mean-field approximation of the epidemic spreading process. By fitting the evolution 
of the infected node number with the mean-field curve, one can roughly estimate the parameter μ in the 
mean-field model43,44. As for f, one can estimate it by M/(N * t) where M is the number of news proposed 
by users in t period of time, and N is the number of users in the social network. These three values are 
normally publicly accessible in real online systems.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1
(a) BA−Correlation

f

C
or

re
la

tio
n

 

 

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1
(b) BA−Correlation

µ

C
or

re
la

tio
n

 

 

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5
(c) SW−Correlation

f

C
or

re
la

tio
n

 

 

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1
(d) SW−Correlation

µ

C
or

re
la

tio
n

 

 

CN
TCN
Jac
TJac

CN
TCN
Jac
TJac

CN
TCN
Jac
TJac

CN
TCN
Jac
TJac

Figure 4.  The dependence of Degree correlation on f with temporal similarity methods in BA and SW 
networks. We use μ =  1/〈 k〉  in (a) and (c), and f =  0.5 in (b) and (d). The results are averaged over 50 
independent realizations.
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Real undirected networks.  We further apply the methods to the real networks. Firstly, the methods 
are applied to real undirected networks. We consider nine empirical networks including both social 
networks and nonsocial networks: (i) Dolphin: an undirected social network of frequent associations 
between 62 dolphins in a community living off Doubtful Sound, New Zealand45. (ii) Word: adjacency 
network of common adjectives and nouns in the novel David Copperfield written by Charles Dickens46. 
(iii) Jazz: a music collaboration network obtained from the Red Hot Jazz Archive digital database. It 
includes 198 bands that performed between 1912 and 1940, with most of the bands from 1920 to 194047. 
(iv) E.coli: the metabolic network of E.coli48. (v) USAir: the US air transportation network which publicly 
available dataset at http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm. (vi) Netsci: a coauthorship 
network between scientists who published on the topic of network science46. (vii) Email: an email com-
munication network49. (viii) TAP: a yeast protein binding network generated by tandem affinity purifica-
tion experiments50. (ix) PPI: a protein-protein interaction network51. We only take into account the giant 
component of these networks. This is because a pair of nodes located in two disconnected components, 
their similarity scores will be zero according to CN and its variants.

The results of the similarity methods on these networks are reported in Table 2 in detail. Consistent 
with the results in the artificial networks, the temporal similarity methods significantly outperform the 
classic similarity methods (not necessarily in degree correlation). In Table 2, TJac outperforms TCN in 
both AUC and Precision. The results of TLHN and TRA methods are reported in Table S2. The spe-
cial range is also observed when LHN methods is applied to real networks. For example, in the email 
network, the degree correlation drops to negative when μ >  0.1, and the precision value is significantly 
lowered (from 0.2 to 0.02). However, we also observe that Jac no longer leads to the sudden drop of cor-
relation and precision in the real networks we considered. Comparing all the methods, the TRA method 
generally enjoys the highest accuracy.

Real directed networks.  The methods are also applied to real directed networks. We considered sev-
eral real directed networks to validate our methods. Results of TCN and TJac are shown in Table 3 and 
results of TLHN and TRA methods are shown in Table S4. The networks include Prisoners (friendship 
network between prisoners, available dataset at http://www.casos.cs.cmu.edu/index.php), St. Marks FW 
(food web in St. Mark area collected by http://www.cosinproject.org/), C. elegans neural (neural network 
of C. elegans)52, C. elegans metabolic (metabolic network of C. elegans)52, and PB (hyper link between 
the blogs of politicians, available at http://incsub.org/ blogtalk/images/robertackland.pdf).

Like the undirected networks, the temporal similarity methods have a much higher AUC and preci-
sion than the classic similarity methods. However, one can also see that AUC and Precision in directed 
networks are on average lower than the undirected networks. This indicates that it is generally more diffi-
cult to reconstruct directed networks via similarity metrics. We also studied the effect of μ on the results 
in directed networks. We observe that the improvement of the temporal similarity methods becomes 
more significant when μ is larger. Moreover, the special zone of both the Jac and LHN methods exists 
when adjusting μ in directed networks. Taking the Neural network as an example, when LHN is applied 
and μ >  0.08, the degree correlation drops to negative and the precision decreases from 0.15 to 0.07. We 
remark that the results on other networks are similar.

Network 
Basic 

properties AUC Precision Degree correlation

N E CN TCN Jac TJac P0 CN TCN Jac TJac CN TCN Jac TJac

Dolphins 62 159 0.78 0.96 0.83 0.97 0.08 0.34 0.66 0.38 0.74 0.66 0.76 0.70 0.84

Word 112 425 0.80 0.92 0.80 0.93 0.07 0.30 0.54 0.30 0.55 0.76 0.81 0.76 0.87

Jazz 198 2742 0.79 0.86 0.79 0.86 0.14 0.41 0.52 0.42 0.53 0.85 0.82 0.85 0.82

E. coli 230 695 0.87 0.94 0.89 0.97 0.03 0.32 0.52 0.33 0.53 0.83 0.79 0.83 0.79

USAir 332 2126 0.91 0.93 0.91 0.94 0.04 0.52 0.50 0.51 0.50 0.82 0.84 0.82 0.84

Netsci 379 914 0.86 0.98 0.97 0.99 0.01 0.21 0.61 0.44 0.84 0.50 0.63 0.64 0.88

Email 1133 5451 0.83 0.92 0.83 0.93 0.01 0.11 0.39 0.11 0.40 0.78 0.85 0.78 0.85

TAP 1373 6833 0.82 0.93 0.89 0.99 0.01 0.18 0.55 0.26 0.58 0.69 0.76 0.75 0.78

PPI 2375 11693 0.89 0.94 0.92 0.97 0.00 0.29 0.34 0.29 0.35 0.79 0.75 0.79 0.75

Table 2.   Basic properties of real undirected networks and the performance of the CN, TCN, Jac and 
TJac methods on these networks. The parameters are set as μ =  2/〈 k〉  and f =  0.5. We select a relatively 
large μ because the performance difference between traditional similarity metric and temporal similarity 
metric becomes more significant under large μ, as shown in Fig. 4. The P0 is calculated with 

( − )
E

N N
2

1
, 

denoting the baseline precision value if the network is reconstructed at random. The similarity method with 
the best performance in each network is highlighted in bold font. The results are averaged over 50 
independent realizations. The standard deviations are very small and presented in SI Table S1.

http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm
http://www.casos.cs.cmu.edu/index.php
http://www.cosinproject.org/
http://incsub.org/blogtalk/images/robertackland.pdf
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We select real networks from diverse backgrounds in order to study the performance of the similarity 
methods in different situations. Table 2 and 3 show that the method with the highest accuracy is almost 
unchanged in different networks. This means that the performance of similarity methods with respect to 
the accuracy is robust. However, when the degree correlation is measured, the results depend more on 
the networks, as shown in Table 2 and 3. The degree correlation measures whether the node degree in 
the reconstructed network is correlated with the node degree in the real network. In this case, a method 
that performs well in one type of networks is not guaranteed to perform well in other types of networks. 
For example, if the degree distribution of the real network is very heterogeneous, CN would work better 
in recovering the node degree (as the nodes’ CN similarity score is proportional to their degree). If the 
degree distribution is homogeneous, Jac or LHN similarity measures may outperform CN in degree 
correlation due to the higher accuracy.

Other similarity metrics.  Besides the four similarity metrics, we tested some other similarity metrics 
such as the Cosine index (Cos)53, Hub depressed index (HDI)38, Hub promoted index (HPI)42, Sorensen 
index (SSI)54, Preferential attachment index (PA)42, Asymmetric Index (AS)33. For each method, we also 
study its temporal version. The description of these methods and their results are presented in SI (see 
Fig. S10 and Table S5, S6, S7).

We study the influence of different parameters (i.e. N, 〈 k〉 , μ) on the performance of different similar-
ity metrics in network reconstruction. We find that the temporal similarity metrics can significantly out-
perform the corresponding traditional similarity metrics especially when μ is large. When 〈 k〉  increases, 
the precision of both traditional similarity metrics and temporal similarity metrics tend to increase. 
When N increases, the precision of both traditional similarity metrics and temporal similarity metrics 
tend to decrease. However, when 〈 k〉  and N increase, the temporal metrics constantly outperform the 
traditional metrics. Therefore, it is better to use the temporal similarity metrics to reconstruct networks.

When different similarity metrics are compared, we find that CN and RA indices have smaller drop 
of precision in the “special range” than the other similarity metrics such as LHN, SSI, HPI, HDI, Cos 
and Jac. This is because the latter group of metrics all has some form of punishment based on node 
degree. In LHN, the drop of precision in the special range is most significant. The “special range” effect 
is much less obvious when the temporal similarity metrics are used. In LHN, however, an observable 
drop of precision in the “special range” still exists. This is because the degree punishment is most severe 
in LHN. We then compare the results of different metrics on SW and BA networks. In SW networks, all 
the temporal metrics can reach a very high precision (close to 1) when μ is large. However, TRA method 
reaches the highest value later (i.e. a larger μ is needed) than the other methods. In BA networks, the 
THPI reaches a highest precision.

In summary, if the time information of the spreading is unknown, it is better to use RA and CN to 
reconstruct the network as their precision is not affected much by the “special range” effect. If the time 
information of the spreading is available, it is better to use THPI to reconstruct the network as it works 
similar to other metrics in heterogeneous networks and it works best in homogeneous networks.

Discussion
In this paper, we applied several standard similarity metrics to reconstruct the propagation network 
based on the observed spreading results. We find that even though some similarity methods such as 
Jaccard and LHN perform well in link prediction, they may cause problems when they are used to recon-
struct networks, as they punish too much the nodes received many news and assign a large number of 

Networks 
Basic 

properties AUC Precision Degree correlation

 N E CN TCN Jac TJac P0 CN TCN Jac TJac CN TCN Jac TJac

Prisoners 67 182 0.72 0.81 0.80 0.84 0.04 0.21 0.47 0.41 0.58 0.57 0.69 0.68 0.73

SM-FW 54 356 0.65 0.67 0.63 0.66 0.12 0.25 0.29 0.24 0.28 0.66 0.64 0.33 0.33

Neural 297 2359 0.72 0.79 0.73 0.81 0.03 0.14 0.25 0.14 0.29 0.68 0.59 0.55 0.51

Metabolic 453 2040 0.68 0.70 0.70 0.72 0.01 0.09 0.14 0.14 0.23 0.54 0.64 0.60 0.71

PB 1222 19090 0.84 0.86 0.84 0.86 0.01 0.15 0.25 0.16 0.25 0.81 0.80 0.80 0.80

Table 3.   Basic properties of real directed networks and the performance of the CN, TCN, Jac and TJac 
methods on these networks. The parameters are set as μ =  2/〈 k〉  and f =  0.5. We select a relatively large μ 
because the performance difference between traditional similarity metric and temporal similarity metric 
becomes more significant under large μ, as shown in Fig. 4. The P0 is calculated with 

( − )
E

N N 1
, denoting the 

baseline precision value if the network is reconstructed at random. The similarity method with the best 
performance in each network is highlighted in bold font. The results are averaged over 50 independent 
realizations. The standard deviations are very small, and presented in SI Table S3.
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links to the nodes that supposed to have low degree. We find that the resource allocation method not 
only has high reconstruction accuracy, but also results in similar network structural properties as the 
original network. Finally, we take into account the temporal information of the propagation process, 
and we find that such information can significantly improve the reconstruction accuracy of the existing 
similarity methods, especially when the infection rate is large.

The value range of the infection rate in which the performance of Jaccard and LHN suddenly drops is 
denoted as a “special range” in this paper. The special range cannot be observed if one uses AUC to assess 
the network inference results. It can only be seen when one picks up the top ranking predicted links 
and uses them to reconstruct the network. This means that in the “special range”, even though existing 
links are still highly ranked in general by these link prediction algorithms (high AUC), only few links 
are actually located in the top-ranking (low precision). Therefore, the discovery of this “special range” 
not only gives warning information that a well-performed similarity method is not for sure effective in 
all difference cases, but also highlights the fact that precision of the predicted links needs to be measured 
when judging the performance of the similarity methods. This is also an important message for the link 
prediction research in which AUC is usually adopted as the only metric to evaluate the prediction results.

Some problems still remain unsolved. For example, our methods now require full time information. 
When only partial time information is available, the temporal similarity methods must be modified. In 
addition, our work only considers the simplest epidemic spreading model. Other more realistic models 
describing the disease contagion and information propagation need to be examined55. Furthermore, sim-
ilar problems in other fields also need to be addressed. For instance, most link prediction methods are 
based on the observed network topology. When the time information of the observed links is available, 
the similarity methods should be modified accordingly to incorporate the temporal information of the 
network. Node similarity is also a basic network feature for community detection. Improving the com-
munity detection accuracy with the time information could be important problem. We believe that our 
work will inspire possible solutions to the above mentioned problems in the near future.

Methods
The original similarity methods and the improved ones based on time information are listed below.

(i) Common Neighbours (CN) The common neighbor index is the simplest one to measure node sim-
ilarity by directly counting the overlap of news received, namely

∑= ,
( )α

α αs R R
2ij i j

where Riα =  1 if i have received news α, and Riα =  0 otherwise.
(ii) Temporal Common Neighbours (TCN) This method, based on the common neighbor index, takes 

into account the time steps difference between two nodes receiving the news in common. The formula 
reads

∑=
−

,
( )α

α α

α α
s

R R

T T 3
ij

i j

i j

where Tiα records the time step at which i received α. If two nodes receive the news at a closer time step, 
they are more likely to be connected in the network.

(iii) Jaccard Index (Jac) This index was proposed by Jaccard37 over a hundred years ago. It can prevent 
the large degree nodes from having too high similarity with other nodes. The index is defined as

( )
=

∑

∑ + − ( )

α α α

α α α α α

s
R R

R R R R 4
ij

i j

i j i j

(iv) Temporal Jaccrad Index (TJac) The Jaccard index can also be improved by Tiα as

( )
=
∑ ( − )

∑ + − ( )

α α α α α

α α α α α

−

s
R R T T

R R R R 5
ij

i j i j

i j i j

1

(v) Resource Allocation Index (RA) The similarity between i and j is defined as the amount of resource j 
received from i38, which is

∑=
∑

.
( )α

α α

α
s

R R

R 6ij
i j

i i

(vi) Temporal Resource Allocation Index (TRA) The improved RA method reads
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(vii) Leicht-Holme-Newman Index (LHN) This index assigns high similarity to node pairs that have many 
common neighbours compared to the expected number of such neighbours39. It is defined as

=
∑

∑ ∑ ( )

α α α

α α α α
s

R R

R R 8
ij

i j

i j

(viii) Temporal Leicht-Holme-Newman Index (TLHN) Similar to the above three improved methods, the 
formula is

=
∑ ( − )

∑ ∑
.

( )

α α α α α

α α α α

−

s
R R T T

R R 9
ij

i j i j

i j

1

In all the temporal similarity methods above, we set (Tiα −  Tjα)−1 =  0 when Tiα =  Tjα. In this case, i is 
definitely not the node that passes the news to j, so i and j are unlikely to be connected in the networks. 
We pose this setting as it applies to our step-by-step spreading model. Note that in other problems such 
as link prediction and recommendation, the case of Tiα =  Tjα may have to be treated differently.
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