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A decade ago, only two hormones, parathyroid hormone and 1,25(OH)2D, were widely recognized to direct- 
ly affect phosphate homeostasis. Since the discovery of fibroblast growth factor 23 (FGF23) in 2000 (1), our 
understanding of the mechanisms of phosphate homeostasis and of bone mineralization has grown 
exponentially. FGF23 is the link between intestine, bone, and kidney together in phosphate regulation. 
However, we still do not know the complex mechanism of phosphate homeostasis and bone mineralization. 
The physiological role of FGF23 is to regulate serum phosphate. Secreted mainly by osteocytes and osteo- 
blasts in the skeleton (2-3), it modulates kidney handling of phosphate reabsorption and calcitriol produc- 
tion. Genetic and acquired abnormalities in FGF23 structure and metabolism cause conditions of either 
hyper-FGF23 or hypo-FGF23. Hyper-FGF23 is related to hypophosphatemia, while hypo-FGF23 is related to 
hyperphosphatemia. Both hyper-FGF23 and hypo-FGF23 are detrimentalto humans. In this review, we will 
discuss the pathophysiology of FGF23 and hyper-FGF23 related renal phosphate wasting disorders (4). 
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Introduction 
 

According to pathogenesis, ricketsis classified into calico- 
penic rickets, phosphopenicrickets, and a miscellaneous 
group associated with direct inhibitors of mineralization 
(

 

5). In general, most instances of nutritional rickets are 
calicopenic, whereas heritable causes are usually phos- 
phopenic. In this review we focus on hypophospha- 
temic rickets or osteomalacia. The causes of hypophos- 
phatemia are various, of whichthe most prominent one 
is decreased reabsorption of phosphate in the proximal 
tubule.Although renal tubular disease can result in 
excessive renal phosphate wasting, in most hypophos- 
phatemic disordersno abnormalities are found in the 
proximal tubule (6-7). It is speculated that an unknown 
factor is responsible for this phenomenon. The discovery 
of fibroblast growth factor 23 (FGF23), a member of the 
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FGF family, which mediates renal tubular defects in 
phosphate reabsorption, has given new light to under- 
standinghypophosphatemic disorders. FGF23 was identi- 
fied by positional cloning in 2000 as the gene responsible 
for autosomal dominant hypophosphatemic rickets 
(ADHR) (1). Subsequent analyses indicate that several 
kinds of hypophosphatemic rickets are associated with 
high circulatory levels of FGF23. Thus, hypophospha- 
temic rickets can now be divided into types that are 
FGF23-mediated and those that are not (4). Table 1 lists 
FGF23 related and unrelated hypophophatemic rickets/ 
osteomalacia. 
 
Phosphate homeostasis 
 
Phosphate comprises about 1% of total body weight. 
About 85% of total body phosphate resides in the bone, 
14% in the cells, and only 1% in the serum and 
extracellular fluids. Maintenance of serum phosphate 
within its normal range allows for optimal mineralization 
of bone without deposition in vascular and other soft 
tissues. Serum phosphate concentration is determined 
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by the balance among intestinal absorption of phos- 
phate from the diet, its storage in bone, and its excretion 
in the urine. The proximal tubule is responsible for the 
reabsorption of phosphate filtered at the glomerulus 
and is the primary regulator of phosphate balance in 
the body. Transportation in the proximal tubule is driven 
primarily by sodium–potassium ATPase, which is located 
in the baso-lateral membrane of the cell (8-11). Under 
normal conditions, about 85% of the filtered phosphate 
is reabsorbed via the sodium–phosphate co-transporter 
(NaPi2a and NaPi2c) in the proximal tubule (9, 11). 
Parathyroid hormone (PTH) is one of the most potent 
hormonal regulators of phosphate transport and pro- 
motes renal excretion of phosphate. It has now become 
clear that the mechanism of action of PTH is to stimulate 
endocytosis of the NaPi2a co-transporters from the 

apical membrane of the proximal tubule cells (9, 12). 
FGF23 is also an important factor resulting in renal 
phosphate wasting. FGF23 acts in conjunction with PTH 
to decrease phosphate reabsorption by down-regulat- 
ing NaPi2a and NaPi2c expression in the brush border of 
the proximal tubule (13-16). This, in turn, results in hyper- 
phosphaturia and hypophosphatemia. FGF23 is a 
counter-regulatory hormone for 1,25(OH)2D in the bone– 
kidney feedback loop. 1,25(OH)2D stimulates FGF23 pro- 
duction, resulting in increased circulating FGF23, which 
in turn suppresses 1, 25(OH)2D concentrations. The me- 
chanism will be discussed later. Thus, conditions associ- 
ated with FGF23 excess characteristically have suppress- 
ed or inappropriately normal circulating 1,25(OH)2D 
concentrations in the face of hypophosphatemia. 

 
Table 1 Types of hypophosphatemic rickets/osteomalcia 

FGF 23 Types 
related X linked hypophosphatemic rickets (XLH) 
 Autosomal dominant hypophosphatemic rickets (ADHR) 
 Autosomal recessive hypophosphatemic rickets (ARHR) 
 Tumor induced osteomalacia (TIO) 
 Fibrous dysplasia (FD)/McCune Albright Syndrome (MAS) 
 Neurofibromatosis (NF) 
 Hypophosphatemic rickets and hyperparathyroidism (HRHPT) 
 Osteoglophonic dysplasia (OGD) 
 Linear nevus sebaceous syndrome (LNSS) 
unrelated Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) 

 
Long term hypophosphatemia can result in rickets in 

children, while it can result in osteomalacia in adults. The 
clinical signs of hypophosphatemic rickets include 
squared skull and bowing of the legs, while adults typi- 
cally present with bone pain and pathologic fracture. In 
the growth plate, hypophosphatemia causes arrest of 
apoptosis in the hypertrophic chondrocytes leading to 
rickets, while in the osteoblasts, hypophosphatemia 
inhibits maturation and mineralization, leading to osteo- 
malacia (17). 
 
FGF23 and phosphate regulation  
 
The discovery of FGF23  
Prader was the first to propose the idea of a circulating 
factor that could cause phosphate wasting (18). The first 
evidence that a circulating factor was responsible for 
the hypophosphatemia of phosphaturic disorders was 
demonstrated by Meyer et al and Nesbitt et al (19-20). 
The first to support this concept in humans were the 
findings from Miyauchi et al (21). This phosphaturic sub- 
stance was termed ‘phosphatonin’ by Econs and Drez- 

ner (22) because of its ability to lower blood phosphorus 
levels. The first identification of FGF23 as the putative 
phosphatonin was when mutations in FGF23 were identi- 
fied as the cause of autosomal dominant hypophos- 
phatemic rickets (ADHR) (1). Since then, FGF23 has been 
found to be related to numerous hypophosphatemic 
disorders. 
 
The structure of FGF23 
FGF23 is a glycoprotein with 251 amino acids. There is a 
signal peptide of 24 amino acids in the N-terminal 
portion of the FGF23 protein. Next to the signal peptide is 
the FGF homology region, which binds to FGF receptors 
(FGFR) in the tissue. Its C-terminal peptide binds to its 
co-receptor Klotho which is also a transmembrane pro- 
tein. Both the N and C terminals are participants in the 
hormone’s activity. The intact FGF23 is cleaved prior to 
secretion between Arg179 and Ser180 by furin recog- 
nizing Arg176-X-X-Arg179 motif. Both C-terminal FGF23 
and N-terminal FGF23 are inactive. Figure 1 is the structure 
and function of FGF23. Mutations near this site in the 
RXXR furin-like cleavage domain of FGF23 (R176Q and 
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Figure 1 Schematic structure of fibroblast growth factor (FGF) 23. The FGF23 structure is schematically illustrated. FGF23 has a disulfide bond in the 
FGF-like sequence and internal cleavage site immediately after the R176X177X178R179 consensus sequence for convertase and cleaved into two peptides. 
 
R179W) impair proteolytic inactivation of FGF23, resulting 
in high FGF23 levels and leading to autosomal dominant 
hypophosphatemic rickets (ADHR) (23). 
 
Regulation of FGF23 
FGF23 is almost exclusively produced by osteocytes and 
osteoblasts in response to high serum phosphate levels 
and 1,25(OH)2D (17, 24), although aberrant production 
may occur in mesenchymal tumors associated with 
hypophosphatemic osteomalacia (25) and in the tissue 
of fibrous dysplasia, as in McCune-Albright syndrome 
with rickets (26). However, it is unclear how FGF23 
secretion by bone cells is regulated. Serum phosphate 
and active vitamin D are positive regulators of FGF23. 
When serum phosphate or vitamin D levels are high, 
FGF23 level is elevated to increase renal phosphate 
wasting and to decrease active vitamin D levels. In 
addition to being regulated by phosphate and vitamin 
D, some clinical evidence suggests that FGF23 pro- 
duction is regulated by PHEX, DMP-1, and ENPP1 genes, 
which encode distinct protein products, but the mole- 
cular mechanisms whereby FGF23 is regulated by these 

factors are unknown (27-31). PHEX, DMP-1, matrix extra 
cellular phosphoglycoprotein (MEPE), and acidic serine 
aspartate-rich MEPE associated motif (ASARM) peptides 
have been proposed to dynamically regulate FGF23 
expression in bone (31-32). Normally, the PHEX-DMP-1 
binding initiates a signaling pathway that reduces FGF23 
expression, but in XLHR and ARHR, mutations in PHEX or 
DMP-1, respectively, result in hypophosphatemia through 
increased FGF23 expression and stability which causes 
phosphate wasting (25, 33-35). 
 
FGF23 mode of action as a phosphatonin 
The physiologic effect of FGF23 is on phosphate meta- 
bolism. Although receptors to FGF23 are present in many 
tissues, only the kidney and parathyroid gland respond 
to the hormone. The reason is that the phosphaturic 
actions of FGF23 require FGF receptors and essential 
cofactor Klotho to form a heterotrimer complex (36-38). 
Previous studies have found that the N-terminal portion 
of FGF23 interacts with FGFR 1с, while the C-terminal 
binds to Klotho and both interactions appear to be 
important for bioactivity of FGF23 (29). 
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Klotho, a single-pass transmembrane protein, is pre- 
dominantly expressed in distal convoluted tubules in the 
kidney and the epithelium of the choroid plexus in the 
brain (39) and to a lesser extent, in the parathyroid 
glands (40). It serves as an obligate co-receptor, enabling 
FGF23 to interact with its receptor. Thus, Klotho is the 
modifier dictating which tissues will respond to FGF23. 

As mentioned above, FGF23 acts on the kidney to 
promote phosphate excretion (13, 41-43). The site of 
FGF23 action in the kidney is controversial. A “cross-talk” 
between the distal and proximal tubules is postulated for 
FGF23-induced phosphaturia based on the original 
notion that Klotho is exclusively expressed in the distal 
convoluted tubule, and phosphate reabsorption and 
regulation solely resides in the proximal tubule (44). There 
may be some proximal tubule expression, but it is clear 
that the majority of renal Klotho expression is in the DCT 
(45), While a distal-proximal cross-talk is still possible, 
FGF23 likely also has direct action on the proximal tubule 
(46). Another important function of FGF23 is to regulate 
serum vitamin D levels. The active form of vitamin D (1,25- 
dihydroxyvitamin D3) is synthesized in the kidney from its 
inactive precursor (25-hydroxyvitamin D3) with 1-α- 
hydroxylase encoded by the Cyp2 7B1 gene and is 
inactivated with 24-hydroxylase encoded by the Cyp24 
gene. FGF23 suppresses Cyp27B1 gene expression and 
increases Cyp24 gene expression, so that 1-α-hydroxy- 
lase (CYP27B1) activity is decreased and 24-hydroxylase 
(CYP24) activity is increased, leading to reduced 1,25- 
(OH)2D concentrations (47). 

Elevated concentrations of FGF23 are responsible for 
impaired bone mineralization. Induced hypophospha- 
temia is largely responsible for the features of rickets and 
osteomalacia, since serum phosphorus concentration 
plays an important role in the process of growth plate 
mineralization. What is less clear is whether or not hypo- 
phosphatemia is solely responsible for the osteomalacia. 
Recent studies have found that FGF23 (and soluble Klo- 
tho) may directly impact bone in diseases with elevated 

FGF23 levels (48-49). 
 
High FGF23 and disorders with abnormal phos- 
phate metabolism 
 
Since its discovery in 2000, FGF23 has been found to be 
related to a number of hereditable and acquired phos- 
phate wasting disorders. Genetic disorders include X- 
linked dominant hypophosphatemic rickets, autosomal 
recessive hypophosphatemic rickets (35, 50-51), autoso- 
mal dominant hypophosphatemic rickets (1), hypophos- 
phatemic rickets associated with McCune–Albright syn- 
drome (52-54) and Linear sebaceous nevus syndrome 
(55-57). Acquired disorders include tumor induced 
osteomalacia. Table 2 lists a number of FGF23-mediated 
hypophosphatemic disorders. Table 3 lists the biochemi- 
cal findings of the various forms of hypophosphatemic 
rickets. 
 
XLH 
Clinical features 
XLH is the most commonly inherited form of the renal 
phosphate wasting disorder with a prevalence of 
1/20 000 (58). The defective gene is on the X-chromosome, 
and female carriers are affected (i.e., an X-linked 
dominant disorder). Clinical manifestations vary in severi- 
ty. It frequently manifests during late infancy when the 
child begins walking. The patient develops skeletal 
deformities that primarily include bowing of the long 
bones and widening of the metaphyseal region. The 
latter is most common at costochondral junctions (rachi- 
tic rosary) (59-60). These deformities are associated with 
diminished growth velocity, often resulting in short 
stature. Later in life, patients develop osteomalacia, 
enthesopathy (calcified ligaments and teno-osseous 
junctions), degenerative joint disease, and continued 
dental disease in particular tooth decay and dental 
abscesses. With medical therapy these abnormalities 
can be improved, but cannot be completely resolved. 

 
Table 2 FGF23 mediated hypophosphatemic disorders 

Phosphate wasting disorders OMIM  number Gene Location Gene/Locus involved 
X-linked dominant hypophosphatemic rickets (XLH) 307800 Xp22.1 PHEX 
Autosomal dominant hypophosphatemic rickets (ADHR) 193100 12p13.32 FGF23 
Autosomal recessive hypophosphatemic rickets 1 (ARHR1) 241520 4q.22.1 DMP-1 
Autosomal recessive hypophosphatemic rickets 2 (ARHR2) 613312 6q23.2 ENPP1 
Autosomal recessive hypophosphatemic rickets 3 (ARHR3) 
or Nonlethal variant of Raine syndrome 

241520 or 259775 7p22.3  FAM20C 

Hypophosphatemic rickets and hyperparathyroidism (HRHPT) 612089 13q13.1 Translocation with Klotho 
McCune–Albright syndrome (MAS) 174800 20q13.32     GNAS 
Osteoglophonic dysplasia (OGD) 166250 8p11.2-p11.1 FGFR1 

http://omim.org/entry/241520�
http://omim.org/entry/259775�
http://omim.org/geneMap/7/4?start=-3&limit=10&highlight=4�
http://omim.org/geneMap/20/303?start=-3&limit=10&highlight=303�
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Table 3 Biochemical findings of the various forms of hypophosphatemic rickets due to genetic muta- 
tion/translocation 

Disorder Ca P ALP UCa UP TmP/GFR FGF23 PTH 25OHD 1,25(OH)2D 
XLH N ↓ ↑ N ↑ ↓ N↑ N N N^,↓ 
ADHR N ↓ ↑ N ↑ ↓ N↑ N N N^,↓ 
ARHR1 N ↓ ↑ N ↑ ↓ N↑ N N N^,↓ 
ARHR2 N ↓ ↑ N ↑ ↓ N↑ N N N^,↓ 
HRHPT N ↓ ↑ N ↑ ↓ N↑ ↑ N N^,↓ 
McCune–Albright N ↓ ↑ N ↑ ↓ N↑ N N N^,↓ 
ENS N ↓ ↑ N ↑ ↓ N↑ N N N^,↓ 
NF N ↓ ↑ N ↑ ↓ N↑ N N N^,↓ 
OGD N ↓ ↑ N ↑ ↓ N↑ N N N^, 

^: decreased relative to the serum phosphate concentration; 1,25(OH)2D: 1,25-dihydroxyvitamin D; 25-OH-D: 25-hydroxy- 
vitamin D; ALP: serum alkaline phosphatase; Ca: serum calcium; P: serum phosphate; PTH: parathyroid hormone; TmPO4/GFR: 
maximum rate of renal tubular reabsorption of phosphate normalized to the glomerular filtration rate; UCa: urinary calcium 
excretion; UP: urinary phosphate excretion; N: normal values; ↓: decreased values; ↑: increased values 

 

Biochemical findings 
Hypophosphatemia and low-normal circulating 1,25- 
dihydroxyvitamin D [1,25(OH)2D] levels are typical bio- 
chemical findings. Serum alkaline phosphatase (ALP) 
activity and 24-hour urine phosphate are elevated in 
children, while serum calcium is normal, as is circulating 
25-OHD. Tubular reabsorption of phosphate (TRP) is 
decreased. 
 
Genetics 
Genetic linkage analysis has revealed inactivating 
mutations in the phosphate regulating gene with 
homology to endopeptidases on the X chromosome 
(PHEX), a gene located on Xp22 (61-62). PHEX protein is 
expressed in various tissues, including the kidney, but is 
most abundant in mature osteoblasts and odontoblasts. 
PHEX is a member of the M13 family of neutral endo- 
peptidases. It is an integral membrane glycoprotein, 
which activates or degrades peptides. PHEX is secreted 
largely by osteocytes, but also by osteoblasts, and is 
important for normal matrix mineralization. Its role in the 
mineralization process is unclear at present. Serum intact 
FGF23 level is elevated in most XLH patients (63). FGF23 
was initially referred to as a substrate of PHEX (64), but 
subsequent research found that FGF23 is not a direct 
substrate of PHEX (65). The mechanism by which PHEX 
regulates FGF23 remains unclear. It is now thought that it 
might control mineralization by binding proteins such as 
DMP-1 and matrix extracellular phosphoglycoprotein, 
which are both members of the SIBLING proteins and 
contain ASARM peptides, preventing their proteolysis 
and the release of ASARM peptides which inhibit 
mineralization (66). 

ADHR 
Clinical features 
ADHR is a rare disorder that was first described by 
Bianchine et al in 1971 (58). Clinical and biochemical 
findings of ADHR patients are similar to those of XLHR 
patients. But ADHR, unlike XLHR, shows variable and 
incomplete penetrance with variable symptomatology 
and biochemical findings depending on the age at 
presentation. Patients who manifest the disease in their 
childhood develop short stature, rickets, bone pain, 
lower extremity deformities, and dental abscess. Some 
of the children have spontaneous resolution of symp- 
toms during adulthood. On the other hand, patients with 
ADHR who manifest the disease in adulthood have 
symptoms similar to patients with TIO. Adults have bone 
pain, weakness, osteomalacia, and fractures/ pseudo- 
fractures, but do not have short stature nor lower- 
extremity deformities. Interestingly, the majority of 
patients who develop the disease in adulthood are 
women, and pregnancy triggers the onset of symptoms 
(67). Studies in ADHR humans have suggested that iron 
deficiency may be a trigger for dysregulation of FGF23, 
thus inducing active disease (68). Therefore, the onset of 
the disease is the product of gene-environment interac- 
tions. Imel et al also showed that serum iron was nega- 
tively correlated to both C-terminal FGF23 and intact 
FGF23 in ADHR patients (67). These studies suggested 
that iron status may regulate FGF23 metabolic pathways, 
and that low iron status results in increased FGF23 mRNA. 

ADHR is caused by heterozygous mutations in the 
gene encoding FGF23 which is on 12p13 (1, 69). Muta- 
tions identified in ADHR are missense mutations, and in 
each case, the mutation alters an arginine residue at 
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either position 176 or 179. The mutations, which involve 
the proprotein convertase (furin) cleavage site, prevent 
the proteolytic processing of FGF23 to its inactive N- and 
C-terminal peptides. Mutant FGF23 proteins exhibit 
increased stability, are more active than wild-type 
FGF23, in vivo (70-71), and are likely present at elevated 
concentrations in ADHR patients (72). Thus, in ADHR 
patients, high circulating levels of FGF23 are due to 
decreased FGF23 degradation. 
 
ARHR 
Autosomal-recessive hypophosphatemic rickets (ARHR), 
is a rare disorder that is recently recognized (3, 35). Clini- 
cal and biochemical findings of the affected individuals 
are similar to ADHR and XLH. Clinical features include 
rickets, skeletal deformities, dental defects, and affect- 
ed individuals develop sclerotic bone lesions and en- 
thesopathies. The clinical presentation of ARHR is not 
found at birth. Affected individuals present signs of 
rickets/osteomalacia later during childhood and even in 
adulthood (73-74). ARHR type 1 is caused by inactivat- 
ing mutations in dentin matrix protein 1 (DMP-1), a 
member of the small integrin-binding ligand N-linked 
glycoprotein family of extracellular matrix proteins that 
augment mineralization (75-76). DMP-1 is widely expre- 
ssed, but particularly abundant in bone, where it is 
synthesized by osteoblasts. It is involved in the regulation 
of transcription in undifferentiated osteoblasts. DMP-1 
belongs to the SIB-LING protein family, which includes 
osteopontin, MEPE, bone sialoprotein II, and dentin sialo- 
protein, and whose genes are clustered on chromo- 
some 4q21. DMP-1 undergoes phosphorylation during 
the early phase of an osteoblast’s maturation and is 
subsequently exported into the extracellular matrix 
where it regulates the nucleation of hydroxyapatite. 
FGF23 levels are elevated or inappropriately normal for 
the low serum phosphate levels. Loss of function of 
DMP-1results in increased transcription of FGF23 by 
osteocytes, but the mechanism is not clear (35).  

Recently, Levi-Litan et al, Lorenz-Depiereux et al and 
Saito et al identified an inactivating mutation in the 
ectonucleotide pyrophosphatase/phosphodiesterase 1 
(ENPP1) gene that cause ARHR type 2 (50-51, 77). The 
gene product ectonucleotide pyrophosphatase/phos- 
phodiesterase 1 is a cell surface enzyme responsible for 
generating inorganic pyrophosphate, which inhibits 
mineralization (51). Typically, loss-of-function mutations in 
ENPP1 cause generalized arterial calcification of infancy 
(GACI). However, hypophosphatemic rickets has also 
been found in patients with ENPP1 mutation. It remains 
unclear how the loss-of-function mutation in ENPP1 
causes hypophosphatemic rickets (and not GACI), but it 

has been speculated that it might be through increased 
secretion of FGF23 (24). A recent study demonstrated 
that the FGF23 level is elevated in patients with muta- 
tions in ENPP1 (50). However, the mechanism has yet to 
be defined. 

Another type ARHR with hypophosphatemia, hyper- 
phosphaturia, dental anomalies, intracerebral calcifica- 
tions and osteosclerosis of the long bones in the 
absence of rickets, was called nonlethal variant of Raine 
syndrome or ARHR type 3. Using whole exome sequen- 
cing, Rafaelsen et al identified compound heterozygous 
mutations in family with sequence similarity 20, member 
C (FAM20C) in patients with ARHR type 3. DMP1 is phos- 
phorylated by FAM20C, with partial loss of Fam20c 
function, DMP1 is not properly phosphorylated, seems to 
be a mechanism that is involved in the pathways that 
generate FGF23-dependent hypophosphatemia (78). 
 
Current and future treatments in hypophospha- 
temic rickets 
 
Basic therapy 
Renal phosphate wasting is the principal pathophysi- 
ological abnormality that leads to all these disorders. 
Current treatment for patients with FGF23-dependent 
hypophosphatemic rickets is based on the association 
of activated vitamin D metabolites (calcitriol or alfacal- 
cidol) and oral inorganic phosphate salts. Treatment 
during growth partially corrects leg deformities, de- 
creases the number of surgeries, and may improve adult 
height. Early initiation of treatment appears to optimize 
height outcomes (79-80). However, the improvement is 
often partial (81).  

Although an impaired growth hormone (GH)-insulin 
like growth factor-I axis is not the primary cause of short 
stature in XLHR patients, GH is useful to improve growth in 
poorly growing XLHR patients (82). However, the results 
are not conclusive, as some patients do not have a 
recovery of growth during GH treatment. Orthopedic 
surgery is indicated when healing of skeletal deformities 
of the lower limbs by medical treatment is unsatisfactory. 

With the recognition of increased FGF23 levels in the 
pathogenesis of these renal phosphate wasting disor- 
ders, new therapeutic strategies are being developed. 
One study found that subcutaneous injection of salmon 
calcitonin in XLHR patients causes a significant and 
sustained drop in circulating levels of FGF23, with an 
increase in serum phosphate levels (83). Studies in Hyp 
mice have demonstrated that the inhibition of FGF23 
overproduction by anti-FGF23 neutralizing antibodies 
can improve phosphate levels, renal tubular phosphate 
reabsorption, and bone mineralization (84-85). These 
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results indicate that inhibition of FGF23 activity is a pro- 
mising therapy for FGF23-dependent hypophospha- 
temia. However, further studies are needed to deter- 
mine whether these findings in mice can be applied to 
humans. 
 
Tumor-induced osteomalacia (TIO) 
Tumor-induced osteomalacia (TIO), or oncogenic osteo- 
malacia, is a rare paraneoplastic syndrome of abnormal 
phosphate and vitamin D metabolism caused by typi- 
cally small endocrine tumors. Clinical symptoms include 
chronic bone pain, which is usually the first presentation, 
weakness, and fatigue in association with a high risk of 
fragility fractures. Due to under-recognition of the 
disease, the diagnosis is commonly delayed for years. At 
our hospital, patients frequently present with multiple 
fractures, height loss, and a generalized debilitated 
status. Biochemical hallmarks of the disorder are similar 
to hypophosphatemic rickets. The diagnosis is confirmed 
by the dramatic improvement of symptoms and correc- 
tion of metabolic abnormalities following complete exci- 
sion of the responsible tumor. 

The tumors are usually very small in size and their 
locations are often obscure. They can arise in bone or 
soft tissue, in any part of the body, and they grow slowly. 

Most histologic diagnoses have been classified as 
phosphaturic mesenchymal tumors (PMT). A characteris- 
tic histologic feature of such tumors is a background of 
spindle cells that tend to have low mitotic activity, pro- 
minent vascularity, osteoclast-like giant cells, or the 
presence of bony tissue. Although most of these tumors 
are thought to have a benign histologic appearance, 
malignant presentation and metastases can occur (86- 
90). While metastases are rare, infiltration of surrounding 
connective tissue is typically present, which has signifi- 
cant implications for surgical management and empha- 
sizes the importance for wide surgical margins to avoid 
persistence or recurrence. 

Numerous reports show elevation of FGF23 in some, 
but not all, patients with TIO (91-92). Removal of the 
tumor is associated with reduction in serum FGF23  con- 
centrations, and there is a temporal association be- 
tween the reduction in FGF23 concentration and the 
elevation in serum phosphate, decrease in renal  phos- 
phate wasting, and increase in 1,25(OH)2D3 concen- 
trations (93-94). The diagnosis of TIO can be challenging 
because the tumors are often small and difficult to find. 
Bone scanning, computerized tomography (CT) (95), 
magnetic resonance imaging (MRI), Indium-111 pente- 
treotide or octreotide scintigraphy, and positron emi- 
ssion tomography (PET) have all been employed in an 
effort to localize the tumor (96). A stepwise approach, 

first performing functional tests and then anatomical 
tests, is advocated. In our hospital, we have successfully 
used 99Tcm-OCT scintigraphy to locate tumors in most 
patients with TIO as we previously reported (94). There- 
fore, we prefer octreotide scintigraphy as the first 
approach. As for patients who are octreotide negative, 
when a tumor is highly suspected, we use FDG-PET/CT. 
Recently, 68Ga-DOTANOC PET/CT has been explored as 
a means of finding TIO tumors (97). Once suspicious 
lesions have been identified with functional imaging, 
one should proceed to anatomical imaging such as 
X-rays, CT, and/or MRI scans to confirm the location of 
the tumor. 

The treatment of choice for TIO is resection of the 
tumor with a wide margin to ensure complete resection. 
Resection with a wide surgical margin is very important, 
as recurrences of these tumors have been reported 
(89-90, 98). Therefore, intermittent monitoring of patients 
after tumor resection should be performed. Tumor resec- 
tion is almost always curative, and following complete 
resection of the tumor, there is relatively rapid improve- 
ment. FGF23 disappears rapidly from the circulation (99) 
and serum phosphate returns to normal within five days 
post operation (94). Most patients feel better within days 
to weeks of tumor removal. Bone healing starts imme- 
diately, but depending on the severity of the disease, it 
may take a year or more for significant clinical improve- 
ment. 

When the tumor cannot be localized or is not surgical- 
ly resectable, medical therapy with phosphate supple- 
mentation and calcitriol or alfacalcidiol is used. The 
treatment regimen that follows is essentially the same as 
that used in non-TIO hypophosphatemia. When initiating 
treatment, it is prudent to check weekly labs to guide 
titration of medications until treatment targets are 
reached. Future treatment will likely be guided by a 
better understanding of the biology of FGF23 and the 
nature of these tumors. 
 
Fibrous dysplasia (FD)/McCune Albright Syndrome 
McCune–Albright syndrome (MAS) is characterized by 
café-au-lait spots, polyostotic fibrous bone dysplasia, 
and multiple endocrine hyperfunctions, such as preco- 
cious puberty, hyperthyroidism, autonomous adrenal 
hyperplasia, and growth hormone secreting pituitary 
adenoma (100). Fibrous dysplasia (FD) is a focal and 
benign fibrous bone lesion that is caused by the activa- 
ting mutation of the Gsα protein (101-102). Hypophos- 
phatemic rickets is sometimes observed as a compli- 
cation of MAS (103). 

FD and MAS are caused by somatic activating muta- 
tions of the guanine nucleotide binding protein, alpha 
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stimulating gene (GNAS1), the gene encoding the 
alpha-subunit of the stimulatory G-protein. 

Renal phosphate wasting occurs in approximately 
50% of patients with MAS and FD of bone. However, the 
cause of hypophosphatemia is unclear. Recently, Ri- 
minucci et al (26) reported the important role of FGF23 
as a cause of hypophosphatemia in MAS. However, 
hypophosphatemia is not always associated with MAS 
patients (104). Hypophosphatemia appears as the age 
of the MAS patients increases, which is usually accom- 
panied by advanced bone fibrous dysplasia lesions 
(105). It is plausible that overproduction of FGF23 is 
dependent on the severity of FD bone lesions, which 
may be associated with increased serum FGF23 levels, 
and which could explain the presence or absence of 
hypophosphatemia in MAS patients. In situ hybridization 
analysis of FGF23 mRNA expression identified “fibrous” 
cells, osteogenic cells, and cells associated with micro- 
vascular walls as specific cellular sources of FGF23 in FD. 
Production of FGF23 by FD tissue may play an important 
role in the renal phosphate wasting syndrome associ- 
ated with FD/MAS (26). 

Treatment with bisphosphonates has been shown to 
reduce serum FGF23 levels, which result in a reduction of 
renal phosphate wasting. The mechanisms underlying 
the reduction of FGF23 by bisphosphonates are unclear. 
 
Neurofibromatosis（NF） 
Skeletal lesions are not uncommon in neurofibromatosis. 
Most of them are considered to be dysplastic in nature. 
Association of osteomalacia or rickets with NF has only 
rarely been documented (106-107). Osteomalacia 
occurring in NF is quite distinct from the more common 
skeletal affection seen in the disease and its patho- 
genesis is still unknown. Osteomalacia associated with 
NF1 is characterized by later onset in adulthood, renal 
phosphate loss with hypophosphataemia, multiple and 
pseudofractures in typical cases. Treatment with oral 
phosphate and vitamin D is effective (108-109). It is 
hypothesized that melatonin deficiency in cases of NF 
might play a role in the pathogenesis of hyperphospha- 
turea (110). We have a few patients who are diagnosed 
with neurofibromatosis and osteomalacia, while FGF23 is 
positive in the neurofibroma bundle of a few of the 
patients (data not published yet). 
 
Linear nevus sebaceous syndrome (LNSS) 
Linear nevus sebaceous syndrome (LNSS)/epidermal 
nevus syndrome (ENS) is a sporadic condition charac- 
terized by congenital epidermal nevi associated with 
anomalies in other organ systems, most commonly the 

central nervous system and skeleton (111). Abnormalities 
in the eyes, heart, or genitourinary system have also 
been reported (112). Hypophosphataemic rickets is rare 
(113-115) in ENS; the manifestation usually presents in the 
first years of life (114, 116). It is generally accepted that it 
may represent a variant of tumor-induced rickets/osteo- 
malacia (113-114, 117-118) characterized by renal 
phosphate wasting and inappropriately low serum levels 
of 1, 25(OH)2D. The pathogenic mechanism involved in 
the onset of hypophosphataemic rickets in ENS is not 
fully clarified. It has been proposed that FGF23 is the 
putative phosphatonin, based on demonstration of its 
elevated blood levels in a patient with LNSS (56). Subse- 
quent studies also found the same result (119-120). In 
typical tumor-induced osteomalacia, symptoms tend to 
be resolved after removal of the tumor (117). Excision of 
epidermal lesions with ENS may improve the hypophos- 
phataemic rickets in some patients (47, 56), while it has 
failed to heal rickets in most patients (115-116, 118). 
Although it is possible that large amounts of FGF23 are 
autonomously secreted by LNS lesions, this factor was 
not found to be directly excreted from the LNS lesions 
(119). Further study is needed to understand the exact 
mechanism of how FGF23 is related to hypophospha- 
temic rickets in LNSS. 
 
Osteoglophonic dysplasia (OGD) 
Osteoglophonic dysplasia(OGD), also known as Fair- 
bank-Keats syndrome, is a very rare skeletal dysplasia 
with craniosynostosis, and multiple lucent metaphyseal 
defects. It is an autosomal dominant disorder charac- 
terized by short stature, although most cases are the 
result of de novo mutations (121). Recently, White et al 
identified several heterozygous missense mutations in 
fibroblast growth factor receptor 1 (FGFR1) (121). These 
mutations are in highly conserved residues comprising 
the extracellular (asparagine 330 to isoleucine, Asn330Ile) 
and transmembrane domains (tyrosine 374 to cysteine, 
Tyr374Cys; and cysteine 381 to arginine, Cys381Arg) of 
FGFR1, which seems to lead to constitutive receptor 
activation (122-123). Hypophosphatemia, secondary to 
renal phosphate wasting associated with inappropriate- 
ly normal 1,25(OH)2D3 levels, is present in affected 
individuals (124-125). FGF23 levels are elevated in some 
OGD patients. The elevated levels of FGF23 result in 
renal phosphate wasting seen in this condition (121). It is 
thought that the skeletal lesions in OGD patients deve- 
lop because the constitutive activation of the FGFR1 
leads to an up-regulation of FGF23 secretion in the 
metaphyseal growth plate. However, the mechanism is 
not yet clear.  
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Hypophosphatemic rickets and hyperparathyroidism 
(HRHPT) 
Hypophosphatemic rickets and hyperparathyroidism 
(HRHPT) is a syndrome featuring both hypophospha- 
temic rickets and hyperparathyroidism due to parathy- 
roid hyperplasia as well as other skeletal abnormalities. 
Brownstein et al investigated a patient with hypophos- 
phatemic rickets and hyperparathyroidism due to para- 
thyroid hyperplasia (126). They found no mutation in 
PHEX, DMP-1, and FGF23. They found a de novo trans- 
location with a breakpoint adjacent to alpha-Klotho, 
which encodes abeta-glucuronidase. Plasma alpha- 
Klotho levels, beta-glucuronidase activity, and circulat- 
ing FGF23 levels were markedly elevated. Moreover, 
emerging evidence indicates that alpha-Klotho is critical 
for FGF23 signaling. Whether the elevated FGF23 level 
seen in the patient is the direct result of increased 
alpha-Klotho (for example, if degradation of FGF23 is 
prevented by interaction with alpha-Klotho), or is part of 
a negative-feedback loop responding to hyperpara- 
thyroidism is difficult to discern at present. 
 
Conclusion 
 
Rickets, due to inherited or acquired causes, remains a 
significant problem across the globe. Considerable 
advances have been made in identifying genes 
responsible for a number of the inherited causes of 
hypophosphatemic rickets and to clarify the pathways 
of regulation of phosphate metabolism. The discovery 
that FGF23 overproduction is a primary cause of hypo- 
phosphatemic rickets may suggest a new approach for 
the treatment of these disorders. 

Dysregulation of FGF23 occurs in a number of acquired 
and inherited disorders of phosphate homeostasis. Fur- 
ther investigations are required to understand the regu- 
lation of FGF23 expression.  
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