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Ensemble-Biased Metadynamics: A Molecular Simulation Method to
Sample Experimental Distributions
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ABSTRACT We introduce an enhanced-sampling method for molecular dynamics (MD) simulations referred to as ensemble-
biased metadynamics (EBMetaD). The method biases a conventional MD simulation to sample a molecular ensemble that is
consistent with one or more probability distributions known a priori, e.g., experimental intramolecular distance distributions ob-
tained by double electron-electron resonance or other spectroscopic techniques. To this end, EBMetaD adds an adaptive
biasing potential throughout the simulation that discourages sampling of configurations inconsistent with the target probability
distributions. The bias introduced is the minimum necessary to fulfill the target distributions, i.e., EBMetaD satisfies the
maximum-entropy principle. Unlike other methods, EBMetaD does not require multiple simulation replicas or the introduction
of Lagrange multipliers, and is therefore computationally efficient and straightforward in practice. We demonstrate the perfor-
mance and accuracy of the method for a model system as well as for spin-labeled T4 lysozyme in explicit water, and show
how EBMetaD reproduces three double electron-electron resonance distance distributions concurrently within a few tens of
nanoseconds of simulation time. EBMetaD is integrated in the open-source PLUMED plug-in (www.plumed-code.org), and
can be therefore readily used with multiple MD engines.
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Biophysical techniques probing the structural dynamics of
biomolecules typically yield signals that arise from an
ensemble of molecular conformations, and thus it is often
not straightforward to interpret the experimental data unam-
biguously. For example, double electron-electron resonance
(DEER) spectroscopy is increasingly used to measure dis-
tances between spin-labeled cysteine residues (1), and to
assess conformational mechanisms in proteins. DEER
spectra, however, actually translate into distance probability
distributions, which are often multimodal and interdepen-
dent, and might reflect a variety of protein conformations
and rotameric states of the labels.

Molecular dynamics (MD) simulations are arguably the
best computational approach to address this problem. The
concept is to employ an MD simulation to construct an
ensemble of molecular configurations X that is consistent
with the measured probability distribution of an observable
x ¼ xf ðXÞ, while simultaneously representing the molecular
system more realistically (solvent, temperature, etc.) than in
standard structural-refinement methods. In practice, this
approach entails a modification of the simulation energy
function,UðXÞ, so that the resulting probability distribution,
rðXÞ, fulfills the experimental data with the minimum
possible bias i.e., the so-called maximum-entropy principle
(2,3). If the experimental data for observable x is binned into
a histogram, a possible modification of UðXÞ is a linear
perturbation, leading to (4)
rðXÞ ¼ exp
�� b UðXÞ þP

ilihi
�
xf ðXÞ��R

dX
0
exp

�� bUðX0Þ þP
ilihi

�
xf ðX0 Þ��; (1)

where the i index denotes each of the bins in the measured
histogram of x, and hi½xf ðXÞ� ¼ 1 if the value of xf ðXÞ is in
bin i, while hi½xf ðXÞ� ¼ 0 otherwise (and b ¼ 1/kBT, where
kB is the Boltzmann constant and T is the temperature). The
li parameters, which must be determined in each case,
ensure that the time averages of hiðxf ðXÞÞ are equal to the
experimental probability values for each of the bins i. Prac-
tical applications of the maximum-entropy formulation in
Eq. 1 have so far relied on computationally intensive ap-
proaches such as averaging over multiple system replicas
simulated concurrently (4–7) or iterative optimization algo-
rithms to determine the values of li (2,3).

Here, we present an alternative, single-replica approach
inspired by the metadynamics method (8,9), which is
also consistent with the maximum-entropy principle. We
refer to this method as ensemble-biased metadynamics
(EBMetaD). Let us define rexp(x) as the target experimental
probability distribution of observable x and F(x) as the free
energy,
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FðxÞ ¼ �1

b
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� Z
dX expf�bUðXÞgd�x� xf ðXÞ�

	
þ C;

(2)

where C is a constant. In the limit of infinitesimally narrow
bins, Eq. 1 becomes (AppendixS1 in theSupportingMaterial):
rðXÞ ¼ exp
�� bUðXÞ þ ln rexp

�
xf ðXÞ�þ bF

�
xf ðXÞ��R

dX0 exp
�� bUðX0 Þ þ ln rexp

�
xf ðX0 Þ�þ bF

�
xf ðX0 Þ��: (3)
In EBMetaD, a biasing potential is added to the energy
function so that the simulation samples rðXÞ in Eq. 3. Like
in standard metadynamics, this biasing potential, denoted by
Vðxf ðXÞ; tÞ, is constructed throughout the simulation as a
cumulative sum of Gaussians, added one at a time at a fre-
quency of 1/t, each centered on the value of x at that time.
In EBMetaD, however, these Gaussian functions areweighted
by the target probability distribution, that is

Vðx; tÞ ¼
Xt

t
0 ¼ t;2t:::

w exp
�� �

x� xf ðXt
0 Þ�2
2s2

�
expfSrgrexp

�
xf ðXt

0 Þ� ; (4)

where Xt0 denotes the atomic coordinates at time t0 and s is

the Gaussians width, which sets the resolution of FðxÞ and
rexpðxÞ. The quantity Sr ¼ � R

dxrexpðxÞln½rexpðxÞ� is the
differential entropy of rexpðxÞ, i.e., expfSrg is the effective
volume in x spanned by rexpðxÞ, and serves a normalization
factor to ensure that the mean height of the Gaussians added
in the range of rexpðxÞ is equal to w. As in standard metady-
namics, EBMetaD simulations remain close to equilibrium
if w, s, and t in Eq. 4 are selected adequately (Appendix
S2 in the Supporting Material), and a stationary condition
is reached at a certain time te after which the biasing poten-
tial fluctuates around an average profile that converges
asymptotically (10). Specifically, the change of Vðxf ðXÞ; tÞ
from this point forward is (11,12)

_Vðx; t>teÞz C

rexpðxÞ
expf � b½FðxÞ þ Vðx; tÞ�gR
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0
exp
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�
x
0
; t
���zC;

(5)

where C is a constant. Provided that the region in which

rexpðxÞ>0 is energetically allowed by UðXÞ, the implication
of Eq. 5 is that the average biasing potential converges to

Vðx; t>teÞz� 1

b
ln rexpðxÞ � FðxÞ: (6)

That is, when t > te, the EBMetaD simulation samples the

space of x as in the target distribution rexpðxÞ.

It is straightforward to generalize this approach to the
case of multiple observables xi and probability distributions
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thereof, rexp½xfi ðXÞ�, employing a multidimensional biasing
potential analogous to that in Eq. 4:

Vðx1; x2; :::; tÞ ¼
Xt

t
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(7)
Owing to the scaling factors Sri , several distributions can be

simultaneously targeted even if they have very different
effective volumes. The observables xi, however, ought not
be a function of each other (2–4).

To test the validity of the EBMetaD method, we first
considered the two-dimensional model potential Uðx; x0 Þ
shown in Fig. 1 A; the corresponding one-dimensional prob-
ability distribution roðxÞ, calculated analytically, is shown in
Fig. 1 B (gray). We aim to sample instead a hypothetical
experimental distribution rexpðxÞ, also shown in Fig. 1 B
(black). We thus carry out an overdamped Langevin
dynamics simulation on the Uðx; x0 Þ potential, using EB-
MetaD to slowly construct the biasing potential Vðx; tÞ
defined in Eq. 4. As Fig. 1 B shows, the calculated histogram
rsimðxÞ evolves gradually until it converges to the target
probability distribution. Thereafter, the simulation reaches
a stationary condition, and neither rsimðxÞ nor the average
bias potential change significantly (Fig. 1 B, inset). To
assess whether the ensemble sampled at convergence corre-
sponds to that defined in Eq. 3, i.e., whether EBMetaD
indeed fulfills the maximum-entropy principle, we directly
compare the calculated simulation histogram rsimðx; x

0 Þ
with the modified two-dimensional potential, Uðx; x0 Þ�
ln rexpðxÞ � FðxÞ, calculated analytically (kBT ¼ 1). As
Fig. 1 C shows, these distributions match perfectly; that
is, the bias introduced so as to reproduce rexpðxÞ does not
alter rðx0Þ for any x-value. An extension of this test in
which two hypothetical distributions rexpðxÞ and r

0
expðx

0 Þ
are concurrently targeted further confirms that EBMetaD
fulfills the maximum-entropy condition (see Appendix S3
and Fig. S2 in the Supporting Material).

To test EBMetaD in a realistic application, we next
considered T4 lysozyme in explicit water (Fig. 2 A, and
Weaver and Matthews (13)). Following Roux and Islam
(4), three methanethio-sulfonate spin-labels were attached
at positions E62C, T109C, and A134C. Experimental dis-
tance distributions for each pair of nitroxide groups were
obtained via electron spin resonance (ESR)/DEER spectros-
copy; data were kindly provided by R. A. Stein and H. S.
McHaourab (Vanderbilt University Medical Center, Nash-
ville, TN).



FIGURE 1 (A) Model two-dimensional

potential used to test EBMetaD, via an over-

damped Langevin dynamics simulation.

(B) Histogram of x as a function of the

number of simulation steps (red lines),

compared with the probability distribution

associated with the model potential (gray),

and with the target distribution (black).

(Inset) Average biasing potential, versus

�ln rexpðxÞ � F ðxÞ (Eq. 6), with te ¼ 5 � 105

steps. F ðxÞ was calculated analytically,

as F ðxÞ ¼ �ln½R dx0 expf � Uðx; x0 Þg�D C.

(C) Histogram of x and x’ from EBMetaD

(red isolines), overlaid on the ensemble-

corrected potential calculated analytically

(black isolines) (Eq. 3). Diffusion coeffi-

cients in x,x’ were set to 10, the integration

time step was 10�5, and kBT¼ 1. Gaussians

of height 10�4 kBT andwidth 0.1were added

every 103 steps. Equivalent resultswere ob-

tained for a wide range of alternative values

(Fig. S1).
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A single trajectory of ~200 ns was then calculated with
EBMetaD, using a three-dimensional biasing potential iden-
tical to that defined in Eq. 7, i.e., the three experimental dis-
tributions are targeted concurrently. For comparison, an
FIGURE 2 (A) Spin-labeled T4 lysozyme simulated in explicit water

dron periodic box containing 11,895 TIP3P water molecules and 10 C

distances between the spin-label nitroxide groups measured by ESR

imental and calculated probability distributions for each of the spin-l

latter are given for different simulation times. (Insets) EBMetaD bias

Error bars are standard errors over three simulation fragments (see
unbiased ~270-ns trajectory was also calculated using a
standard MD. As shown in Fig. 2 B, the distance histograms
derived from the unbiased trajectory fail to reproduce those
obtained experimentally. By contrast, the histograms
(PDB:2LZM (13)). The protein is enclosed in a truncated-octahe-

l� counterions that neutralize the total charge of the system. The

/DEER are indicated (solid arrows). (B) Comparison of the exper-

abel pairs, from either unbiasedMD simulations or EBMetaD; the

ing potential, averaged over the simulated trajectory (te ¼ 5 ns).

Fig. S4 for further details).
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derived from the EBMetaD simulation converge to the ESR/
DEER data within a few tens of nanoseconds, and preserve
that agreement thereafter. To further assess the performance
of the method, we compared the time-averaged biasing po-
tential applied to each of the spin-spin distances in three
fragments of the EBMetaD trajectory (excluding only the
first 5 ns). As shown in Fig. 2 B (insets), the shape of the
biasing potentials is largely constant in time, with fluctua-
tions significantly larger than kBT only in the distal, low-
probability regions, thus confirming that EBMetaD reaches
an approximately stationary condition (Eqs. 5 and 6).
Consistent with the maximum-entropy principle, the
ensemble correction introduced by EBMetaD primarily en-
tails a population shift in the rotameric states of the spin la-
bels (Fig. S3 A), with no significant changes in the protein
backbone (Fig. S3 B); the root-mean-square deviation of
the Ca-trace, relative to the starting x-ray structure, is within
2 Å in both the unbiased and EBMetaD trajectories.

In summary, we have introduced an enhanced-sampling
MD simulation method to generate molecular ensembles
that reproduce probability distributions for one or more
independent observables. This method, referred to as
ensemble-biased metadynamics, adaptively provides an
ensemble correction consistent with the maximum entropy
principle (2–6), without mean field approximations (4),
multiple simulation replicas (4,5,7), or the iterative optimi-
zation of Lagrangian parameters (2,3). Owing to the compu-
tational efficiency and practical simplicity of the method,
we posit that EBMetaD can be extremely useful in a wide
range of applications, such as structure refinement, mecha-
nistic studies based on spectroscopic data, or purely compu-
tational simulation studies. EBMetaD is integrated within
the PLUMED 1.3 plug-in (14), and can be thus readily
used with multiple simulation engines.
SUPPORTING MATERIAL

Three appendices, Supporting Materials and Methods, and four figures are

available at http://www.biophysj.org/biophysj/supplemental/S0006-3495

(15)00536-6.
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