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Retinal Flip in Rhodopsin Activation?
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ABSTRACT Rhodopsin is a well-characterized structural model of a G protein-coupled receptor. Photoisomerization of the
covalently bound retinal triggers activation. Surprisingly, the x-ray crystal structure of the active Meta-II state has a 180� rotation
about the long-axis of the retinal polyene chain. Unbiased microsecond-timescale all-atom molecular dynamics simulations
show that the retinal cofactor can flip back to the orientation observed in the inactive state of rhodopsin under conditions favoring
the Meta-I state. Our results provide, to our knowledge, the first evidence from molecular dynamics simulations showing how
rotation of the retinal ligand within its binding pocket can occur in the activation mechanism of rhodopsin.
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Understanding the specific intermolecular interactions that
lead to G protein-coupled receptor (GPCR) function is one
of the most pressing needs in the design of targeted chemo-
therapeutics. Rhodopsin, a prototypical GPCR, is activated
when its covalently bound chromophore, retinal, absorbs a
photon and undergoes an 11-cis / all-trans isomerization,
culminating in an equilibrium between inactive Meta-I and
active Meta-II forms (Fig. 1, a–c and Fig. S1 in the Support-
ing Material) (1). Most NMR spectroscopic and crystallo-
graphic structures of various photointermediates reveal the
retinal ligand acting as an inverse agonist (2–5). However,
recent x-ray structures of the active Meta-II state are very
surprising, in that retinal is rotated 180� about its long
axis versus inactive photointermediates (6,7). This has led
to uncertainty as to the role of the retinal orientation: does
the polyene chain undergo a long-axis rotation in the transi-
tion from Meta-I to Meta-II—and if so, what is the biolog-
ical relevance of this striking large-scale movement?

We used unbiased ms-timescale, all-atom molecular
dynamics (MD) simulations of rhodopsin in a series of lipid
bilayers, taking advantage of the microscopic reversibility
of the Meta-I to Meta-II transition to investigate the behavior
of the retinal orientation. Our results clearly show that upon
photoactivation retinal possesses remarkable flexibility: we
present what is, to our knowledge, the first theoretical evi-
denceof a long-axis flip of the retinal cofactor in the rhodopsin
activation process. In two of three simulations, long-axis rota-
tion of the retinal polyene chainwas clearly observed, leading
to a reorientation toward the extracellular side of the protein.
These results create an important bridge between spectro-
scopic and crystallographic studies (1,3). Furthermore, these
results provide evidence for a loose coupling between agonist
and receptor uponGPCR activation, as suggested from exper-
imental and computational studies (1,8,9).
We utilized the fact that the lipid bilayer composition can
significantly influence the Meta-I to Meta-II equilibrium
(1,10). Our hypothesis was that long-axis rotation of the
polyene chain occurs in Meta-II due to an ensemble of acti-
vated conformations that all possess a larger binding pocket
than inactive forms of rhodopsin. To test this hypothesis, we
modeled the Meta-II structure of rhodopsin under Meta-I
protonation states embedded in a bilayer of lipids known
to forward- or back-shift the Meta-I to Meta-II equilibrium
using ms-long all-atom MD simulations (1) (for details, see
the Supporting Material). Meta-II conformations are defined
by the state of two protonation switches involving the pro-
tonated Schiff base (SB) with its complex counterion, as
well as Glu1343.49 (superscript denotes Ballesteros-Wein-
stein numbering) of the conserved E(D)RY motif (1).
Furthermore, the reversible transition to an inactive confor-
mation initially requires the polyene chain to rotate with the
C9- and C13-methyl groups pointing toward extracellular
loop-2 (EL2) as in the dark and Meta-I states.

All-atom MD simulations have proven invaluable to
the characterization of the structure-function relationship
in rhodopsin activation. In particular, MD studies on the
ms-timescale have reproduced solid-state 2H NMR spectra
of the Meta-I state (11), and showed an increase in both hy-
dration and retinal flexibility versus the dark state (12). In
this study, the most remarkable event occurs at roughly
2.5 ms in two of the three Meta-II to Meta-I simulations:
the polyene chain in retinal undergoes a 180� rotation about
its long axis, in which the C9- and C13-methyl groups shift
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FIGURE 1 Microsecond timescales are required for retinal flip

in rhodopsin. (a) Retinal undergoes an 11-cis to all-trans isomer-

ization upon photon absorption, initiating large-scale conforma-

tional changes in rhodopsin (dark gray, dark state (PDB:1U19);

light gray, Meta-II-like (PDB:3PXO)). An outward tilt and elonga-

tion of TM5 and outward rotation of TM6 are conserved in Class

A GPCRs. (b) A 180� rotation occurs about the long axis of the

retinylidene chain in Meta-II, changing the orientation of the

C9- and C13-methyl groups from the extracellular (ec) (gray) to

the cytoplasmic (ic) side (orange) of the protein. (c) Conserved

residue Tyr3067.53 of the NPxxY motif toggles between p-p inter-

actions with Phe3137.60 (dark) and Met2576.40 (Meta-II) (gray,

dark; green, Meta-II). (d–g) MD trajectories for rhodopsin in

various lipid bilayers (black, Meta-II; blue, DOPC/ DOPE (3:1);

gray, DOPC/DOPE (1:1); and red, DOPC/DOPE (1:3)). (d) The C9-

CH3 and (e) C13-CH3 bond orientational time evolution Vi defined

as the cosine angle of the bond vector with respect to the mem-

brane normal. At ~2.5 ms, the retinylidene moiety undergoes a

long-axis 180� rotation in two trajectories. (Insets) Retinal

cofactor before (d) and after (e) the flip. The C5¼C6–C7¼C8 dihe-

dral (f) and the C15–NZ–C
ε
–Cd dihedral (g) limit rotation to the

polyene chain; the b-ionone ring undergoes a 6-s-cis to trans

conformational transition. To see this figure in color, go online.
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orientation from the cytoplasmic side toward the extracel-
lular side of rhodopsin (Fig. 1, d and e). Once the reorienta-
tion occurs, the retinal polyene chain remains stable for the
final 500 ns of the simulation. The rotation is notable
Biophysical Journal 108(12) 2767–2770
because our simulations are unbiased, and our control simu-
lation with Meta-II protonation states showed no rotation of
the polyene chain. The long-axis rotation is directly related
to the dihedral fluctuations that connect both ends of the
chromophore, i.e., the b-ionone ring and the retinylidene
SB linkage. In particular, the distribution of the dihedral
angle for the C6–C7 bond connecting the b-ionone ring to
the polyene chain correlates well with previous studies
that identified three minima for retinal with a protonated
SB (Figs. 1, f and g, and S2) (13). The final orientation of
the b-ionone ring is the 6-s-trans conformation, a local min-
imum for the C5¼C6–C7¼C8 dihedral. The b-ionone ring
remains essentially fixed during the polyene chain rotation,
with a transition from 6-s-cis in the starting structure to 6-s-
trans. It has been shown that the 6-s-trans conformation rai-
ses the pKa of the SB, favoring the protonated state (13), as
in Meta-I. Moreover, the pathway that occurs from cis to
trans is very similar to the one observed in previous long-
timescale MD studies that examined the dark / Meta-I
transition (11,12).

Hydration plays a crucial role in rhodopsin function, in
which water is necessary for rearrangement of the chromo-
phore (12,14). The retinal flip is accompanied by a decrease
in hydration of the binding pocket (Fig. 2 a). Expulsion of
water through switching to a Meta-I-like orientation stems
from efficient packing between the side chains within the
binding pocket and the methyl groups of the retinal
(Fig. 2, b and c). The C9-methyl is directly coupled to the
protonation switch of Glu1343.49 in fully activated
rhodopsin. Removal of the C9-methyl back-shifts rhodopsin
to the preactive Meta-I state (15). The back-rotation of the
polyene chain reestablishes these interactions, in particular
between the C9-methyl and Tyr191EL2. In addition to these
interactions, the CWxP motif is part of a transmission
switch that is common to many Class A GPCRs, which in-
volves a rotation of Trp2656.48 and Phe2125.47 that facili-
tates the outward rotation of TM6 from the inactive to the
active state (16). Both flipping events were promptly fol-
lowed by rotation of Trp2656.48 around its c1 dihedral,
leading to a rearrangement of the indole ring to maintain
stabilizing interactions with the retinal (Fig. 2 d). Another
microdomain critical to GPCR activation involves the
conserved NPxxY motif, where Tyr3067.53 toggles between
aromatic stacking with Phe3137.60 in the inactive state and
participating in a water-mediated hydrogen-bonding
network with Met2576.40 in the active state. Both the
Tyr3067.53–Phe3137.60 and Tyr3067.53–Met2576.40 interac-
tions occur in our simulations, with no correlation to the
flip. Although in the Meta-II state Tyr3067.53 interacts
with Met2576.40, this coupling disrupts a staggered interac-
tion among Met2536.36, Met2576.40, and Met3097.56 that
is present in the dark state. After ~0.5 ms in two simulations,
Tyr3067.53 rotates outward to reestablish a p-p stacking
interaction with Phe3137.60 (Fig. S3, a–d). This outward
rotation also allows the three methionine side chains to



FIGURE 2 Retinal polyene flip is linked to changes in binding

pocket hydration and conserved GPCR motifs. (a) Back-flip of

the retinal polyene chain leads to an expulsion of water from

the binding pocket (black, Meta-II; blue, DOPC/DOPE (3:1);

gray, DOPC/DOPE (1:1); and red, DOPC/DOPE (1:3)). (b) Visual-

ization of the retinal binding pocket before and after the flip from

the DOPC/DOPE (3:1) trajectory. (c) Nonbonded interactions

between the C9-methyl and Tyr191EL2 are reestablished after

the polyene chain flip. (d) Rotation of Trp2656.48 in the CWxY

motif is correlated with the retinal flip. To see this figure in color,

go online.
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reform the staggered interactions present in the dark state
(Fig. S3 e).

The flip about the polyene long axis was an unanticipated
result from our attempt to model the deactivation of
rhodopsin. Interestingly, however, it provides essential in-
sights into the dynamics of the retinal binding pocket (7).
The Meta-II structure was obtained from opsin crystals
soaked with all-trans retinal (7), and this characterization
was later supported by a structure of a constitutively active
rhodopsin (6). However, comparisons between the Meta-II
crystal structure and solid-state NMR studies of frozen
detergent-solubilized rhodopsin in the Meta-II state (17)
reveal several discrepancies. If one assumes that trapping
of the Meta-II photointermediate was equivalent in both
NMR and crystallography, then the orientation of retinal
in the NMR studies represents an average of those in equi-
librium. By starting from the crystal structure and observing
a stable 180� rotation about the long axis of the polyene
chain, our simulations provide a plausible explanation for
these differences. Furthermore, our results provide compel-
ling support for our proposal that the increased ligand flex-
ibility observed in Meta-I could lead to multiple retinal
conformations in the active state (12).

Very few computational studies have been carried out
on rhodopsin in the Meta-II state (18). This is the first
attempt, to our knowledge, to use microscopic revers-
ibility together with ms-long simulations to model the
deactivation of rhodopsin. Our attempt to perturb this
equilibrium starting from active Meta-II has led to the
surprising discovery of a back-flip of retinal to an orien-
tation found in the inactive photointermediates. The time-
scale of the flip occurs so quickly that it suggests the
retinal binding pocket has evolved to stabilize the polyene
chain in either of two conformations (i.e., up or down).
In addition, these results provide compelling support for
previous studies on GPCRs that identified loose coupling
between agonist and protein upon activation (1,8; see
Fig. S4 and Tables S1 and S2 in the Supporting Material).
The role of the retinal flip in the interaction of transducin
with rhodopsin, and the correspondence to other members
of Class A GPCRs, remain as important questions for
future research.
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