Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Sep 13;91(19):8945–8949. doi: 10.1073/pnas.91.19.8945

Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy.

M Dohlsten 1, L Abrahmsén 1, P Björk 1, P A Lando 1, G Hedlund 1, G Forsberg 1, T Brodin 1, N R Gascoigne 1, C Förberg 1, P Lind 1, et al.
PMCID: PMC44723  PMID: 8090750

Abstract

The bacterial superantigen staphylococcal enterotoxin A (SEA) is an extremely potent activator of T lymphocytes when presented on major histocompatibility complex (MHC) class II molecules. To develop a tumor-specific superantigen for cancer therapy, we have made a recombinant fusion protein of SEA and the Fab region of the C215 monoclonal antibody specific for human colon carcinoma cells. SEA as part of a fusion protein showed a > 10-fold reduction in MHC class II binding compared to native SEA, and accordingly, the affinity of the FabC215-SEA fusion protein for the C215 tumor antigen was approximately 100-fold stronger than to MHC class II molecules. The FabC215-SEA fusion protein efficiently targeted T cells to lyse C215+ MHC class II- human colon carcinoma cells, which demonstrates functional substitution of the MHC class II-dependent presentation of SEA with tumor specificity. Treatment of mice carrying B16 melanoma cells expressing a transfected C215 antigen resulted in 85-99% inhibition of tumor growth and allowed long-term survival of animals. The therapeutic effect was dependent on antigen-specific targeting of the FabC215-SEA fusion protein, since native SEA and an antigen-irrelevant FabC242-SEA fusion protein did not influence tumor growth. The results suggest that Fab-SEA fusion proteins convey superantigenicity on tumor cells, which evokes T cells to suppress tumor growth.

Full text

PDF
8945

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betley M. J., Mekalanos J. J. Nucleotide sequence of the type A staphylococcal enterotoxin gene. J Bacteriol. 1988 Jan;170(1):34–41. doi: 10.1128/jb.170.1.34-41.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  3. Brodin N. T., Jansson B., Hedlund G., Sjögren H. O. Use of a monoclonal rat anti-mouse Ig light chain (RAMOL-1) antibody reduces background binding in immunohistochemical and fluorescent antibody analysis. J Histochem Cytochem. 1989 Jul;37(7):1013–1024. doi: 10.1177/37.7.2499618. [DOI] [PubMed] [Google Scholar]
  4. Chen L., Ashe S., Brady W. A., Hellström I., Hellström K. E., Ledbetter J. A., McGowan P., Linsley P. S. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell. 1992 Dec 24;71(7):1093–1102. doi: 10.1016/s0092-8674(05)80059-5. [DOI] [PubMed] [Google Scholar]
  5. Dohlsten M., Hedlund G., Akerblom E., Lando P. A., Kalland T. Monoclonal antibody-targeted superantigens: a different class of anti-tumor agents. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9287–9291. doi: 10.1073/pnas.88.20.9287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dohlsten M., Hedlund G., Segren S., Lando P. A., Herrmann T., Kelly A. P., Kalland T. Human major histocompatibility complex class II-negative colon carcinoma cells present staphylococcal superantigens to cytotoxic T lymphocytes: evidence for a novel enterotoxin receptor. Eur J Immunol. 1991 May;21(5):1229–1233. doi: 10.1002/eji.1830210520. [DOI] [PubMed] [Google Scholar]
  7. Dohlsten M., Sundstedt A., Björklund M., Hedlund G., Kalland T. Superantigen-induced cytokines suppress growth of human colon-carcinoma cells. Int J Cancer. 1993 May 28;54(3):482–488. doi: 10.1002/ijc.2910540321. [DOI] [PubMed] [Google Scholar]
  8. Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
  9. Fleischer B., Gerardy-Schahn R., Metzroth B., Carrel S., Gerlach D., Köhler W. An evolutionary conserved mechanism of T cell activation by microbial toxins. Evidence for different affinities of T cell receptor-toxin interaction. J Immunol. 1991 Jan 1;146(1):11–17. [PubMed] [Google Scholar]
  10. Foon K. A. Biological response modifiers: the new immunotherapy. Cancer Res. 1989 Apr 1;49(7):1621–1639. [PubMed] [Google Scholar]
  11. Gascoigne N. R., Ames K. T. Direct binding of secreted T-cell receptor beta chain to superantigen associated with class II major histocompatibility complex protein. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):613–616. doi: 10.1073/pnas.88.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gjörloff A., Hedlund G., Kalland T., Sansom D., Fischer H., Trowsdale J., Sjögren H. O., Dohlsten M. The LFA-3 adhesion pathway is differently utilized by superantigen-activated human CD4+ T-cell subsets. Scand J Immunol. 1992 Aug;36(2):243–250. doi: 10.1111/j.1365-3083.1992.tb03096.x. [DOI] [PubMed] [Google Scholar]
  13. Johansson C., Nilsson O., Lindholm L. Comparison of serological expression of different epitopes on the CA50-carrying antigen CanAg. Int J Cancer. 1991 Jul 9;48(5):757–763. doi: 10.1002/ijc.2910480521. [DOI] [PubMed] [Google Scholar]
  14. Johnson H. M., Russell J. K., Pontzer C. H. Staphylococcal enterotoxin microbial superantigens. FASEB J. 1991 Sep;5(12):2706–2712. doi: 10.1096/fasebj.5.12.1916093. [DOI] [PubMed] [Google Scholar]
  15. Jones S. T., Bendig M. M. Rapid PCR-cloning of full-length mouse immunoglobulin variable regions. Biotechnology (N Y) 1991 Jan;9(1):88–89. doi: 10.1038/nbt0191-88. [DOI] [PubMed] [Google Scholar]
  16. Kalland T., Hedlund G., Dohlsten M., Lando P. A. Staphylococcal enterotoxin-dependent cell-mediated cytotoxicity. Curr Top Microbiol Immunol. 1991;174:81–92. doi: 10.1007/978-3-642-50998-8_6. [DOI] [PubMed] [Google Scholar]
  17. Larson L. N., Johansson C., Lindholm L., Holmgren J. Mouse monoclonal antibodies for experimental immunotherapy promotes killing of tumor cells. Int J Cancer. 1988 Dec 15;42(6):877–882. doi: 10.1002/ijc.2910420615. [DOI] [PubMed] [Google Scholar]
  18. Riethmüller G., Johnson J. P. Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancers. Curr Opin Immunol. 1992 Oct;4(5):647–655. doi: 10.1016/0952-7915(92)90041-c. [DOI] [PubMed] [Google Scholar]
  19. Scherer M. T., Ignatowicz L., Winslow G. M., Kappler J. W., Marrack P. Superantigens: bacterial and viral proteins that manipulate the immune system. Annu Rev Cell Biol. 1993;9:101–128. doi: 10.1146/annurev.cb.09.110193.000533. [DOI] [PubMed] [Google Scholar]
  20. Uhlén M., Guss B., Nilsson B., Gatenbeck S., Philipson L., Lindberg M. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem. 1984 Feb 10;259(3):1695–1702. [PubMed] [Google Scholar]
  21. Woodland D. L., Blackman M. A. How do T-cell receptors, MHC molecules and superantigens get together? Immunol Today. 1993 May;14(5):208–212. doi: 10.1016/0167-5699(93)90164-G. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES