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Abstract

In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic 

and impulsive acoustic radiation force applied to its surface was investigated both theoretically 

and experimentally. An analytical solution for a layered viscoelastic compressible medium in 

frequency and time domains was obtained using the Hankel transform. A special incompressible 

case was considered to model soft biological tissues. To verify our theoretical model, experiments 

were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 

MHz single-element focused ultrasound transducer was used to apply the radiation force at the 

surface of the phantoms. A phase-sensitive optical coherence tomography (OCT) system was used 

to track the displacements of the phantom surface. Theoretically predicted displacements were 

compared with experimental measurements. The role of the depth dependence of the elastic 

properties of a medium in its response to an acoustic pulse at the surface was studied. It was 

shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than 

high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be 

used to evaluate depth-dependent distribution of the mechanical properties based on the 

measurements of the surface deformation.
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I. Introduction

Acoustic radiation force is widely used in elasticity imaging as an external load for remote 

tissue palpation (Nightingale, 2011, Palmeri and Nightingale, 2011, Sarvazyan et al., 1998, 

Greenleaf et al., 2003, Sarvazyan, 2010). This approach is based on focusing an acoustic 

beam in tissue and converting acoustic energy into tissue motion. Acoustic radiation force-

based methods offer significant advantages over other external excitations because the force 
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can be more precisely controlled in terms of space and time and directly applied to the 

region of interest. The small tissue deformation induced by acoustic stimulation is safe and 

highly localized. Tissue motion at the ultrasound beam focal point and propagation of the 

induced elastic waves are related to tissue mechanical properties. The radiation force can be 

generated not only inside the tissue but also at the tissue surface or at the tissue boundaries 

where there is a significant difference in the acoustic impedance. Tissue excitation and 

surface deformation measurements have been used in elastography of skin (Li et al., 2012a, 

Li et al., 2012b, Coutts et al., 2006, Kirkpatrick et al., 2006), cornea (Tanter et al., 2009, 

Twa et al., 2014), crystalline lens (Wang et al., 2013, Manapuram et al., 2011, Wu et al., 

2015), bladder wall (Li et al., 2014, Nenadic et al., 2013) and other potential applications 

(Sarvazyan, 2010). However, in all of these applications, the depth inhomogeneity of the 

tissue plays an important role in its mechanical response. The overall goal of our study is to 

develop a reconstruction method to estimate the depth dependence of the mechanical 

properties of a medium based on surface motion measurements.

In previous studies, we used acoustic radiation forces generated by the reflection of an 

ultrasound wave to probe a laser-induced gas micro-bubble as a way to remotely measure 

the localized viscoelastic properties of the crystalline lens (Yoon et al., 2012, Yoon et al., 

2013, Aglyamov et al., 2012). This approach did not depend on the amplitude of the 

radiation force and was based on the time characteristics of the bubble displacement. Here, 

we extend this approach to the case where the acoustic radiation force is applied to the 

surface of a multi-layered tissue. For example, to evaluate the mechanical properties of the 

ocular tissues, such as the lens and cornea, the short acoustic radiation force can be focused 

on the anterior surface of the lens or cornea to noninvasively create a spatially localized 

deformation (Manapuram et al., 2011, Tanter et al., 2009, Wang et al., 2013). Both the lens 

and cornea have a layered structure and inhomogeneous distribution of mechanical 

properties (Hollman et al., 2002, Weeber et al., 2007, Yoon et al., 2013).

Combining the acoustic radiation force and optical coherence tomography (OCT) is a 

promising diagnostic technique for many biomedical applications (Li et al., 2012a, 

Kirkpatrick et al., 2006, Manapuram et al., 2012a, Manapuram et al., 2012b, Manapuram et 

al., 2011, Wang et al., 2013). In comparison with other imaging techniques, such as 

ultrasound and magnetic resonance imaging, OCT has significant advantages in resolution 

and accuracy of motion estimation, but limited by the low penetration depth of light. 

Therefore, OCT is an ideal imaging technique for surface measurements after a deformation 

force is applied to the sample surface; this emerging technique is optical coherence 

elastography (OCE) (Wang and Larin, 2014).

From a mathematical point of view, the problem of the elasticity evaluation based on the 

excitation and measurement on the tissue surface is similar to the problems of mechanical 

impedance measurements (Skovoroda and Aglyamov, 1998, Zhang et al., 2001) and surface 

wave propagation (Royston et al., 1999, Royston et al., 2003, Zhang et al., 2011). The 

influence of the temporal and spatial profiles of the stress source (radiation force) was 

studied previously (Hachemi et al., 2006). A model based on the elastodynamic Green’s 

function formalism was considered to describe displacements at the surface of the elastic 

homogeneous half-space after a short acoustic pulse. There was good agreement between the 
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results of phantom studies and theory (Hachemi et al., 2006). Nevertheless, to describe a 

mechanical response of biological tissues to an acoustic radiation force, depth 

inhomogeneity should also be taken into account.

In the current study, we present a model of a layered, viscoelastic medium excited by the 

harmonic or short acoustic load on its boundary. We consider the influence of depth 

dependence of the mechanical properties of a medium to vibrations at the focal point of the 

transducer on the surface. This model was verified in phantom studies using an ultrasound-

based OCE system. We demonstrated that the spectral analysis of the surface motion permits 

differentiation of the mechanical response of different layers to surface perturbation. 

Therefore, the developed model could be used in the model-based reconstruction of the 

distribution of mechanical properties throughout the tissue.

II. METHOD

1. A Viscoelastic Layer

Consider an infinite viscoelastic layer of thickness H where the mechanical properties 

depend only on the depth, i.e. change in the direction of the z-axis of the cylindrical system 

of coordinates (r, θ, z). An external acoustic load is considered as an axisymmetric force 

applied to the upper surface of the layer. No volumetric forces are considered in an 

assumption that all acoustic energy is ideally transferred into stress on the surface. 

Therefore, no additional reflections of the ultrasound wave inside the medium are 

considered. Because the problem is axisymmetric, the θ-component of the displacement 

vector U = (Ur, 0, Uz) is zero, and dependence on the angle θ is not considered. The 

equation of motion is given by:

(1)

where t is time, ρ is medium density, and Smn are stress tensor components. The viscoelastic 

stress-strain constitutive relation in terms of the relaxation functions λ̄(t) and μ̄(t) can be 

expressed as (Christensen, 1971):

(2)

Where εmn are strain tensor components, δmn is the Kronecker symbol, and γ is the 

divergence of the displacement vector. The relaxation functions λ̄(t) and μ̄(t) are analogous 

to the Lame constants in elasticity and their specific form is defined by the chosen 

viscoelastic rheological model (Christensen, 1971). We assume fixed boundary conditions 

for the bottom (z = H), and normal P(r, t) and shear Q(r, t) stresses given on the top surface 

(z = 0):
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(3)

2. Harmonic Excitation of a Multi-Layered Medium

Let us now consider a multi-layered medium with N layers, where mechanical parameters 

λj(ω), μj(ω), and ρj are constants for every layer, as shown in Fig. 1. We consider the 

problem in the frequency domain assuming harmonically applied force with angular 

frequency ω. The equation of motion (1) for every layer in the frequency domain is given 

by:

(4)

where  and ( , 0, ) are the Fourier transforms of the components of stress tensor and 

displacement vector, respectively, and index j = 1…N refers to the number of the layer. 

Boundary conditions and conditions of continuity for displacement and stress on the layer 

boundaries z=hj are:

(5)

where p(r, ω) and q(r, ω) are the Fourier transforms of the stress functions on the surface 

P(r, t) and Q(r, t). The relationship between stress ( ) and strain ( ) spectral 

components for layer j has a form:

(6)

where γj is the divergence of the displacement vector in the frequency domain for layer j.

This viscoelastic stress-strain relation, therefore, is exactly the same as for a purely elastic 

medium except that the Lame moduli are replaced by the complex moduli λj(ω) and μj(ω) 

(Christensen, 1971). These moduli are specified as functions of frequency for a particular 

viscoelastic material. For example, for Kelvin-Voigt solid  and 

, where  and  are coefficients of volume compressibility and viscosity, 

respectively, while  and  are the coefficients of shear elasticity and viscosity. In the 

Maxwell solid  and 

.

Applying the Helmholtz decomposition to the displacement vector 

 and combining it with equations (4) result in two independent 

equations for the compressional φj and shear ψj wave potential functions:
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(7)

where ∇× is the curl operator, ∇ is the gradient operator, and Ψj = (0, ∂ψj /∂r, 0). Using 

inverse Hankel transform we seek a solution of the equations (7) in the form:

(8)

where J0 is the Bessel function of the order 0, and the coefficients Aj
1, Aj

2, Bj
1, Bj

2 are the 

functions of α and yet to be determined using the boundary conditions and the conditions of 

continuity for displacement and stress on the layer boundaries z=hj (5). After combining the 

Helmholtz decomposition and (8) we find that the solution of the equations (4) for every 

layer in terms of the spectral components of displacements is given by

(9)

The components of stress tensor (6) give

(10)

where J1 is the Bessel function of the order 1.

Combining equations (5), (9) and (10) and using Hankel transform p̃(α, ω) and q̃(α, ω) of 

stresses on the top surface p(r, ω) and q(r, ω) :

(11)

give a system of 4xN linear equations for the coefficients Aj
1, Aj

2, Bj
1, Bj

2. After solving 

equations (5) spectral components of displacements can be calculated using equations (9). 

Note that if a half-space is considered, i.e. the thickness H is going to infinity, the boundary 

conditions (5) lead to the condition  to limit displacements for large z. For single 

layer, when N=1, and only the boundary conditions should be satisfied explicit expression of 

these coefficient is:
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(12)

where

In the case of a half-space, when H → ∞ equations (12) transform to

(13)

For multi-layered medium and arbitrary N, solution of the 4xN system of linear equations 

(5), (9–11) can be solved for every α numerically to find the coefficients Aj
1, Aj

2, Bj
1, Bj

2 for 

each layer. To find the time-domain response of a viscoelastic layered medium to specified 

normal P(r, t) and shear Q(r, t) stresses, inverse Fourier transform should be applied to the 

displacements (9).

3. Modeling tissue dynamic response

To model a tissue dynamic response to acoustic radiation pulse we consider several 

additional assumptions for the model. Because most soft tissues are nearly incompressible, 

we consider an incompressible medium when λ(ω) is real and going to infinity, such that 

 in (9). We assume also that density is the same for all layers. To specify the stress-

strain relationship, we consider the Kelvin-Voigt model, when , where 

and  are the coefficients of shear elasticity and viscosity, respectively. In incompressible 

medium Young’s modulus Ej, is three times its shear modulus, , i.e.,  for each 

layer. It has been demonstrated that this model adequately describes tissue and tissue-

mimicking phantom behavior under short acoustic radiation force (Aglyamov et al., 2007, 

Urban and Nenadic, 2011, Yoon et al., 2012, Yoon et al., 2013, Yoon et al., 2011). We 

assume that shear stress applied on the tissue surface is zero, i.e. Q(r, t)=0, and the acoustic 

radiation force generates only normal stress during short pulse of duration t0:

(14)

where P0(r) is the amplitude of the acoustic pressure, as a function of space. Note here, that 

we consider P0(r) as the time-averaged pressure, assuming that the pulse duration t0 is much 

larger than the period of acoustic wave. The Fourier transform of this function is:
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(15)

If a constant harmonic pressure p0 is applied in the area of the radius R on the surface of the 

medium, and no pressure applied for r > R, i.e.:

(16)

The Hankel transforms of P0(r) has a form (Abramowitz and Stegun, 1972):

(17)

In our experimental studies axial displacements were measured on the surface of tissue-

mimicking phantom. For the points on the surface z = 0, expression for axial displacement in 

frequency domain is:

(18)

where unknown constants were found using representations (15–16) after solving 4xN linear 

equations (5). This integral was numerically evaluated and axial displacements in time 

domain for z = 0 were obtained after inverse Fourier transform.

Since the problem is a linear one, arbitrary space distribution of the pressure on the upper 

surface P0(r) can be approximated by a set of functions (16) with different radii R and 

amplitudes p0, assuming that the pressure is zero for large r. If P0(r) is approximated by a 

sum of L functions :

(19)

the solution  for that pressure distribution can be approximated by a sum of 

solutions  obtained for the radius Rβ of and amplitude  of the pressure:

(20)

In the calculations, double-weep method was used to solve 4xN system of linear equations 

(5) for the constants Aj
1, Aj

2, Bj
1, Bj

2. For numerical integration of (18), the integral was 

presented as a sum of two integrals:
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(21)

Simpson’s rule was used for the numerical approximation of the integral F1. To evaluate 

integral F∞, an approximation for half-space (13) was used, where the mechanical 

parameters of the top layer were substituted in (13). Taking into account the asymptotic 

forms of the Bessel functions for large argument  and 

 (Abramowitz and Stegun, 1972), the approximation of the 

integral F∞ has a form:

(22)

The integral (22) can be integrated explicitly (Abramowitz and Stegun, 1972). The choice of 

the parameter α1 is based on the closeness of the integrands in (18) and (22), and depends on 

the specific geometry and frequency.

III. EXPERIMENTAL SET-UP

To verify our theoretical model, the experiments were performed using two homogeneous 

and two two-layered gelatin-based phantoms with a different concentration of the gelatin in 

each layer. During phantom preparation, the same gelatin solution was used to prepare test 

samples. These samples were used to independently measure elastic properties of the 

phantom material. Both phantoms and samples were constructed at the same time and 

underwent the same procedures to minimize any possible differences in elastic properties. 

Young’s moduli of the samples were obtained by direct uniaxial load-displacement 

measurements using an In-Spec 2200 benchtop portable tester (Instron, Inc., Norwood, 

MA). Uniaxial tests were performed before and after acoustic radiation force experiments 

(about 2 hours interval) and no significant changes in the elastic properties with time were 

found. Two homogeneous phantoms with 6% and 18% gelatin concentrations had Young’s 

moduli of E = 8 kPa and E = 48 kPa, respectively. The layered phantoms had a top layer 

made of 6% gelatin concentration (E1 = 8 kPa) and bottom layer made of 18% gelatin 

concentration (E2 = 48 kPa). The thicknesses of the top layers were 5 and 2 mm for the first 

and the second phantoms, respectively. The overall thickness was 16 mm for all phantoms. 

No additional ultrasound scatterers were added in the gelation solution.

The integration of acoustic stimulation and the phase-sensitive OCT (PhS-OCT) system for 

simultaneous excitation and measurement of local displacements is schematically shown in 

Fig. 2. The spectral-domain OCT system used a superluminescent diode (Superlum Diodes, 

Ltd., Ireland) as the laser source, which provides a central wavelength of 840 nm and a 

bandwidth of about 100 nm. A Michelson interferometer was used as an interference 

comparator between the sample and the reference arms. The fringes of interference were 
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spatially resolved through a high resolution spectrometer with a CCD line scan camera 

(Basler, Inc., Germany). The line scan rate of the CCD was set as 25 kHz, which represented 

the A-line acquisition speed of the OCT system. The full width at half maximum of the laser 

beam at the imaging focal plane was approximately 8 μm. The measured phase stability of 

the system was about 5 milliradians at maximal SNR from a mirror and about 0.11 radians at 

SNR of 30 dB from the phantom.

A 3.5 MHz single-element focused ultrasound transducer (ValpeyFisher Corp., Hopkinton, 

MA) was attached to the bottom of a water-filled tank to generate acoustic radiation force on 

the upper surface of tissue-mimicking phantom (Fig. 2). The upper surface of the phantom 

was placed above the water level. The transducer had a diameter of 13 mm and a focal 

length of 19 mm. The function generator was used to provide gated 3.7 MHz sinusoidal 

signal applied through a 55 dB power amplifier (A150, ENI, Rochester, NY) to the 

transducer. The duration of acoustic radiation force pulse was varied from 54 μs to 13 ms. 

Prior to the experiment, the foci of both the ultrasound transducer and the OCT system were 

aligned. In the experiments the pre-amplified voltage was varied from 5 mV to 20 mV to 

control the amplitude of displacement and avoid the artifacts of phase wrapping which 

accompany OCT measurements of relatively large and fast displacements.

The ultrasound field in the focal point of the transducer was measured using a needle 

hydrophone with a sensor diameter of 0.2 mm (Precision Acoustics Ltd, Dorchester, UK). 

For the pre-amplified voltage signal of 100 mV, the peak positive and negative pressures at 

the focal point were 12 and 8 MPa, respectively. The corresponding spatial peak pulse 

average (SPPA) intensity was 2600 W/cm2. The normalized distributions of the time-

averaged pressure in the focal zone of the transducer in water and in a phantom are shown in 

Fig. 3. As seen in Fig. 3, in a gelatin-based phantom, the focal size is slightly increased.

IV. RESULTS AND DISSCUSSION

1. Model calculations

To illustrate the influence of the depth dependence of the elasticity distribution in the 

medium, calculations were performed for homogeneous and inhomogeneous media. In these 

calculations, the medium was assumed to be incompressible, while the overall thickness of 

the layer H = 10 mm, density ρj = 1000 kg/m3, and shear viscosity coefficients  Pa s 

and  Pa s were used. The pressure distribution on the top surface was defined by 

equations (16–17), where the radius of the ultrasound beam R = 0.5 mm, and the pressure 

amplitude p0=100 Pa were selected. The integral in (18) was calculated numerically to find 

the spectral component of axial displacement  on the surface of the medium. Using 

the fast Fourier transform, the axial displacement in the time domain was found.

Figure 4 presents the displacements in frequency and time domains for homogeneous 

viscoelastic layers of different elasticity. Figures 4(a) and (b) shows real and imaginary parts 

of the axial displacements, respectively, as functions of frequency for different values of 

Young’s modulus. Real and imaginary parts represent the vibration in-phase and out-of-

phase with the external force. For low frequencies, the vibrations are mostly in-phase with 
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the external force and the imaginary part of the displacement is close to zero. When 

frequency increases, the impact of viscosity also increases, and the phase shift between the 

external load and the displacement appears. Zero frequency corresponds to a static load 

when there is no influence of viscosity. As shown in Fig. 4(c), the absolute value of the 

displacement decreases with frequency, however this decay is more pronounced for soft 

materials. The increase in elastic modulus results in two effects: a decay in the displacement 

amplitude and a shift of the resonance frequency to the high frequency region. Figure 4(d) 

demonstrates the influence of elasticity in the time domain, when the duration of the external 

force t0 =0.5 ms (see Eq. (14)). In the stiffer media, the magnitude of the displacement as 

well as the time necessary to reach the maximum displacement decrease. In addition, in the 

stiff medium, the displacement reaches a state of equilibrium, where external force is 

compensated by the elastic response of the medium, much faster than in the soft medium. 

The magnitude of the displacement in the equilibrium position corresponds to the static case, 

i.e. zero frequency. For example, for E = 20 kPa, the maximum displacement in Fig. 4(d) 

corresponds to the real part and the absolute value of the displacement at zero frequency in 

Figs. 4(a) and (c). These results are in agreement with our previous studies for a 

homogeneous medium, where acoustic radiation force was used to move hard spheres and 

laser-induced microbubbles in a viscoelastic medium (Aglyamov et al., 2007, Karpiouk et 

al., 2009, Yoon et al., 2012, Yoon et al., 2013, Yoon et al., 2011).

To investigate the role of different layers in the tissue response to an acoustic pulse, a 

simulation of a three-layered medium was performed, where the stiffness of the second layer 

was varied, while the stiffness of the first and third layers was kept the same (E1 = E3 = 10 

kPa). Shear viscosity was constant for all layers. To investigate the influence of viscosity, 

two different values of shear viscosity was considered:  Pa s and  Pa s. The 3 

mm thick layer was placed at a depth of 3 mm (h1 =3 mm, h2 =6 mm) and the total thickness 

was H = 10 mm. Note here that h1 and h2 are boundary positions and the thickness of the 

second layer is h2-h1 = 3 mm. Figure 5 presents the results of this simulation in the 

frequency and time domains, where Young’s modulus of the second layer was varied from 5 

kPa to 50 kPa. As shown in Figure 5(a, c), a stiffer second layer results in a shift of the 

spectrum to the high frequency region and the appearance of additional resonance 

frequencies. However, the differences in spectral components disappear with an increase in 

frequency, where the upper layer is mostly responsible for the tissue reaction. Figure 5(b, d) 

presents displacement profiles in the time domain for t0 = 5 ms. As seen in Figure 5(c) high 

viscosity leads to drop of the displacement amplitude, especially for the high frequency 

components. As a result, high frequency components become less sensitive to the deep 

layers.

After that, the Young’s modulus of the second layer was fixed (E2 = 50 kPa). This stiff layer 

was placed at the different depths h1 from 1 to 6 mm, while other parameters were the same, 

including the thickness of the second layer (3 mm), as in the previous case. The results of 

this simulation are shown in Fig. 6. High-frequency vibrations are mostly sensitive to the 

upper layers, and there is no significant difference in the frequency response for frequencies 

higher than 1500 Hz. Conversely, the low-frequency vibrations depend on both deep and 

superficial layers. As shown in Fig. 6(a) the resonance frequency is shifted from 135 Hz to 
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750 Hz when the depth of occurrence of the stiff layer decreases from 6 mm to 1 mm. 

Therefore, while in the low frequency region the displacement amplitude for h1=6 mm is 

higher than that of h1 = 1 mm, in the high frequency region it could be the reverse. The 

change in the frequency response is also seen in Fig. 6(b), where displacements in the time 

domain are shown.

Figure 7 shows the surface wave propagation for a homogeneous and inhomogeneous three-

layered medium. The parameters and geometry of the model are the same as in Fig. 6 for h1 

= 1 mm. As seen in Fig. 7, the presence of the stiff layer results in decreasing the amplitude 

and increasing the speed of the surface wave propagation, due to an increase of overall 

stiffness. In addition, there is also a change in frequency content, i.e. the shift to the high 

frequency region, similar to the displacements at the focal point.

2. Comparison of the model predictions with experimental data

The results of the developed model were compared with the experimental results obtained in 

phantom studies. Because the acoustic radiation pressure on the surface of the gelatin-based 

phantoms is difficult to estimate, the spatial distribution was taken from the phantom 

calibration experiments (see Fig. 3). To approximate this distribution, Eqs. (19–20) were 

used with L= 6. The amplitude of radiation pressure was obtained by fitting the experimental 

data to theoretical predictions, and used in theoretical calculation to compare with 

experimental data. Note here that the purpose of such consideration is comparison of the 

frequency and time characteristics of the surface vibrations, but not the amplitudes of the 

displacements, which linearly depend on the pressure magnitude. Because shear viscosity 

was not measured independently in the experiment, it was fixed as 0.2 Pa·s for all layers. In 

accordance with theoretical analysis, the influence of shear viscosity in this range is not 

significant and the behavior of the medium is largely defined by elasticity. The density was 

assumed to be 1000 kg/m3.

At first, the results of theoretical modeling were compared with the results of the 

experiments on the homogeneous phantoms. Figure 8(a) shows the displacements at the 

focal point of the ultrasound transducer on the surface of two homogeneous phantoms with 

Young’s moduli of 8 kPa and 48 kPa for a short acoustic pulse of 0.054 ms. Similar to our 

model calculations (see Fig. 4(d)), in the stiffer phantom, the magnitude of the displacement 

as well as the time of maximum decrease, and the experimental displacements are in good 

agreement with the results of the theoretical predictions shown in Fig. 8(b), where the 

maximum pressure Pmax = 51 Pa was assumed for both phantoms.

The comparison of experimental results and model predictions for two inhomogeneous 

phantoms in the frequency and time domains is shown in Fig. 9. The only difference 

between these phantoms is the thickness of the top layer (h1 = 5 mm and h1 = 2 mm). As 

shown in Fig. 9(a), in the case of the thinner layer, the dominant frequency is shifted into the 

high frequency zone, as expected based on the theoretical calculations (Fig. 9(b)), reflecting 

an increase in the average elasticity of the sample. Overall, there is good agreement between 

theory and experiment both in the frequency and time domains. Note here that in Fig. 9(b),

(c), and (d) we assumed the same acoustic pressure for both samples, Pmax = 43 Pa.
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Figure 10 shows the experimental and theoretical displacements as functions of time for a 

long acoustic pulse (t0 = 13.3ms). Displacements were normalized to avoid the influence of 

the variations in the amplitude of the radiation force for different samples. The 

homogeneous sample had the same elasticity as the top layer of inhomogeneous phantoms 

(E1=8 kPa). As seen in Fig. 10, inhomogeneity brings additional vibrations to the 

displacement profile, while the homogeneous sample demonstrates no significant vibrations 

for both experimental and theoretical curves.

As shown in Figs. 8–10, the results of the model calculations are in good agreement with the 

experimental data. Still, some disagreements could result from the experimental conditions 

and the limitations of the model. It is difficult to control the amplitude of the acoustic 

radiation pressure on the phantom surface, because even small changes in the experimental 

conditions lead to significant changes in the force amplitude, and we cannot guarantee that 

the pressure amplitude was the same for different phantoms even if the same parameters of 

acoustic excitation were used. In Figs 8 and 9 we assumed the same pressure when we 

compared the phantoms in pairs, but as seen in Fig. 9 the pressure was likely higher for the 

first phantom with the top layer thickness of 5 mm. Even in the high frequency region the 

displacement for this phantom is higher than for another phantom (see Fig. 9(a)).

In the model, no volumetric forces were considered. However, a high intensity ultrasound 

field could produce additional radiation force comparable with the force generated at the 

phantom-air boundary, despite the fact that no scatterers were added to the tissue-mimicking 

phantoms. This effect could be more pronounced for biological tissues. Additional analysis 

of the radiation force distribution close to the surface of the medium is required. Because no 

viscosity measurements were performed, and shear viscosity was fixed as 0.2 Pa s for all 

phantoms, the error in viscosity estimation could result in additional disagreement between 

simulation and experiment. Also, the motion of the phantom as a whole object was not taken 

into account. In the experiment, the bottom part of the phantom was not fixed, contrary to 

the model. We assume that this difference in boundary conditions did not affect our results 

because of the significant thickness of the phantoms (16 mm). For thin samples, however, 

boundary conditions on the bottom are more important and should be considered accurately. 

We don’t expect any significant changes in the elasticity of the phantoms during experiment 

(about 2 hours), based on the results of the uniaxial tests of gelatin samples performed 

before and after experiment.

The results of the simulations and the experiments show that while low-frequency vibrations 

on the surface are sensitive to deep layers of the medium, high-frequency components 

attenuate rapidly with depth and only the upper layers are involved in the high-frequency 

response of the medium. Such results are in agreement with the experimental data obtained 

for surface wave propagation by the other groups (Li et al., 2012b, Li et al., 2014). 

Therefore, the depth-dependence of the mechanical parameters could be potentially resolved 

by relying on the spectral analysis concept. Such an approach can be based on the analysis 

of the frequency and time characteristics of tissue motion rather than on the vibration 

amplitudes, similar to our approach in the bubble-based acoustic radiation force method 

(Aglyamov et al., 2012, Yoon et al., 2012, Yoon et al., 2013).
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In this work we used the experimental design when ultrasound stimulation and OCT beam 

were placed in opposite sides. Such design was selected to avoid problems associated with 

water coupling and to maximize the energy on the surface of the phantom. However, for 

imaging tissues in situ both ultrasound stimulation and OCT beam are preferable to be on 

the same side. Such design was incorporated in our recent work to assess the age-related 

changes in the biomechanical properties of the crystalline lens in situ (Wu et al., 2015).

V. CONCLUSIONS

In this work we proposed a model of a layered viscoelastic medium excited by acoustic 

radiation force on its surface. The motion at the focal point of the ultrasound beam and 

surface wave propagation were considered. A significant difference in frequency content for 

different distributions of the depth-dependent elastic properties was demonstrated. 

Specifically, low frequency components are more sensitive to the deep layers than high 

frequencies. The model was tested in phantom studies using a combined ultrasound/OCT 

system. The results demonstrated good agreement between theoretical calculations and 

experimental data. The proposed approach has the potential to become a method of elasticity 

reconstruction based on the measurements on the tissue surface.
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Fig. 1. 
The multi-layered viscoelastic medium under the axisymmetric surface excitation.
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Fig. 2. 
Schematic of the experimental setup which combines the single-element focused ultrasound 

transducer and the phase-sensitive OCT system.
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Fig. 3. 
Normalized pressure distribution in the focal zone of a 3.5 MHz transducer in water and 

gelatin-based phantom.
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Fig. 4. 

(a) Real part; (b) imaginary part; and (c) absolute value of the axial displacements 

on the surface of viscoelastic layer for different values of Young’s modulus (2 kPa, 5 kPa, 

10 kPa, and 20 kPa) in the frequency domain; (d) axial displacement in the time domain for 

0.5 ms pulse of the acoustic force. A dash vertical line represents the end of the acoustic 

pulse.
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Fig. 5. 
(a), (c) Absolute value of the axial displacements in frequency domain and (b), (d) 

displacements in the time domain for a three-layered medium, where Young’s modulus of 

the second layer (E2) is varied from 5 kPa to 50 kPa. Shear viscosity is (a–b) 0.1 Pa s 

(  Pa s); and (c–d) 1 Pa s (  Pa s) for all layers. Other 

parameters are: E1 = E3 = 10 kPa, h1 = 3 mm, h2 = 6 mm, H = 10 mm. The case E2 =10 kPa 

corresponds to a homogeneous medium. In the time domain solution the time of excitation is 

5 ms.
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Fig. 6. 
(a) Absolute value of the axial displacements in the frequency domain and (b) displacements 

in the time domain for a three-layered medium, where stiff second layer (E2=50 kPa) is 

placed at different depths h1 in the medium. Shear viscosity is 0.1 Pa s for all layers. Other 

parameters are the same as in Fig. 5.
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Fig. 7. 
Surface axial displacements in the time domain for different radial positions in (a) a 

homogeneous medium (E2 = 10 kPa) and (b) a medium with a hard layer (E2 = 50 kPa) 

placed at a depth of h1 = 1 mm. Shear viscosity is 0.1 Pa s. The time of excitation is 0.5 ms 

for both cases.
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Fig. 8. 
(a) Experimentally measured and (b) theoretically predicted displacements on the surface of 

homogenous soft (E=8 kPa) and hard (E=48 kPa) media at the point of excitation. Durations 

of the acoustic pulse t0 = 0.054 ms. In calculations Pmax = 51 Pa for both phantoms.
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Fig. 9. 
(a) Experimentally measured and (b) theoretically predicted spectral components of the 

displacements on the surface of the two-layered medium (E1 = 8 kPa, E2 = 48 kPa) at the 

point of excitation (r=0) with different thicknesses of the top soft layer (h1 = 5 mm, and h1 = 

2 mm). (c), (e) Experimentally measured and (d), (f) theoretically predicted displacements in 

the time domain for the first (h1 = 5mm) and the second (h1 = 2 mm) phantoms, 

respectively, when two different durations of the acoustic pulse were used (0.27 ms and 2.7 

ms). In calculations Pmax = 43 Pa for both phantoms.
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Fig. 10. 
(a) Experimentally measured and (b) theoretically predicted displacements on the surface of 

the two-layered media (E1 = 8 kPa, E2 = 48 kPa) for the time of excitation t0 = 13.3 ms and 

different thicknesses of the top layer h1. The displacements were normalized to avoid the 

influence of variation in the magnitude of the acoustic radiation force. The homogeneous 

sample had the same elasticity as the top layer of inhomogeneous phantoms (E1 = 8 kPa).
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