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Abstract

Background

Little is known about the effects of induced pluripotent stem cell (iPSC) treatment on acute

cerebral inflammation and injuries after intracerebral hemorrhage (ICH), though they have

shown promising therapeutic potentials in ischemic stoke.

Methods

An ICH model was established by stereotactic injection of collagenase VII into the left stria-

tum of male Sprague-Dawley (SD) rats. Six hours later, ICH rats were randomly divided into

two groups and received intracerebrally 10 μl of PBS with or without 1×106 of iPSCs. Subse-

quently, neural function of all ICH rats was assessed at days 1, 3, 7, 14, 28 and 42 after

ICH. Inflammatory cells, cytokines and neural apoptosis in the rats’ perihematomal regions,

and brain water content were determined on day 2 or 3 post ICH. iPSC differentiation was

determined on day 28 post ICH. Nissl+ cells and glial fibrillary acidic protein (GFAP)+ cells in

the perihematoma and the survival rates of rats in two groups were determined on post-ICH

day 42.

Results

Compared with control animals, iPSCs treatment not only improved neurological function

and survival rate, but also resulted in fewer intracephalic infiltrations of neutrophils and

microglia, along with decreased interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha

(TNF-α), and increased IL-10 in the perihematomal tissues of ICH rats. Furthermore, brain
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oedema formation, apoptosis, injured neurons and glial scar formation were decreased in

iPSCs-transplanted rats.

Conclusions

Our findings indicate that iPSCs transplantation attenuate cerebral inflammatory reactions

and neural injuries after ICH, and suggests that multiple mechanisms including inflamma-

tion modulation, neuroprotection and functional recovery might be involved simultaneously

in the therapeutic benefit of iPSC treatment against hemorrhagic stroke.

Introduction
Intracerebral haemorrhage (ICH) is a serious stroke subtype associated with high morbidity,
mortality, disability and recurrence rate [1–3]. ICH-induced primary injury is mainly caused
by the hematoma formation and its expansion within brain parenchyma that resulting in the
damage of brain cell structure and the increase of intracranial pressure. ICH-induced second-
ary injury is caused by three intertwined degenerative cascades including inflammation, red
cell lyses and thrombin production, which induce severe neural dysfunctions by the formation
of cerebral edema, neuronal apoptosis and degeneration[1, 3, 4]. Accumulating evidence has
shown that cerebral inflammatory responses, including the infiltration of inflammatory cells
such as neutrophils and mononuclear-macrophages, microglial activation and the secretion of
inflammatory-related cytokines, play a crucial role in all phases of the ICH-induced secondary
brain damages. This data suggests that various inflammatory pathways involving specific medi-
ators and inflammatory cells may be as promising therapeutic targets for treating ICH [1, 3–8].
Currently there is limited available effective treatment against inflammatory reaction, which
may protect neural cells from ICH-induced injuries [1–4, 9].

Stem cell-based approaches have already developed into effective therapies to restore function
in experimental ICH [1, 5, 10–15]. Induced pluripotent stem cells (iPSCs) are stem cell popula-
tions generated from adult somatic cells through reprogramming by transcription factors. These
cells are regarded as promising candidates for clinical cell therapies without the ethical, immuno-
genetic and low quantity problems [13, 16]. Thus, reprogramming of human various somatic
cells into iPSCs is one of the most perspective approaches to produce sufficient patient-specific
cells for autologous transplantation[16, 17]. Advances in iPSCs technologies, including improve-
ments in the ease and efficiency of generating iPSCs and iPSCs-derived neural cells, have resulted
in increased adoption of these cells in treating stroke[18, 19]. Recent studies have indicated that
transplantation of iPSCs and iPSCs-derived cells holds tremendous potential for the treatments
of ischemic stroke[15, 17, 20], and suggested that it could reduce the inflammatory damages in
this [15] and other animal models of human diseases[21, 22]. Furthermore, a recent study sug-
gests that iPSCs have more potent immunomodulatory properties compared with bone marrow-
derived mesenchymal stromal cells (MSCs) [23]. We have also shown that iPSCs treatment can
promote improved recovery of persistent neurological dysfunctions in an experimental ICH
model [24]. However, it remains unclear whether iPSC treatment has possible anti-inflammation
potential on the innate inflammatory response and inflammatory-induced neural injuries after
acute hemorrhagic stroke[7]. In this study, we therefore aim to explore the therapeutic effects of
iPSC transplantation on acute cerebral inflammation, neural damage and recovery in a rat colla-
genase-induced ICHmodel. These findings may improve the limited treatment strategies cur-
rently available for hemorrhagic stroke.
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Materials and Methods

The cultivation of rat iPSCs
The rat iPSCs line used in this study was provided by Dr. Lei Xiao[25]. T25 Corning flasks
were incubated with 0.1% gelatin for 30 min. at 37°C, then murine embryonic fibroblasts
(MEFs, 5×104 cells/cm2) were cultured in fibroblasts medium (Dulbecco's modified Eagle's
medium, DMEM) containing 10% fetal bovine serum (FBS), and 100 IU/ml penicillin/strepto-
mycin (all from Invitrogen except FBS from Hyclone) two days before plating rat iPSCs. iPSCs
were washed and centrifuged (1000 rpm×5min.) in a 15 ml centrifuge tube containing 5 ml
iPSCs culture medium twice and then plated on confluent MEF feeder in iPSCs culture
medium containing Knockout DMEM supplemented with 10% Knockout Serum Replacement
(KSR), 1 mM glutamine, 1% NEAAs, and 0.1 mM β-mercaptoethanol (all from Invitrogen).
After two days of culture, the iPSCs formed clones on MEFs. Then the iPSCs were passaged in
the medium every 3 to 5 days. Medium was changed every other day. Alkaline phosphatase
(AP) staining was conducted to identify these iPSCs clones as previously described [13].

Induction of rat ICH model
This study was approved by the Ethics Committee of Zhengzhou University, Zhengzhou,
China (ECZUC). All animal experimental procedures in this study were complied with the
institutional guide for the care and use of laboratory animals and carried out under the
approval of ECZUC. A total of 152 adult male Sprague-Dawley (SD) rats (250–280 g) were
used in our experiments. All rats were 7–8 weeks old and purchased from the Animal Center of
Henan province, China. These rats were raised in isolated cages with independent ventilation,
living in a 12-hour light-dark cycle and with free access to food and water in a constant temper-
ature (22 ± 2°C). To generate experimental ICH, the rats were stabilized in the stereotactic
frame (Narishige SN-3, Tokyo, Japan) in a prone position after being anesthetized with 1%
ketamine (30 mg/kg, I.P., Sigma–Aldrich). A midline incision was made through the scalp to
expose the skull and then a 1 mm × 1 mm craniectomy was performed. Subsequently, a stereo-
tactically guided needle was placed into the left striatum (0.2 mm posterior and 3.0 mm lateral
to the bregma, 6.0 mm depth below the surface of the skull). Ten μL bacterial collagenase VII
(Sigma–Aldrich, 0.25 U/μl) was injected using a 10 μl microsyringe at a steady infusion rate of
1 μl/min. Then the wound was cleaned and sutured [10, 13]. The sham rats underwent the
same procedure except an equivalent amount of sterile saline was injected instead of collage-
nase VII (Table 1).

The labeling and implantation of iPSCs
Before the transplantated, iPSCs were labeled with CM-Dil (Invitrogen) following manufactur-
er’s instructions. Briefly, iPSCs were incubated in culture medium containing CM-Dil (4 ug/ml
final concentration) for 30 min. at 37°C. Then the the culture was washed twice with 37°C PBS.

Table 1. The characteristics of all rats in each group.

Groups Sham PBS iPSCs

Total 30 63 59

For observing survival rate 18 18 18

Survived rats at day 42 post ICH 17 12 15

Survival rate (= Survived rats/18*%) 94.44 66.67 83.33

doi:10.1371/journal.pone.0129881.t001
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Finally, labeled cells were resuspended in PBS at a concentration of 1×105/μl for cell
transplantation.

Six hours after inducing ICH, all ICH rats were randomly divided into two groups, the phos-
phate buffer saline (PBS) control group (PBS only) and the iPSC treatment group (total 1×106

cells in the same amount of PBS). Ten μL PBS with or without CM-Dil-labeled iPSCs was
injected into the brain via the original needle tract at the depth of 3.5 mm relative to the
bregma, 2.5 mm upon the hemorrhage lesion according to a previous report [26]. After infu-
sion of iPSCs or PBS, the needle was retained for 10 min. and then removed slowly to prevent
backflow. Then the wound was sutured after cleaning.

Behavioral test
Modified limb placing test (MLPT) was performed to evaluate the neurological functions of all
ICH rats (n = 8/group) according to previous reports by two blinded investigators indepen-
dently at days 0, 1, 3, 7, 14, 28 and 42 post ICH[5, 10].

Measurement of brain water content
Brain water content was measured at day 3 after ICH by a blinded investigator using standard
wet–dry method[5, 27]. Twelve rats (n = 6/group) were anesthetized and sacrificed via decapi-
tation. The rat brain was removed immediately and divided along the midline into haemorrha-
gic hemisphere and contralateral (non-hemorrhagic) hemisphere. Then a single 4-mm section
was cut centered around the hematoma. The brain sections were immediately weighed on an
electronic analytical balance (Mettler Toledo AL104) to obtain wet weights, and then dried in
an oven (CIMO DHG-914385-Ⅲ) at 100°C for 24 hours. to obtain dry weights. Water content
was calculated as [(wet weight-dry weight)/wet weight] × 100%.

Hematein-Eosin (HE) staining and Nissl staining
At day 3 or day 42 after ICH, rats (n = 6/time point/group) were reanesthetized and perfused
through the heart with 150 ml cold saline and 150 ml 4% paraformaldehyde in 0.1 M PBS.
After 4 hours of fixation in 4% paraformaldehyde, the brains were dehydrated with 30%
sucrose for 24 hours at 4°C. Then the tissues surrounding the hematoma were cut into conse-
cutive coronal sections with the thickness of 10 μm on a cryostat (Leica) after being embedded
in optimum cutting temperature compound (OCT).

Paraffin-embedded brains were cut into 3 μm coronal sections from the core of hematoma
after being fixed with 4% paraformaldehyde for 24 hours. For HE coloration at day 3 post ICH,
nuclei were stained with hematoxylin for 3 min. after dehydration in gradient ethanol solution,
and differentiated with 0.3% acid alcohol, then stained with eosin solution for 3–5 min. For
Nissl staining, sufficiently deparaffinized sections taken at day 42 post ICH were hydrated and
stained in warmed 1% toluidine blue solution for 20 min. After rinsing with ultrapure water,
they were dehydrated and mounted with permanent mounting medium. Both HE and Nissl
staining sections were observed using a light microscope (Leica). For Nissl+ cell counting, five
non-overlapping 400 × images were obtained randomly from each slice. The percentages of
Nissl+ cells without shrunken and physalides in all Nissl+ cells were counted per image and
their mean were calculated by two individuals blinded to the experimental conditions.

Immunostaining
OCT-embedded, 10 μm coronal sections of hematoma were immunostained with primary
antibodies specific for myeloperoxidase (MPO), CD11b, activated caspase-3, NeuN (all diluted
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at 1:200 and from Abcam) and GFAP (1:200, Santa Cruz) to identify cerebral neutrophils,
microglia, apoptotic cells, neuron and astrocytes around the hematoma, respectively. Sections
were incubated with primary antibodies for overnight at 4°C, and secondary antibodies,
Dylight488, Alexa Fluor 647, or Cy3-conjugated AffiniPure goat anti-rabbit/mouse IgG (H+L)
(1:1000, Jackson ImmunoResearch) for 2 hours at room temperature. 4ˊ, 6-diamidino-2-phe-
nylindole (DAPI) was used for nuclear counterstaining. Negative control sections were stained
in an identical manner except that the primary antibodies were omitted. For cell counting, five
non-overlapping 400 × images (310μm × 310μm) were obtained randomly from each tissue
slice cutting from the perihematoma areas of per rat (total 5 sections from each rat were used
for primary antibody staining) using a confocal laser scanning microscope (ZEISS). Four indi-
viduals blinded to the experimental conditions counted the number of positive cells per image.
The thickness of glial scar was investigated by measuring the thickness of GFAP-positive cell
staining areas.

Real-time PCR
At day two post-ICH, after being anesthetized, rats were sacrificed (n = 6/group). Then the tis-
sues around the hematoma were removed and cryopreserved in liquid nitrogen immediately.
The total RNA of perihematoma tissues was extracted using the SV total RNA Isolation System
and the first-strand cDNA was synthesized by Reverse Transcription System (all from Pro-
mega) according to the manufacturer’s protocols. Real-time quantitative PCR was performed
using GoTaq qPCR Master Mix on ABI PrismTM 7500 Fast System (Applied Biosystems)
according to the manufacturer’s protocol. Amplification of glyceraldehyde phosphate dehydro-
genase (GAPDH) served as internal-control for sample loading. The sequences of all primers
for real-time PCR (Sangon, China) are: GAPDH: 5’-TGC ACC ACC ACC TGC TTA GC-
3’(sense), 5’-GGC ATG GAC TGT GGT CAT GAG-3’(antisense); TNF-α: 5’-CAT GGA TCT
CAA AGA CAA CCAA-3’(sense), 5’-CTC CTG GTA TGA AAT GGC AAAT-3’(antisense);
IL-6: 5’-GAC AGC CAC TCA CCT CTT CAG-3’(sense), 5’-CAT CCA TCT TTT TCA GCC
ATC-3’(antisense); IL-1β: 5’-CTT CAA ATC TCA CAG CAG CATC-3’(sense), 5’-GCT GTC
TAA TGG GAA CAT CACA-3’(antisense) and IL-10: 5’-CAG TCA GCC AGA CCC ACA T-
3’(sense), 5’-GGC AAC CCA AGT AAC CCT-3’(antisense). The results of real-time PCR were
analyses using 2-ΔΔCt method as previous report[28]. 2-ΔΔCT = [(CT gene of interest-CT
internal control) sample A—(CT gene of interest—CT internal control) sample B)].

ELISA
At day two post ICH, rats were sacrificed after being anesthetized (n = 6/group). Brain tissue
was rinsed with cold PBS (0.01M, PH = 4) to remove blood. Tissue was then minced into small
pieces and homogenized in PBS on ice. Brain homogenates were ollected and centrifugated for
5 min. at 5000 g. The supernate was tested for rat IL-1β, IL-6, TNF-α and IL-10 using ELISA
Kits (Elabscience) according to the manufacturer’s protocol.

Statistical Analysis
All data are presented as Means ± SEM. For comparisons between two groups, data were ana-
lyzed by two-tailed Student’s t-test with normality (Kolmogorov-Smirnov test, P>0.1) or
Mann-whitney U test. For comparisons among three groups, data were analyzed by Bonferroni
analysis of variance (ANOVA). The MLPT scores were analyzed by repeated measure analysis.
A two-tailed P-value of< 0.05 was considered statistically significant.

iPSCs Treatment for ICH
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Results

Transplanted iPSCs differentiate into neural cells in the ICH-injured brain
We previously reported that the transplantation of human iPSCs at 24 hours. after ICH can
give rise to better functional recovery in rats with experimental ICH, and suggested that cell
replacement and/or neurotrophic action may be involved in the therapeutic effects of iPSCs
treatment for ICH[24]. In this study, we tested the hypothesis that anti-inflammation and neu-
roprotective effects may play a role in the improved functional recovery in iPSCs-grafted ani-
mals with experimental ICH. For this reason we used a rat iPSCs line, instead of more
commonly used human or mouse iPSCs, to treat rat experimental ICH models with no need
for immunosuppression and no more than minimal immune interferences.

Rat iPSCs formed typical clones (Fig 1A left) and expressed AP (Fig 1A right). In order to
determine the neural differentiation of transplanted iPSCs in the ICH brain, the CM-Dil+-

GFAP+ cells were detected to identify neural cells originating from the graft. With a multicolor
fluorescence assay we found that iPSCs differentiated into GFAP+ neural cells in rat brain at
day 28 post ICH (Fig 1B).

iPSC treatment improves neural functions and survival rate of ICH rats
The neural functions and survival rate of all rats were observed to determine the protective
effects of iPSCs transplantation on acute ICH-induced injuries. The rats in the iPSC-

Fig 1. Transplanted iPSCs differentiate into GFAP+ neural cells in the perihematomal regions and
enhance the functional recovery of ICH rats. (A) Passaged iPSCs displayed typical colonies (left) and
positive AP (right; bar=200 μm). (B) Immunofluorescence for GFAP showed the CM-Dil labeled iPSCs within
the perihematomal regions differentiated into neural cells at day 28 post ICH. The # sign indicates hematoma
areas. Bar=20 μm. (C) Changes in scores of MLPT in rats of 3 groups (Sham; PBS; PBS+iPSCs) over time
after treatment. Shown are the mean values with SEM from 8 rats for each group. *P<0.05 for differences
between PBS and PBS+iPSCs groups at days 14 to 42 post ICH.

doi:10.1371/journal.pone.0129881.g001

iPSCs Treatment for ICH

PLOSONE | DOI:10.1371/journal.pone.0129881 June 18, 2015 6 / 14



transplanted group showed continuous improvement of motor function indexed by MLPT
scores as compared to vehicle-injected animals from day 14 to day 42 post ICH induction
(P<0.05, respectively), while sham ICH rats did not show any neurological deficits (Fig 1C).
Furthermore, the survival rate of rats in iPSC group (83.33%) was improved compared with
that of rats in PBS group (66.67%) at day 42 post ICH (Table 1).

iPSC treatment significantly reduces the number of inflammatory cells
and the expression of IL-1β, IL-6 and TNF-α but not IL-10 in the
perihematomal areas
To explore the anti-inflammatory effects of iPSC transplantation for hemorrhagic stroke, we
investigated the counts of acute inflammatory cells including neutrophils and microglia. We
also measured expression levels the expressing levels of inflammatory cytokines including
TNF-α, IL-1β, and IL-6 and anti-inflammatory cytokine IL-10 in the perihematomal areas of
iPSC-transplanted ICH rats.

On day 3 post ICH, HE staining of brain tissue sections showed a large amount of inflam-
matory cells distributing in the areas around hematoma (Fig 2A), though there was no differ-
ence in the volume of hematoma in two groups (data not shown). Immunostaining assays for
identifying neutrophils and microglia were conducted to accurately analyze the numbers and
subtypes of inflammatory cells in the perihematoma. Stereological quantification of the total
number of inflammatory cells revealed that iPSC transplantation resulted in a significant
decrease in the inflammatory cells accumulation, including MPO+ neutrophils and CD11b+

microglia in the perihematomal areas, compared with that of rats in the PBS group (MPO+

neutrophils: Sham group, 0 cells/mm2; PBS group, 266.57±9.82 cells/mm2 and iPSCs group,
170±10.17 cells/mm2; PBS group versus iPSCs group, P<0.01; CD11b+ microglia: Sham

Fig 2. Reduction of cerebral inflammatory cells in iPSC-grafted rats. (A) Representative image of the
collagenase-induced hemorrhagic lesion (left). HE staining showed that infiltration of inflammatory cells in the
perihematoma areas (middle and right; The # sign indicates hematomal area). (B) The counts of MPO+ and
CD11b+ inflammatory cells at day 3 post ICH. Immunostaining shows representative images of MPO+ cells
(top panel) and CD11b+ cells (bottom panel) (Sham; PBS; PBS+iPSCs). Histograms on the right show
changes in the counts of MPO+ and CD11b+ cells at day 3 post ICH. Counts of MPO+ and CD11b+

inflammatory cells in perihematoma areas were significantly decreased in iPSCs group compared to the PBS
group, while there were no MPO+ inflammatory cell and very few CD11b+ inflammatory cells in Sham group.
Data are mean values with SEM. MPO+ cells, **P<0.01 for differences between PBS and PBS+iPSCs
groups at day 3 post ICH. CD11b+ cells, &&P<0.01 or &P<0.05 for differences between Sham and PBS
groups or PBS+iPSCs groups; **P<0.01 for differences between PBS and PBS+iPSCs groups at day 3 post
ICH (n = 6/group; The # signs indicate hematomal areas).

doi:10.1371/journal.pone.0129881.g002
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group, 74.72±3.38 cells/mm2; PBS group, 256.74±7.58 cells/mm2; iPSCs group, 136.93±
6.24 cells/mm2. Sham group versus PBS group, P<0.01; Sham group versus iPSCs group,
P<0.05; PBS group versus iPSCs group, P<0.01) (Fig 2B).

In addition to inflammatory cells, the inflammatory cytokines including TNF-α, IL-1β, IL-
6, and IL-10 were measured in the perihematomal areas at day 2 after ICH by RT-PCR and
ELISA test. We found that the RNA and protein levels of IL-1β, IL-6, and TNF-α were reduced
significantly in the brains of iPSC-transplanted rats (RNA: IL-1β, IL-6, and TNF-α, P<0.01,
respectively. Protein: IL-1β and IL-6, P<0.01, respectively; TNF-α, P<0.05). In contrast, IL-10
expression increased (RNA, P<0.05 and protein, P<0.01), compared with that of the PBS
group (Fig 3A).

iPSC treatment reduces brain water content
The analysis of brain water content was conducted at day 3 post ICH to identify the effect of
iPSC treatment on cerebral edema. The mean of brain water content of haemorrhagic hemi-
spheres was significantly different between the PBS group (81.71±0.54%) and the iPSC group
(80.31±0.24%) (P<0.05). However, there was no difference in the mean of brain water content
of contralateral (non-hemorrhagic) hemispheres between these two groups (PBS group =
79.69±0.14% and iPSC group = 79.35±0.15%, P = 0.11) (Fig 3B).

iPSC treatment reduces apoptotic neural cells in the perihematomal
areas
To determine the neuroprotective effects of iPSC treatment for acute ICH, apoptotic neural
cells in the perihematomal areas were investigated on day 3 post ICH by using immunostaining

Fig 3. Changes of cerebral cytokines and encephaledema in iPSC-grafted rats. (A left) Relative mRNA
levels of IL-1β IL-6 and TNF-α at day 2 post ICH in the perihematoma were decreased in iPSCs group
compared with PBS group (n = 6/group; **P<0.01 compared with PBS group), but IL-10 increased (n = 6/
group; *P<0.05 compared with PBS group). Data are mean values with SEM. (A right) Protein levels
measured by ELISA of IL-1β IL-6 and TNF-α at day 2 post ICH in the perihematoma were also decreased in
iPSCs group compared with PBS group (n = 6/group; iPSCs group versus PBS group: IL-1β and IL-6,
**P<0.01 respectively, TNF-α, *P<0.05), but IL-10 increased (n = 6/group; **P<0.01 compared with PBS
group). Data are mean values with SEM. (B) Brain water content in the hemorrhagic hemisphere of rats in
iPSCs group was significantly lower than PBS group (n = 6/group; *P<0.05 compared with PBS group), while
the non-hemorrhagic hemisphere didn’t show any difference between two groups (P = 0.11 compared with
PBS group). Data are mean values with SEM.

doi:10.1371/journal.pone.0129881.g003
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assay for caspase-3 and NeuN double-positive cells. As displayed in Fig 4, the numbers of cas-
pase-3+NeuN+ cells in the iPSC group (189.15±5.76 cells/mm2) were much fewer than that of
the PBS group (296.39±13.58 cells/mm2, P<0.01). (Fig 4).

iPSC treatment reduces neuronal damage and glial thickness in the
perihematomal areas
ICH leads to neural degeneration via inducing neuron damage and forming glial scars by pro-
moting the glial proliferations in the perihematomal areas. At day 42 post ICH, Nissl staining
and measuring the thickness of GFAP+ cells were conducted respectively to determine the
changes of neural damage and the thickness of glial scars in the perihematomal areas after
iPSC transplantation. As shown in Fig 5, the percentage of Nissl+ cells without shrunken and
physalides in all Nissl+ cells in the iPSC group (64.87 ± 1.60%) was much more than that of the
PBS group (19.14 ±0.61%), while less than Sham group (95.62±1.34%) (Sham group versus
PBS group, P<0.01; Sham group versus iPSCs group, P<0.05; PBS group versus iPSCs group,
P<0.01) (Fig 5A and 5B). Furthermore, compared with the PBS group (498±11.58 μm), the
glial thickness with GFAP+ cells staining areas in the perihematoma was also significantly
decreased in the iPSC group (230±11.55 μm) (P<0.01) (Fig 5C and 5D).

Discussion
We previously reported that transplantation of human iPSCs into the stroke-damaged rat stria-
tum can improve the functional recovery in an experimental ICH model and may act through

Fig 4. Reduction of cerebral apoptosis of neural cells in iPSC-grafted rats. (A) Representative staining
for activated caspase-3+NeuN+ cells show changes in apoptosis of neural cells (Sham; PBS; PBS+iPSCs).
Bar=50 μm (B) Histograms show changes in the counts of caspase-3+NeuN+ cells at day 3 post ICH. Data
are mean values with SEM. The counts of the caspase-3+NeuN+ cells around the hematoma in iPSCs group
were lower than that in PBS group (n = 6/group; &&P<0.01 respectively, compared with Sham group;
**P<0.01 compared with PBS group).

doi:10.1371/journal.pone.0129881.g004
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neuronal replacement and boosting neuroprotective factors[24]. However, the in vivomecha-
nism(s) by which grafted iPSCs antagonize ICH–induced injuries is still unclear. To extend our
understanding of the treating basis of iPSC transplantation for ICH, we performed the current
study and provided further evidences that the anti-inflammatory and neuroprotective effects of
iPSCs treatment may play an important role in the functional restoration post acute ICH. Our
findings suggest that iPSC-transplanted rats exhibit not only functional improvement and
increased survival rate, but also reduced infiltration of inflammatory cells, down-regulated
proinflammatory cytokines, and up-regulated anti-inflammatory cytokines, as well as attenu-
ated apoptosis, edema, and glial scar in an ICH-damaged brain.

Stem cell-based therapies have great potential to treat human neurological diseases, espe-
cially in intractable stroke and degenerative diseases[12, 14, 29–33]. Multiple types of stem
cells such as neural stem cells (NSCs) and MSCs have so far shown potent immunomodulatory
and neuroprotective properties in the models of human ischemic and hemorrhagic stroke[14,
29, 30, 34–36]. For example, Lee et al. [5] reported that intravenously injected NSCs have neu-
roprotective and anti-inflammatory actions in hemorrhagic stroke. Though NSCs and MSCs
have such promising potentials in treating stroke, the difficulty in obtaining large numbers of
cells and poor proliferating ability limit their application for autologous cell transplantation.
Much recent research shows that iPSCs reprogrammed from autologous cells have more thera-
peutic potentials than adult stem cells in treating ischemic stroke [15, 17–20]. One of these
studies reported that subdural transplantation of iPSCs in rats with experimental cerebral
ischemic could improve their motor function, attenuate inflammation cytokines, increase anti-
inflammatory cytokines, and exert neuroprotective effects [15]. Another research reported that
human iPSC-derived neural precursor cells (NPCs) can enhance behavioral recovery, reduce
stroke-induced inflammatory response, gliosis and apoptosis in rats with ischemic stroke [37].
More importantly, a recent study found out that iPSCs had similar immunogenic properties
but more potent immunomodulatory effects than bone marrow-derived MSCs in vitro[23]. It
is still not clear whether iPSCs have similar characteristics as adult MSCs and NSCs in treating
hemorrhagic stroke [24].

In this study, we present the first experimental evidence that rat skin-derived iPSCs can sig-
nificantly reduce inflammatory infiltrations of neutrophils and microglia around the

Fig 5. Reduction of damaged neurons and glial scar in the perihematomal areas. (A) Representative
Nissl staining for each group (Sham; PBS; PBS+iPSCs) at day 42 post ICH. (B) Histograms show changes in
percentages of Nissl+ cells at day 42 post ICH. Data are mean values with SEM. There was less damage to
Nissl bodies and nucleus within neural cells in the iPSC group compared with that in the PBS group, while it
has hardly any damage to Nissl bodies and nucleus in Sham group (A and B; n = 6/group; &&P<0.01
compared with Sham group; &P<0.05 compared with Sham group; **P<0.01 compared with PBS group. The
# signs indicate hematomal areas. Bar=20 μm). (C) Representative immunostaining for GFAP+ cells of one
representative rat of 3 groups (Sham; PBS; PBS+iPSCs) at day 42 post ICH. (D) Histograms show changes
in the thickness of glial scar through measuring GFAP+ cells at day 42 post ICH. Shown are the mean values
with SEM. The thickness of glial scar in iPSC group is less than that of PBS group (C and D; n = 6/group;
**P<0.01 compared with PBS group. The # signs indicate hematomal areas. Bar=50 μm).

doi:10.1371/journal.pone.0129881.g005
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intracerebral hematoma. Neuroinflammation after ICH is a double-edged sword. On the one
hand, to clear degenerative and necrotic neurons and astrocytes post ICH, it requires the infil-
tration of specific immunocyte subtypes with phagocytic function into the ICH brain. On the
other hand, excessive inflammatory responses lead to detrimental effects contributing to sec-
ondary brain injuries post ICH [1, 6]. Among infiltrated immunocytes, neutrophils are the ear-
liest immunocyte subtype to infiltrate into the brain after ICH, appear within 4 to 5 hours and
peak at day 3 in animal ICH models[5, 7, 9]. Resident microglia cells in the brain are the first
non-neuronal cells to respond to ICH-induced damages. They become activated within 1 hour
after ICH and peak at 3–7 days [4–6]. Like neutrophils, microglia cells can clear up the hema-
toma by engulfing degenerative and necrotic cells[7]. Furthermore, they can secret proinflam-
matory cytokines such as TNF-α, IL-1β and IL-6 to recruit other immunocytes such as
neutrophils and lymphocytes, which further aggravate brain injuries[5, 7]. There have been
plenty of evidence suggesting that inhibition of microglia cells could benefit the prognosis of
ICH [9]. Our observation of decreased infiltrations of neutrophils and microglia following
intrastriatal implantation of the iPSCs suggests their immunomodulatory effects on the acute
inflammatory response after ICH.

Inflammatory networks contributing to brain damage after ICH involve not only inflamma-
tory cells, but also inflammatoion-related cytokines [6, 9, 38]. It has been indicated that inflam-
matory cytokines including TNF-α, IL-1β and IL-6 give rise to edema and brain damage post
ICH by recruiting neutrophils and lymphocytes infiltrating into brain to destroy the integrity
of blood-brain barrier and other brain tissues; however, anti-inflammatory cytokine IL-10 has
beneficial effects against the brain damages post ICH[1, 4–7, 38, 39]. We found that TNF-α,
IL-1β and IL-6 decreased, while IL-10 elevated significantly in the perihematomal tissues of
iPSC-transplanted rats. These results provided further evidence that iPSC grafts are able to not
only suppress intracerebral infiltrations of inflammatory cells, but also effectively regulate the
production and the secretion of inflammation-related cytokines in the perihematomal regions
of ICH-injured brain.

Besides direct anti-inflammatory effects, we have observed that iPSC treatment could miti-
gate brain edema formation in ICH rats through indirect immunomodulatory properties. As
the common end point of multiple pathogenic pathways, edema, resulting in abnormal water
accumulation around the hematoma areas leading to increased intracranial pressure, is a pre-
dictor of poor outcome post ICH. Cerebral edema is involved in almost every aspect of primary
and secondary damages post ICH. Inflammatory reaction is the main cause of vasogenic
edema after ICH [1, 4, 5, 38]. It can be inferred that alleviated edema in iPSC-implanted rats
may be due to the reduced inflammatory response compared with that of the control rats.

Loss of neurons in ICH-injured brain is a major cause of various stroke-induced neurologi-
cal deficits. ICH-injured neurons go through apoptosis or necrosis, which are exacerbated by
undue inflammatory responses. Indeed, we have found that apoptotic neural cells, neuronal
damage and glial thickness were simultaneously reduced along with a decline of inflammatory
reactions in the perihematomal areas of the iPSC-treated rats [5, 38]. These results indicate the
feasibility of using iPSCs to reduce cerebral inflammation and secondary brain damage after
ICH[6].

We also found that iPSCs have the potential to differentiate into neural cells in ICH brain,
suggesting that neural replacement was involving in the improved functional recovery post
ICH. In addition to improving neural function, another exciting effect of iPSC intervention on
the outcome and prognosis of acute ICH is that enhancing ICH rats’ survival rate. Altogether,
these results show that iPSCs have multiple roles in exerting beneficial effects on acute ICH.

Tumorigenesis and instability both are the severe side-effects of iPSC transplantation. In
this study, we have not observed any teratoma formation in all iPSCs-treated rats throughout
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the period of experiment. In addition, no other side-effect such as seizure or hyperpyrexia was
observed during experimental period. However, these safety concerns related with iPSC trans-
plantation should be carefully evaluated in future investigations with extended test periods
[24]. Moreover, more studies are needed for further understanding of the properties and effects
of engrafted iPSCs in animal models of human ICH before being used in clinical work [29, 33].

Conclusions
These data support the hypothesis that the underlying mechanisms of the therapeutic effects of
iPSC transplantation on experimental ICH may involve modulating inflammatory responses
and exerting neuroprotective effects, which collaboratively contribute to the improvement in
neurological and survival outcomes. Deciphering the properties and effects of iPSC transplan-
tation on experimental ICH provides fundamental insights into the therapeutic mechanisms,
which in turn reveal reliable strategies to make the iPSC treatment increasingly efficient and
safe. Thus, these favorable insights into the immunomodulatory and therapeutic properties of
iPSCs may further facilitate their autologous transplantation becoming a valuable strategy for
treating hemorrhagic stroke.
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