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Abstract
Influenza is one of the critical infectious diseases globally and vaccination has been consid-

ered as the best way to prevent. In this study, immunogenicity and protection efficacy

between intranasal (IN) and microneedle (MN) vaccination was compared using inactivated

swine-origin influenza A/H1N1 virus vaccine. Mice were vaccinated by MN or IN administra-

tion with 1 μg of inactivated H1N1 virus vaccine. Antigen-specific antibody responses and

hemagglutination-inhibition (HI) titers were measured in all immunized sera after immuniza-

tion. Five weeks after an immunization, a lethal challenge was performed to evaluate the

protective efficacy. Furthermore, mice were vaccinated by IN administration with higher

dosages (> 1 μg), analyzed in the same manner, and compared with 1 μg-vaccine-coated

MN. Significantly higher antigen-specific antibody responses and HI titer were measured in

sera in MN group than those in IN group. While 100% protection, slight weight loss, and

reduced viral replication were observed in MN group, 0% survival rate were observed in IN

group. As vaccine dose for IN vaccination increased, MN-immunized sera showed much

higher antigen-specific antibody responses and HI titer than other IN groups. In addition,

protective immunity of 1 μg-MN group was similar to those of 20- and 40 μg-IN groups. We

conclude that MN vaccination showed more potential immune response and protection than

IN vaccination at the same vaccine dosage.

Introduction
Influenza is one of the most common virus-caused human disease that afflicts the world’s pop-
ulation annually at the scope of regional epidemic and global pandemic. The clinical symptoms
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of influenza include fever, headaches, fatigue, cough, muscle pain, sore throat, rhinorrhea [1].
About 25–50 million cases of influenza infection occur every year, of which 150,000 hospitali-
zation and 30–40 thousand deaths have been reported in the U.S alone [2]. Among numerous
historical cases of influenza outbreaks, the 2009 new swine-origin H1N1 influenza was the first
pandemic influenza to occur in the 21st century. Since the initial outbreak fromMexico, the
disease rampantly swept across the world, inflicting hundreds of thousands of human infection,
hospitalization and death cases in over 200 nations [3]. In addition, the recent outbreak of a
new H7N9 influenza virus strain in China, which has inflicted 123 infection cases and 37
deaths, has rung an international alarm in the healthcare industry over the preparedness
against such rapidly and dangerously evolving influenza virus strains [4]. In order to prevent
the occurrence of a pandemic influenza, vaccination has been proposed as one of the most
promising tools to control the infection of the virus in humans [5, 6].

The conventional vaccine delivery tool to administer pharmaceutical formulations into a
patient’s muscle (intramuscular) or subcutaneous tissue (subcutaneous) is the hypodermic nee-
dle. However, there are lots of limitations associated with this technique. Firstly, there are sev-
eral needle-related safety issues such as needle stick injury and blood-borne infection through
reused needles in developing countries. Furthermore, the use of an invasive needle can cause a
decline in patient compliance due to needle phobia, stress and pain, and the need of properly
trained health-care personnel for vaccination [7, 8]. Thus, to counter these disadvantages,
novel vaccine administration tools such as intranasal injection, microneedle patch, jet injector
and tattoo vaccination method have been suggested to replace the conventional intramuscular
or subcutaneous injection, as showing their own advantages, such as minimally invasive injec-
tion with negligible pain [9–12].

One such novel delivery tool, microneedles (MN, S1 Fig), is an array of micron-sized nee-
dles which penetrate across the skin barrier, the stratum corneum, and deliver therapeutic
materials into the underlying immune cell-rich skin regions, the epidermis and dermis [13].
Unlike conventional intramuscular vaccination done by a hypodermic syringe, which causes
pain and muscle aches at the injection site [14, 15], the minuscule needle dimensions of MN
minimizes any pain with remarkable improvement in patient compliance [13, 16, 17]. There
are hosts of influenza vaccine antigen that are being investigated with MN, including inacti-
vated influenza virus [16], influenza virus-like particle [18], recombinant trimeric soluble influ-
enza hemagglutinin [19], and hemagglutinin DNA [20].

Another potential tool for substituting traditional vaccinations is the mucosal-stimulating
method. Mucosal immunizations span the spectrum of oral, intranasal, pulmonary, ocular,
vaginal, and rectal routes [12], and focus on the targeting of mucosal tissue, which is one of
immune systems in human body (including the gastrointestinal tract, the upper and lower
respiratory tract, and the urogenital tract) [21]. Among these systems, intranasal (IN) vaccina-
tion, by way of administering drugs into the nostril, elicits the most notable level of systemic
and mucosal immune responses in the nasal epithelium and nasal-associated lymphoid tissue
(NALT) of the lungs and the upper respiratory tract [10, 11, 22]. Furthermore, IN vaccination
is a needle-free injection, so it is impossible to infect patients with any blood-borne disease or
cause needle phobia [10]. Furthermore, it is also easy to deliver the desired drugs into the
mucosal tissue to vaccinate mass populations against air-borne pathogens [12, 22]. This tool is
currently commercialized by MedImmune and Serum Institute of India [10]. For example, Flu-
Mist, manufactured by MedImmune and approved for human use in 2003, consists of live
attenuated trivalent influenza viruses (H1N1, H3N2 subtypes, and B) [23, 24].

To the best of our knowledge, there has been no report comparing the immunogenicity and
protection efficacy against influenza virus infection in the mouse model. Therefore, in this
study, we demonstrated which administration route elicited better immune response and
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protection against homogeneous challenge using inactivated 2009 A/H1N1 and dose-sparing
effect by measuring the total level of antigen-specific immunoglobulin G (IgG), IgG subtypes,
and hemagglutination-inhibition (HI) activity in the mouse sera and lung viral titer after chal-
lenge, and by monitoring the mouse conditions against lethal challenge.

Materials and Methods

Ethics statement
All animal procedures performed in this study (permit number:KU14123) were reviewed,
approved, and supervised by the Institutional Animal Care and Use Committee of Konkuk
University.

Preparation of inactivated viruses
A/California/07/09 (H1N1) (kindly provided by Korea Centers for Disease Control and Pre-
vention) was propagated in the allantoic cavities of 9–11 day old specific pathogen free (SPF)
embryonated chicken eggs (ECE). Seventy-two hours after inoculation at 37°C, allantoic fluid
containing H1N1 virus was collected and clarified by low speed centrifugation (2,000 × g, 30
min, 4°C), and chemically treated with formalin (final concentration of 0.2%) for 24 h at 22°C
for virus inactivation. Formalin-treated allantoic fluid was stored at 4°C until the confirmation
of virus inactivation. The inactivation of virus was confirmed by the inoculation of 0.2 ml of
formalin-treated allantoic fluid into five 10 days-old-embryonic eggs. After 72 h of incubation
at 37°C, the allantoic fluids from all ECEs showed negative results for hemagglutination activity
with chicken red blood cell (RBC). After the confirmation of inactivation, the inactivated
H1N1 virus from the clarified supernatants was pelleted (30,000 × g, 1.5 h, 4°C). The pelleted
virus was resuspended in phosphate-buffered saline (PBS) solution (pH 7.4) and purified using
20–50% (w/v) discontinuous sucrose density gradient purification (150,000 × g, 2.5 h, 4°C).
The protein concentration of purified inactivated virus was determined by QuantiPro Bicinch-
oninic Acid (BCA) Assay kit (Sigma) according to the manufacturer's instructions.

Fabrication and coating of MN
All steps were conducted as in S2 Fig. Stainless steel in-line microneedles (S1 Fig. Tech-Etch,
Plymouth, MA) were dipped into a modified coating device containing the coating solution,
previously described [25] and dried at room temperature for 1 day. The coating solution used
for the dipping process consisted of 1.0% (w/v) Carboxymethylcellulose sodium salt (CMC,
Sigma, St. Louis, MO), 0.5% (w/v) Lutrol F68 (Sigma), 15% (w/v) D-(+)-Trehalose dihydrate
(Sigma) and 3 mg/ml inactivated H1N1 virus in PBS by QuantiPro BCA Assay kit.

Preparation of IN vaccination
In order to intranasally deliver the same quality and amount of vaccine as MN vaccination,
vaccine-coated MN were fabricated and dried at room temperature for 1 day, as described
above. After drying, in order to completely dissolve virus from the MN, vaccine-coated MN
were incubated in PBS solution (50 μl/array) for 12 hours at 4°C. Dissolved antigen stored at
4°C was shortly used for IN immunization within 2 hours, as described by Quan et al [26]. PBS
containing dissolved virus was directly used for intranasal inoculation.

Quantitative analysis of protein on coated MN and virus solution
The coated MNmade by the previous procedure were dissolved in 200 μl of PBS solution and
incubated at 4°C for 12 hours. Then, the amount of proteins coated on the MN and the
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concentrations of vaccine solutions were measured by QuantiPro BCA Assay kit. The protein
concentration coated on the MN was approximately 1 μg.

Immunization and challenge
Forty-four six-week BALB/c mice (Orient Bio, Sungnam, Korea) were prepared before immu-
nization and classified into 4 groups: eleven mice which were immunized by MN vaccination
with inactivated H1N1 virus (MN group), eleven mice which were immunized by IN vaccina-
tion with inactivated H1N1 virus (IN group), eleven mice which were not treated by any
immunization, but were challenged (Naïve group), and eleven mice which were not treated by
any immunization and were excepted from challenge (Control group). Mice in the MN group
and IN group were anesthetized with Avertin (375 mg/kg) intraperitoneally. During anaesthe-
sia, the fur on all murine back in the MN group was removed with a depilatory cream (Veet,
Reckitt Benckiser, Berkshire, UK) and washed by using warm water and soaked cotton ball
(70% ethanol) after application of the removal cream for 5 min.

After drying by a hairdryer, the coated MN were manually inserted into the site where the
hair was removed off, left for 10 min to allow the complete dissolution of all coating solution
into the skin of mouse, and picked out. One microneedle array was used to deliver 1 μg of inac-
tivated H1N1 antigen for each mouse At the same time, the mice in the IN group were intrana-
sally injected with 1 μg of inactivated H1N1 dissolved in 50 μl of PBS by nasal dripping,
previously prepared. The mice in the Naïve group and the Control group were not treated by
any immunization tool.

After 5 weeks, the mice were anesthetized by intraperitoneal injection of Avertin (375
mg/kg) and challenged intranasally with 90 μl of 106.0 EID50 A/Korea/01/09 (H1N1) (kindly
provided by Korea Centers for Disease Control and Prevention) for the challenge experiment.
At 4 days post-challenge, four mice from each group except the control group were sacrificed,
and the lungs were collected for determining the lung virus titers in the infected mice. The
remaining mice were observed and their weight and survival rate were recorded for 14 days
after challenge. Mice which lost over 25% of their weight were considered dead and humanly
euthanized. In this study, the euthanasia was performed by cervical dislocation under anes-
thetic condition using intraperitoneal injection of Avertin (375 mg/kg).

Measuring antibody response and HI titer
Antibody responses (total IgG, IgG1, IgG2a) in mouse sera collected at 2 and 4 weeks after
immunization were measured using enzyme-linked immunosorbent assay (ELISA). Inactivated
antigen used for the immunization were diluted with PBS (2 μg/ml), added into 96-well plates
(50 μl/well), and incubated overnight at 4°C. After the plates were washed, wells were blocked
by 5% skim milk (Sigma, St. Louis, MO) and incubated at 37°C for 1 hour. After the plates
were washed with PBS containing 0.05% Tween 20 (PBST, Samchun Chemical, Korea), mouse
sera which were two-fold diluted into 2.5% skim milk suspended in PBST were transferred into
the plates. After incubation (20°C, 90 min) and another washing session, HRP (Horseradish
peroxidase)-conjugated anti-mouse IgG, G1, or G2a antibody (AbDSerotec, UK) was added.
Then, TMB (3, 30, 5, 50-Tetramethylbenzidine) buffer (SurModics, MN, USA) was added to
wells (100 μl/well), and 1N hydrochloric acid (100 μl/well) was used for stopping the reaction.
After all the steps were finished, the plates were measured in an ELISA reader at 450nm for
determining the optical density (OD).

To determine HI titers, HI assay were conducted as previously described [27]. Serum sam-
ples were first treated with a receptor-destroying enzyme (Denka Seiken, Tokyo, Japan) by
incubation overnight at 37°C and then for 30 min at 56°C. Sera were serially diluted, mixed
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with 4 haemagglutination (HA) units of H1N1 virus, and incubated for 30 min at room tem-
perature prior to adding 0.5% chicken red blood cells. The reciprocal of highest serum dilution
preventing hemagglutination was scored as the HI titer.

Measuring lung virus titer
In order to determine the lung virus titer, at day 4 post-challenge, the lungs were collected and
homogenized in PBS 10% (w/v). The homogenates were centrifuged at 1400 × g for 10 min at
4°C. The infectivity of the virus in the supernatant was determined with a plaque assay using
Madin–Darby canine kidney (MDCK) cells [28].

Injecting different dosages for IN vaccination
To confirm the immunogenicity of vaccine and how much dosage would be needed for similar
immune response and protection effect to MN with 1 μg, escalating doses of inactivated H1N1
antigen (1, 10, 20, and 40 μg), the same antigen coated on MN, was intranasally delivered, and
the immunogenicity and protective efficacy were compared with 1 μg of MN vaccination. A
solution consisting of 1.0% (w/v) CMC, 0.5% (w/v) Lutrol F68, 15% (w/v) D-(+)-Trehalose
dihydrate and 3 mg/ml inactivated H1N1 virus, which consist of the same composition used in
the previous experiment, was spread and dried at RT for 1 day on sheets of stainless steel,
which is the same type of stainless steel as MN, to mimic storing conditions of coated virus on
MN, as previously described [16, 27]. The amount of virus spread on sheets was controlled by
releasing the volume of coating solution. After drying for 1 day, vaccine-coated stainless steel
sheets were incubated into PBS solution (100 μl/sheet) at 4°C for 12 hours to dissolve the vac-
cine from the sheets. Dissolved antigen stored at 4°C was shortly used for IN immunization
within 2 hours, based on modified quantitation method described by Quan et al [26]. PBS con-
taining dissolved virus was directly used for intranasal inoculation. Twenty-five six-week
BALB/c mice (Orient Bio) were prepared for this experiment. All mice except for Naïve groups
anesthetized by Avertin (375 mg/kg) were intranasally injected with 100 μl of inactivated virus
solution. Each IN group (5 mice per a group), was intranasally immunized with 1, 10, 20, or
40 μg of inactivated H1N1 virus dissolved in PBS. Mice sera were collected at 2 and 4 weeks
post immunization to measure the antibody titer (total IgG, IgG1 and IgG2a) and HI titer.
After 5 weeks post immunization, all mice which were anesthesized with Avertin (375 mg/kg),
and challenged with 90 μl of 106.0 EID50 of H1N1 virus, the same challenge condition used for
MN group. Mice were observed daily for 14 days to measure the weight loss and survival rate.
The immunogenicity and protective efficacy of IN immunization with escalating doses of anti-
gen were compared to that of 1 μg MN immunization, which has been previously conducted in
this study. Experiment for the MN group was conducted independently in a separate challenge
experiment using the same lethal dosage.

Statistical analysis
Every assay was measured using at least three replicate samples, from which the arithmetic
mean and standard error of the mean were calculated (unless otherwise noted). A two-tailed
Student's t-test was performed when comparing two different conditions. When comparing
three or more conditions, a one-way analysis of variance (ANOVA; α = 0.05) was performed.
A p-value less than 0.05 was considered to be significant.
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Results

Antibody responses to MN and IN vaccination
To compare the immunogenicity of the two vaccine delivery methods, 1 μg of inactivated
H1N1 virus was administered into mice by either MN or IN injection. Immunoglobulin G
(IgG) and IgG subtype (IgG1 and IgG2a) antibody responses were measured by ELISA from
the sera collected 4 weeks after immunization. As shown in Fig 1A, the mean serum IgG level
in the MN group was 0.29. The IgG level in the IN group was 0.07, which was significantly
lower than that of the MN group and similar to that in the Naïve group (p<0.001). In addition,
the IgG1 and IgG2a level (Fig 1B and 1C) were significantly higher in sera fromMN-immu-
nized mice than in sera from IN-immunized mice (p<0.001). However, the antibody isotype

Fig 1. Antigen-specific antibody responses and HI titer in MN or IN-immunized sera with 1 μg. Antigen-specific antibody responses at week 4 (IgG—A,
IgG1—B and IgG2a—C) and HI titer (D) at week 2 and week 4 in mice sera immunized by IN or MN vaccination. Mice sera injected by MN or IN immunization
were collected biweekly and measured for their HI titer and IgG, IgG1 and IgG2a levels by HI assay and ELISA. n = 11 for HI titer and n = 5 for antibody titer.
Error bars represent standard errors. *, p<0.05; **, p<0.005; ***, p<0.001. n.s, not significant.

doi:10.1371/journal.pone.0130684.g001

Comparison between Microneedle and Intranasal Immunization

PLOS ONE | DOI:10.1371/journal.pone.0130684 June 18, 2015 6 / 15



titers in sera from IN-immunized mice were similar to those seen in the Naïve group
(p = 0.928 for IgG1 and p = 0.997 for IgG2a).

HI assay
In addition to the antibody response against influenza virus, immunogenicity was evaluated by
the HI assay performed on immunized sera collected from each study group at weeks 2 and 4
(Fig 1D). In the MN group, the average HI titer was 12 at week 2 and 20 at week 4. However, in
the IN and Naïve groups, the HI titer did not change following immunization, indicating the
effectiveness of MN vaccination on inducing HI antibodies against influenza virus.

Protective immunity
A lethal homologous challenge was performed to compare the protective efficacy of the vacci-
nation methods. At 14 days, the survival rate was 100% in the MN (7/7) (Fig 2A). However, the
challenge was lethal in the IN (0/7) and Naïve groups (0/6), in which the mice had to be eutha-
nized on days 6 and 8, respectively. Mice in the MN group had lost about 12% of their initial
weight by day 4, but gradually regained their initial weight between day 4 (88.1%) and day 14
(100.5%) (Fig 2B). By day 5, mice in both the IN and Naïve groups had lost over 25% of their
body weight. For additional confirmation of the difference in protection conferred by MN and
IN injection, lung viral titers were measured by the plaque assay in MDCK cells (Fig 2C). A dif-
ference (p = 0.055) in the extent of viral replication was observed in the MN group (2.05105

PFU/ml) and the IN group (5.84105 PFU/ml). However, similar titers were found the IN and
Naïve groups (6.06105 PFU/ml, p = 0.987). Therefore, MN coated with inactivated influenza
virus showed better protective immunity in mice against lethal challenge than IN vaccination.

Comparing escalating dosages for IN vaccination with MN vaccination
with 1 μg dose
We tried to confirm the immunogenicity of antigen using in IN immunization and determine
the IN dose that would induce immune responses equivalent to those after MN administration
because MN administration of the influenza vaccine was more immunogenic and conferred
better protective immunity than IN administration at the 1 μg of dosage. Therefore, 1, 10, 20,
or 40 μg of inactivated H1N1 virus was intranasally administered to mice.

Fig 2. Protection effect against lethal dosage challenge. Survival rate (A), weight loss (B) were measured for 14 days (n = 7). At day 4 post-challenge,
lungs were collected and lung virus titer (C) were measured by plaque assay of MDCK cells (n = 4). Error bars represent standard errors. *, p<0.05;
**, p<0.005; ***, p<0.001. n.s, not significant.

doi:10.1371/journal.pone.0130684.g002
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The HI activity was lower at all IN doses than that observed after immunization with 1 μg of
MN vaccine (Fig 3A). Mice immunized intranasally with either 1 or 10 μg of inactivated H1N1
virus did not have detectable HI activity. In addition, the HI titer was much higher in mice
given 1 μg of the MN vaccination than in those injected intranasally with doses of 20 and
40 μg, which resulted in HI titers of 4.8 and 9.6, respectively. MN-immunized mice also had
higher antigen-specific IgG and IgG1 levels than mice given IN-administered doses of 1, 10,
or 20 μg of vaccine (Fig 3B and 3C; p<0.001—MN:IN-1, MN:IN-10 in IgG, MN:IN-1, MN:IN-
10, MN-IN-20 in IgG1; p<0.005 –MN:IN-20 in IgG). However, the IgG2a response in MN-
immunized sera was similar to that of IN-immunized sera after administration of 1 or 10 μg of
vaccine, but was significantly lower than in those given 20 (p<0.05) or 40 μg (p<0.001) of
vaccine.

The much higher antigen-specific IgG and IgG1 levels observed in mice immunized using
MN coated with 1 μg of vaccine than in mice immunized with 40 μg of IN vaccine offers
strong evidence that antigen by MN vaccination is more efficient than that by IN vaccination
(Fig 3D).

Fig 3. Antigen-specific antibody responses and HI titer in IN-immunized sera with 1, 10, 20 and 40 03BCg.HI titer (A) and antigen-specific antibodies
(IgG—B, IgG1 – C and IgG2a—D) responses at week 4 in mice sera immunized by IN or MN vaccination. In the case of the IN vaccination group, mice were
immunized by administering 1, 10, 20, 40 μg of inactivated H1N1 virus in 100μl of PBS solution to each group. Mice sera were measured for HI titer and IgG,
IgG1 and IgG2a levels by HI assay and ELISA, respectively. Mice sera immunized by MN vaccination were collected after immunization. In the case of HI
assay, the HI titer for MN was measured independently. n = 5 for HI titer and antibody titer. Error bars represent standard errors. *, p<0.05; **, p<0.005;
***, p<0.001. n.s, not significant.

doi:10.1371/journal.pone.0130684.g003
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Dose-dependent protective immunity of IN immunization
At 4 weeks post immunization, mice in the Naïve group and in the IN vaccination group inocu-
lated with 1, 10, 20, or 40 μg of inactivated H1N1 virus lethally challenged with H1N1 virus.
During the 14-day post-challenge period, all mice immunized with 20 μg (5/5) or 40 μg (5/5) of
vaccine survived the lethal challenge (Fig 4A), whereas those vaccinated with 10 μg of vaccine
showed partial protection (4/5) and those vaccinated with 1 μg clearly showed an sub-protec-
tive immunological response, as shown by the survival of only one of the five mice. The dose-
dependent trend of protection can be clearly seen in Fig 4B. Mice administered 1 μg of vaccine
intranasally had the highest percentage of initial body weight loss at day 6 (22.2%), and the
weight loss steadily declined with increases in the amount of vaccine (10 μg, 17.2%; 20 μg,
15.0%; 40 μg, 6.5%). However, the IN group mice immunized with 20 μg vaccine showed a sim-
ilar tendency as the MN group. Overall, IN immunization resulted in a dose-dependent
increase in protection against an H1N1 influenza challenge.

Discussion
Vaccination plays a key role in preventing the spread of highly infectious diseases, such as in
the early stage of influenza infection. However, in the case of influenza, vaccine production is
currently limited by delays in production and inadequate output from production facilities.
These limitations prevent the control of infection during the early stage, before the affection
spreads to the entire population and becomes a seasonal epidemic or pandemic [29–31]. There-
fore, novel vaccine delivery devices have been proposed to improve vaccine efficiency and
patient compliance, and reduce the required dosage and costs [8]. For example, needle-free
devices such as jet injection and powder injection have been introduced. Currently, a wide
range of vaccine delivery devices with different routes of administration are available. These
include transdermal, oral, sublingual, nasal and pulmonary immunization techniques [7, 9].
Transdermal vaccine delivery, which has received significant attention, depends on the pres-
ence of a relatively large population of immune cells, such as Langerhans cells, dermal dendritic
cells and CD8+ T cells, in the epidermis and dermis of the skin [32, 33]. Other methods, such
as oral, sublingual, nasal and pulmonary delivery, target the gastrointestinal or respiratory
mucosa and mucosa-associated lymphoid tissue [34]. In the current study, we compared the
immunogenicity and protection afforded by two promising vaccine delivery tools against the
2009 swine-origin influenza A (H1N1) virus in a mouse model. MN is a transdermal delivery
system, and IN delivery targets the nasal-associated lymphoid tissue. This is the first study
showing the superiority of MN vaccination over IN vaccination. Previous studies compared
MN and intramuscular vaccination [16, 24, 35], but to our knowledge, no study has compared
directly IN and MN vaccination. In the present study, to make it easier to compare the immu-
nological features of vaccines delivered by different routes, we used an inactivated influenza
virus that was previously used as the standard antigen [16, 36], although a live attenuated influ-
enza virus vaccine is known to give better protection than IN vaccines [37].

Antibody responses and HI activity after immunization are key criteria for measuring
vaccine immunogenicity. In this study, mice immunized with influenza vaccine-coated MN
showed antigen-specific immune responses and HI titers that were consistent with those
reported previously [27, 38]. However, in contrast to MN vaccination, IN vaccination with
1 μg of inactivated H1N1 virus failed to elicit measurable immune responses, i.e., HI activity
and antibody titers were similar to those in the Naïve group. Mice receiving the IN vaccine
all died after a virus challenge, but all the mice in the MN group survived. In addition, MN vac-
cination resulted in better reduced viral replication from the lungs than IN vaccination, as
observed previously [38, 39]. It can be assumed that the vaccine doses administered
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intranasally were insufficient to induce an adequate immune response in the mice [22]. Consis-
tent with our findings, Ichinohe et al. [40] found that a low IN dose (1 μg) of trivalent influenza
vaccine does not induce a protective immune response in mice. Moreover, 100 μg of inactivated
influenza virus is needed to elicit a sufficient heterosubtypic immune response when given
intranasally [36]. Although it is not appropriate to compare the specific amount of antigen

Fig 4. Dose-dependent protection against lethal challenge. Survival rate (A) and weight loss (B) were
observed for 14 days after challenge in all intranasally immunized mice injected with various dosages (IN—1,
10, 20, 40 μg, each) and mice in the Naïve group which were not immunized. Experiment for the MN group
was conducted independently in a separate challenge experiment using the same lethal dosage. Error bars
represent standard errors. n = 5, each.

doi:10.1371/journal.pone.0130684.g004
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using in these studies because there are several different assays using for protein quantification,
above data could be used as a rough indicator of dosage and trends for intranasal vaccination.

To determine whether the vaccine used in that experiment could elicited immune response
and the amount of vaccine requested for similar protection effect of 1 μg of vaccine-coated
MN, mice were intranasally administered with 1, 10, 20, or 40 μg of inactivated H1N1 viruses,
and the subsequent results on the immunogenicity and protective efficacy of IN vaccination
were compared to those of 1 μg MN vaccination. The virus was the same as that used in the
previous experiment, but more virus and a larger volume (100 μl) were used in this study
because poor antibody responses and lack of protective immunity are often associated with
insufficient doses of vaccine [41]. According to the reports by Ichinohe et al. [40] and Takada
et al. [36], although the amount of antigen used in both studies were not described in details, it
could be inferred that higher vaccine doses are likely to be needed for IN than for MN immuni-
zation in mice to induce a detectable level of immune response or HI activity.

So, HI titers, and total IgG and IgG1 responses showed that much higher dosages were
required in the IN group to achieve immune responses such as those in the MN group. Specifi-
cally, the MN vaccination resulted in a considerably higher IgG response when compared with
IN vaccination (Fig 1B). In line with this result, a dose-dependent protection effect was
observed after virus challenge, such that a 100% survival rate and only a slight weight loss were
observed with 20 μg and 40 μg doses of IN vaccine; thus, protection effect induced by MN vac-
cination with 1 μg was as similar to that induced by IN vaccination with 40 μg doses of IN vac-
cine. The volume of antigen injection via IN route used in this study might have caused the
delivery of inactivated antigen to the pulmonary region. However, the volumes previously used
for the IN delivery of antigen in mice are variable from different studies (e.g. 2ul [42], 10ul
[43], 20ul [44], 30ul [45], 50ul [46]). Further study on optimization of injection volume of IN
delivery of inactivated antigen used in this study would be needed, however it is clear that the
protective efficacy induced by MN vaccination with 1 μg of inactivated swine A/H1N1 virus
was greater than that induced by IN vaccination with the same amount of antigen. Although
the chemicals including in coating formulation of MN and IN, such as CMC and Lutrol F68,
have mucoadhesive characteristics and affect mucus rheology and subsequent vaccine effi-
cacy [47–54], the amount of each chemical delivered into nostril was very small (CMC:
0.01~0.27%, Lutrol F68: 0.01~0.13%) and much lower than previous studies (CMC: 0.1~2.5%,
Lutrol F68: 0.3~20%). So, the coating formulation used in this study would not affect the
immune responses after IN immunization. Overall, the immune response to IN vaccination
was dose-dependent, whereas MN vaccination was superior to IN vaccination, based on the
amount of dosage.

As mentioned previously, the skin is a strongly immunogenic organ due to the abundance
of antigen-presenting cells such as Langerhans cells and dermal dendritic cells [33]. Delivery
of vaccine directly into such an immune cell-rich organ using microneedles brings about
improved immune responses and a dose-sparing effect, comparing with IM [39]. Microneedle-
based skin vaccination technology reduces the amount of antigen required for vaccination,
which results in reduced vaccination cost and overcomes vaccine shortage problems [39].
Moreover, as the cost is competitive with conventional hypodermic syringes and needles due
to small package volume for logistic process, requiring relatively small number of healthcare
personnel, low material costs [55], microneedles may serve as an effective vaccination tool for
mass vaccination during pandemics or seasonal epidemics [56].

In this study, MN vaccination was superior to IN vaccination at the same dose of inactivated
2009 swine-origin influenza A (H1N1) virus, and showed similar protection effect to IN vacci-
nation with 20-fold higher dosage. Previous preclinical [39] and clinical [56] studies have
shown that MN vaccination can achieve high level of immune response with much lower
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vaccine doses than that required by intramuscular vaccination. One notable study of hetero-
subtypic cross-protection reported similar trends in antibody levels and other immunogenicity
features following subcutaneous, IN, and intramuscular administration [57]. However, no pre-
vious studies have compared the immunological responses of IN and MN vaccination. MN
vaccination is a promising vaccine delivery tool that might supplant traditional vaccination
methods in the near future.

Conclusion
In this study, the immunogenicity and protective efficacy of IN and MN vaccination against
the 2009 swine-origin influenza A (H1N1) virus were compared in a mouse model. The same
dosage of inactivated H1N1 virus was administered by the IN route or into the skin by MN
injection. MN-vaccinated mice showed higher antigen-specific antibody responses, higher HI
activity, better protection, and decreased viral replication following a lethal challenge than IN-
vaccinated mice. In following experiment, immune responses to IN vaccination with escalating
doses of antigen were compared with those induced by MN vaccination. MN vaccination, even
with 1 μg of antigen, provided similar level of antibody responses (IgG and IgG1) and immu-
nological protection as those of IN vaccination with 40 μg of antigen, demonstrating that the
MN vaccination showed similar protection effect to IN vaccination with 40-fold higher dose.
The positive features of microneedle delivery, including improved patient compliance, reduced
anxiety and pain, possibility of self-administration, and ease of transportation, in addition to
the superior efficiency confirmed in this study, demonstrate that MN vaccination is a promis-
ing vaccine delivery route suitable for mass vaccination campaigns during seasonal epidemics
or pandemics [13, 39]. In conclusion, MN vaccination provides a significant immune response
and protection effect compared with IN vaccination for the 2009 swine-origin influenza A
virus vaccine.

Supporting Information
S1 Fig. Microneedles coated with bovine serum albumin (left) or Sulforhodamine B (right).
In-line stainless steel microneedle array was coated with coating solution plus BSA or Sulforho-
damine B and observed by optical microscopy or fluorescence microscopy, respectively. Scale
bar = 100 μm.
(TIF)

S2 Fig. Experimental design for comparison study between microneedle and intranasal
immunization.One group of mice were immunized with a vaccine solution, consisting of 1 μg
of inactivated swine H1N1 virus vaccine constituted in a coating solution, by injection of the
solution into nostrils. In the other group of mice, vaccine-coated MN were inserted into the
back skin of mice, which were coated with the same dosage of the vaccine as in IN vaccination.
(TIF)
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